
Adversarial Attack on Graph Structured Data

Hanjun Dai 1 Hui Li 2 Tian Tian 3 Xin Huang 2 Lin Wang 2 Jun Zhu 3 Le Song 1 2

Abstract
Deep learning on graph structures has shown
exciting results in various applications. However,
few attentions have been paid to the robustness
of such models, in contrast to numerous research
work for image or text adversarial attack and
defense. In this paper, we focus on the adver-
sarial attacks that fool deep learning models by
modifying the combinatorial structure of data.
We first propose a reinforcement learning based
attack method that learns the generalizable attack
policy, while only requiring prediction labels from
the target classifier. We further propose attack
methods based on genetic algorithms and gradient
descent in the scenario where additional prediction
confidence or gradients are available. We use both
synthetic and real-world data to show that, a family
of Graph Neural Network models are vulnerable
to these attacks, in both graph-level and node-level
classification tasks. We also show such attacks
can be used to diagnose the learned classifiers.

1. Introduction
Graph structure plays an important role in many real-world
applications. Representation learning on the structured data
with deep learning methods has shown promising results in
various applications, including drug screening (Duvenaud
et al., 2015), protein analysis (Hamilton et al., 2017),
knowledge graph completion (Trivedi et al., 2017), etc..

Despite the success of deep graph networks, the lack of inter-
pretability and robustness of these models make it risky for
some financial or security related applications. As analyzed
in Akoglu et al. (2015), the graph information is proven
to be important in the area of risk management. A graph
sensitive evaluation model will typically take the user-user
relationship into consideration: a user who connects with
many high-credit users may also have high credit. Such
heuristics learned by the deep graph methods would often

1Georgia Institute of Technology 2Ant Financial
3Tsinghua University. Correspondence to: Hanjun Dai
<hanjundai@gatech.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

yield good predictions, but could also put the model in a risk.
A criminal could try to disguise himself by connecting other
people using Facebook or Linkedin. Such ‘attack’ to the
credit prediction model is quite cheap, but the consequence
could be severe. Due to the large number of transactions
happening every day, even if only one-millionth of the
transactions are fraudulent, fraudsters can still obtain a huge
benefit. However, few attentions have been put on domains
involving graph structures, despite the recent advances in
adversarial attacks and defenses for other domains like im-
ages (Goodfellow et al., 2014) and text (Jia & Liang, 2017).

So in this paper, we focus on the graph adversarial attack for
a set of graph neural network(GNN) (Scarselli et al., 2009)
models. These are a family of supervised (Dai et al., 2016)
models that have achieved state-of-the-art results in many
transductive tasks (Kipf & Welling, 2016) and inductive
tasks (Hamilton et al., 2017). Through experiments in both
node classification and graph classification problems, we will
show that the adversarial samples do exist for such models.
And the GNN models can be quite vulnerable to such attacks.

However, effectively attacking graph structures is a non-
trivial problem. Different from images where the data is con-
tinuous, the graphs are discrete. Also the combinatorial na-
ture of the graph structures makes it much more difficult than
text. Inspired by the recent advances in combinatorial opti-
mization (Bello et al., 2016; Dai et al., 2017), we propose a re-
inforcement learning based attack method that learns to mod-
ify the graph structure with only the prediction feedback from
the target classifier. The modification is done by sequentially
add or drop edges from the graph. A hierarchical method is
also used to decompose the quadratic action space, in order to
make the training feasible. Figure 1 illustrates this approach.
We show that such learned agent can also propose adversarial
attacks for new instances without access to the classifier.

Several different adversarial attack settings are considered in
our paper. When more information from the target classifier
is accessible, a variant of the gradient based method and a
genetic algorithm based method are also presented. Here
we mainly focus on the following three settings:

• white box attack (WBA): in this case, the attacker is
allowed to access any information of the target classifier,
including the prediction, gradient information, etc..

• practical black box attack (PBA): in this case, only the
prediction of the target classifier is available. When the
prediction confidence is accessible, we denote this setting

Adversarial Attack on Graph Structured Data

!"($)

!&(')

……
!"(()

!&(()
)'∗

+,-
(',/)

……

)/∗
+,0

(',/)

S2V Module)'∗	value S2V)/∗	valueargmax
7

)'∗ (89, :)

:9(')

argmax
7

)/∗ (89, :9' , :)

:9(/)

:9
89 89;'

Figure 1. Illustration of applying hierarchical Q-function to propose adversarial attack solutions. Here adding a single edge at is decomposed
into two decision steps a(1)t and a(2)t , with two Q-functionsQ1∗ andQ2∗, respectively.

as PBA-C; if only the discrete prediction label is allowed,
we denote the setting as PBA-D.
• restrict black box attack (RBA): this setting is one step

further than PBA. In this case, we can only do black-box
queries on some of the samples, and the attacker is asked
to create adversarial modifications to other samples.

As we can see, regarding the amount of information the
attacker can obtain from the target classifier, we can sort the
above settings as WBA > PBA-C > PBA-D > RBA. For
simplicity, we focus on the non-targeted attack, though it
is easy to extend to the targeted attack scenario.

In Sec 2, we first present the background about GNNs and
two supervised learning tasks. Then in Sec 3 we formally
define the graph adversarial attack problem. Sec 3.1 presents
the attack method RL-S2V that learns the generalizable
attack policy over the graph structure. We also propose
other attack methods with different levels of access to the
target classifier in Sec 3.2. We experimentally show the
vulnerability of GNN models in Sec 4, and also present a
way of doing defense against such attacks.

2. Background
A set of graphs is denoted by G={Gi}Ni=1, where |G|=N .
Each graph Gi = (Vi, Ei) is represented by the set of
nodes Vi = {v(i)j }

|Vi|
j=1 and edges Ei = {e(i)j }

|Ei|
j=1. Here

the tuple e
(i)
j = (e

(i)
j,1,e

(i)
j,2) ∈ Vi × Vi represents the edge

between node e
(i)
j,1 and e

(i)
j,2. In this paper, we focus on

undirected graphs, but it is straightforward to extend to
directed ones. Optionally, the nodes or edges can have
associated features. We denote them as x(v(i)j) ∈ RDnode

andw(e(i)j)=w(e
(i)
j,1,e

(i)
j,2)∈RDedge , respectively.

This paper works on attacking the graph supervised
classification algorithms. Here two different supervised
learning settings are considered:

Inductive Graph Classification: We associate each graph
Gi with a label yi ∈ Y = {1, 2, ... , Y }, where Y is the
number of categories. The datasetD(ind)={(Gi,yi)}Ni=1 is
represented by pairs of graph instances and graph labels. This
setting is inductive since the test instances will never be seen
during training. Examples of such task including classifying
the drug molecule graphs according to their functionality. In

this case, the classifier f (ind)∈F (ind) :G 7→Y is optimized
to minimize the following loss:

L(ind)=
1

N

N∑
i=1

L(f (ind)(Gi),yi) (1)

whereL(·,·) is the cross entropy by default.

Transductive Node Classification: In node classification
setting, a target node ci∈Vi of graphGi is associated with
a corresponding node label yi ∈ Y . The classification is
on the nodes, instead of the entire graph. We here focus
on the transductive setting, where only a single graph
G0=(V0,E0) is considered in the entire dataset. That is to
say,Gi=G0,∀Gi∈G. It is transductive since test nodes (but
not their labels) are also observed during training. Examples
in this case include classifying papers in a citation database
like Citeseer, or entities in a social network like Facebook.
Here the dataset is represented asD(tra)={(G0,ci,yi)}Ni=1,
and the classifier f (tra)(·;G0)∈F (tra) :V0 7→Y minimizes
the following loss:

L(tra)=
1

N

N∑
i=1

L(f (tra)(ci;G0),yi) (2)

When not causing confusion, we will overload the notations
D = {(Gi,ci,yi)}Ni=1 to represent the dataset, and f ∈ F
in either settings. In this case, ci is implicitly omitted in
inductive graph classification setting; While in transductive
node classification setting,Gi always refers toG0 implicitly.

GNN family models

The Graph Neural Networks (GNNs) define a general
architecture for neural network on graph G=(V,E). This
architecture obtains the vector representation of nodes
through an iterative process:

µ(k)
v = h(k)

(
{w(u,v),x(u),µ(k−1)

u }u∈N (v),

x(v),µ
(k−1)
v

)
,k∈{1,2,...,K} (3)

whereN (v) specifies the neighborhood of node v∈V . The
initial node embedding µ(0)

v ∈Rd is set to zero. For simplic-
ity, we denote the outcome node embedding as µv =µ

(K)
v .

To obtain the graph-level embedding from node embeddings,
a global pooling is applied over the node embeddings.

Adversarial Attack on Graph Structured Data

The vanilla GNN model runs the above iteration until
convergence. But recently, people find a fixed number of
propagation steps T with various different parameteriza-
tions (Li et al., 2015; Dai et al., 2016; Gilmer et al., 2017;
Lei et al., 2017) work quite well in various applications.

3. Graph adversarial attack
Given a learned classifier f and an instance from the dataset
(G,c,y)∈D, the graph adversarial attacker g(·,·) :G×D 7→G
asks to modify the graphG=(V,E) into G̃=(Ṽ ,Ẽ), such
that

max
G̃

I(f(G̃,c) 6=y)

s.t. G̃=g(f,(G,c,y))

I(G,G̃,c)=1. (4)

Here I(·,·,·) :G×G×V 7→{0,1} is an equivalency indicator
that tells whether two graphsG and G̃ are equivalent under
the classification semantics.

In this paper, we focus on the modifications to the discrete
structures. The attacker g is allowed to add or delete edges
from G to construct the new graph. Such type of actions
are rich enough, since adding or deleting nodes can be
performed by a series of modifications to the edges. Also
modifying the edges is harder than modifying the nodes,
since choosing a node only requires O(|V |) complexity,
while naively choosing an edge requiresO(|V |2).

Since the attacker is aimed at fooling the classifier f , instead
of actually changing the true label of the instance, the
equivalency indicator should be defined first to restrict the
modifications an attacker can perform. We use two ways to
define the equivalency indicator:

1) Explicit semantics. In this case, a gold standard classifier
f∗ is assumed to be accessible. Thus the equivalency
indicator I(·,·,·) is defined as:

I(G,G̃,c)=I(f∗(G,c)=f∗(G̃,c)), (5)

where I(·)∈{0,1} is an indicator function.
2) Small modifications. In many cases when explicit seman-

tics is unknown, we will ask the attacker to make as few
modifications as possible within a neighborhood graph:

I(G,G̃,c)=I(|(E−Ẽ)∪(Ẽ−E)|<m)

·I(Ẽ⊆N (G,b))). (6)

In the above equation, m is the maximum
number of edges that allowed to modify, and
N (G,b)= {(u,v) :u,v ∈V,d(G)(u,v)<= b} defines the
b-hop neighborhood graph, where d(G)(u,v)∈ {1,2,...}
is the distance between two nodes in graphG.

Take an example in friendship networks, a suspicious
behavior would be adding or deleting many friends in a short

period, or creating the friendship with someone who doesn’t
share any common friend. The “small modification” con-
straint eliminates the possibility of above two possibilities,
so as to regulate the behavior of g. With either of the two
realizations of robust classifier r, it is easy to enforce the
attacker. Each time when an invalid modification proposed,
the classifier can simply ignore such move.

Below we first introduce our main algorithm, RL-S2V, for
learning attacker g in Section 3.1. Then in Section 3.2,
we present other possible attack methods under different
scenarios.

3.1. Attacking as hierarchical reinforcement learning

Given an instance (G,c,y) and a target classifier f , we model
the attack procedure as a Finite Horizon Markov Decision
ProcessM(m)(f,G,c,y). The definition of such MDP is as
follows:

• Action As we mentioned in Sec 3, the attacker is allowed
to add or delete edges in the graph. So a single action
at time step t is at ∈ A ⊆ V × V . However, simply
performing actions in O(|V |2) space is too expensive.
We will shortly show how to use hierarchical action to
decompose this action space.

• State The state st at time t is represented by the tuple
(Ĝt,c), where Ĝt is a partially modified graph with some
of the edges added/deleted fromG.

• Reward The purpose of the attacker is to fool the target
classifier. So the non-zero reward is only received at the
end of the MDP, with reward being

r
(
(G̃,c)

)
=

{
1:f(G̃,c) 6=y
−1:f(G̃,c)=y

(7)

In the intermediate steps of modification, no reward will
be received. That is to say, r(st,at)=0,∀t=1,2,...,m−1.
In PBA-C setting where the prediction confidence
of the target classifier is accessible, we can also use
r
(
(G̃,c)

)
=L(f(G̃,c),y) as the reward.

• Terminal Once the agent modifiesm edges, the process
stops. For simplicity, we focus on the MDP with fixed
length. In the case when fewer modification is enough,
we can simply let the agent to modify the dummy edges.

Given the above settings, a sample trajectory from this MDP
will be: (s1,a1,r1,...,sm,am,rm,sm+1), where s1=(G,c),
st=(Ĝt,c),∀t∈{2,...,m} and sm+1=(G̃,c). The last step
will have reward rm= r(sm,am) = r

(
(G̃,c)

)
and all other

intermediate rewards are zero: rt=0,∀t∈{1,2,...,m−1}.
Since this is a discrete optimization problem with a finite
horizon, we use Q-learning to learn the MDPs. In our pre-
liminary experiments we also tried with policy optimization
methods like Advantage Actor Critic, but found Q-learning
works more stable. So below we focus on the modeling with
Q-learning.

Q-learning is an off-policy optimization where it fits the

Adversarial Attack on Graph Structured Data

Bellman optimality equation directly as below:

Q∗(st,at)=r(st,at)+γmax
a′
Q∗(st+1,a

′). (8)

This implicitly suggests a greedy policy:

π(at|st;Q∗)=argmax
at

Q∗(st,at). (9)

In our finite horizon case, γ is fixed to 1. Note that directly
operating the actions inO(|V |2) space is too expensive for
large graphs. Thus we propose to decompose the action
at∈V ×V into at=(a

(1)
t ,a

(2)
t), where a(1)t ,a

(2)
t ∈V . Thus

a single edge action at is decomposed into two ends of this
edge. The hierarchical Q-function is then modeled as below:

Q1∗(st,a
(1)
t)= max

a
(2)
t
Q2∗(st,a

(1)
t ,a

(2)
t)

Q2∗(st,a
(1)
t ,a

(2)
t)= r

(
st,at=(a

(1)
t ,a

(2)
t)
)
+

max
a
(1)
t+1
Q1∗(st,a

(1)
t+1). (10)

In the above formulation,Q1∗ andQ2∗ are two functions that
implement the originalQ∗. An action is considered as com-
pleted only when a pair of (a(1)t ,a

(2)
t) is chosen. Thus the re-

ward will only be valid after a(2)t is made. It is easy to see that
such decomposition has the same optimality structure as in
Eq (8), but making an action would only requireO(2×|V |)=
O(|V |) complexity. Figure 1 illustrates this process.

Take a further look at Eq (10), since only the reward in last
time step is non-zero, and also the budget of modificationm
is given, we can explicitly unroll the Bellman equations as:

Q∗1,1(s1,a
(1)
1)= max

a
(2)
1
Q∗1,2(s1,a

(1)
1 ,a

(2)
1)

Q∗1,2(s1,a
(1)
1 ,a

(2)
1)= max

a
(1)
2
Q∗2,1(s2,a

(1)
2)

...

Q∗m,1(sm,a
(1)
m)= max

a
(2)
m
Q∗m,2(sm,a

(1)
m ,a

(2)
m)

Q∗m,2(sm,a
(1)
m ,a(2)m)= r(G̃,c) (11)

To make notations compact, we still use Q∗= {Q∗t,1|2}
m
t=1

to denote the Q-function. Since each sample in the dataset
defines an MDP, it is possible to learn a separate Q function
for each MDP M (m)

i (f,Gi,ci,yi), i = 1, ... ,N . However,
we here focus on a more practical and challenging setting,
where only one Q∗ is learned. The learned Q-function is
thus asked to generalize or transfer over all the MDPs:

max
θ

N∑
i=1

Et,a=argmaxatQ
∗(at|st;θ)[r

(
(G̃i,ci)

)
], (12)

where Q∗ is parameterized by θ. Below we present the
parameterization for suchQ∗ that generalizes over MDPs.

3.1.1. PARAMETERIZATION OF Q∗

From above, we can see the most flexible parameterization
would be implementing 2×m time-dependent Q functions.
However, we found two distinct parametrization is typically
enough, i.e.,Q∗t,1=Q

1∗,Q∗t,2=Q
2∗,∀t.

Since theQ function is scoring the nodes in the state graph,
it is natural to use GNN family models for parameterization,
in order to learn a generalizable attacker. Specifically,Q1∗

is parameterized as:

Q1∗(st,a
(1)
t)=W

(1)
Q1
σ
(
W

(2)>
Q1

[µ
a
(1)
t
,µ(st)]

)
, (13)

where µ
a
(1)
t

is the embedding of node a(1)t in graph Ĝt,
obtained by structure2vec (S2V) (Dai et al., 2016):

µ(k)
v = relu(W (3)

Q1
x(v)+W

(4)
Q1

∑
u∈N (v)

µ(k−1)
u), (14)

where µv = µ
(K)
v and µ(0)

v = 0. Also µ(st) = µ(Ĝt =

(V̂t,Êt),c) is the representation of entire state tuple:

µ(st)=

{∑
v∈V̂ µv :graph attack

[
∑
v∈NĜt

(c,b)µv,µc] :node attack (15)

In node attack scenario, the state embedding is taken from
the b-hop neighborhood of node c, denoted as NĜt

(c, b).

The parameter set of Q1∗ is θ1 = {W (i)
Q1
}4i=1. Q2∗ is

parameterized similarly with parameter θ2, with an extra
consideration of the chosen node a(1)t :

Q2∗(st,a
(1)
t ,a

(2)
t)=W

(1)
Q2
σ
(
W

(2)>
Q2

[µ
a
(1)
t
,µ
a
(2)
t
,µ(st)]

)
(16)

We denote this method as RL-S2V since it learns a Q-function
parameterized by S2V to perform attack.

3.2. Other attacking methods

The RL-S2V is suitable for black-box attack and transfer.
However, for different attack scenarios, other algorithms
might be preferred. We first introduce RandSampling that
requires least information in Sec 3.2.1; Then in Sec 3.2.2,
a white-box attack GradArgmax is proposed; Finally the
GeneticAlg, which is a kind of evolutionary computing, is
proposed in Sec 3.2.3.

3.2.1. RANDOM SAMPLING

This is the simplest attack method that randomly adds or
deletes edges from graph G. When an edge modification
action at=(u,v) is sampled, we will only accept it when it
satisfies the semantic constraint I(·,·,·). It requires the least
information for attack. Despite its simplicity, sometimes it
can get good attack rate.

Adversarial Attack on Graph Structured Data

!

"#(%)

…
"'(
())

"#())

*+,,.
*+/,. -5

4

3

!
!

0%
01
02

-1

……

……

…
…

2

……

Gradient
3ℒ
35

…

6(7)/6*+9,.

GN
N

 F
ee

d
Fo

rw
ar

d GN
N

 Back Propagation

Σpooling ℒ
Loss function

6(9)/6*+9,.
6(9)/6*+/,.

6(7)/6*+/,.
1

0

0

0 !
!

0%
01
02

0

……

……

…
…

0

0……

Adjacency
5

∇
Gradient

Greedy
Proposed
Adversarial
Example

Original
Data
Sample

*+9,.

Figure 2. Illustration of graph structure gradient attack. This
white-box attack adds/deletes the edges with maximum gradient
(with respect to α) magnitudes.

3.2.2. GRADIENT BASED WHITE BOX ATTACK

Gradients have been successfully used for modifying
continuous inputs, e.g., images. However, taking gradient
with respect to a discrete structure is non-trivial. Recall the
general iterative embedding process defined in Eq (3), we
associate a coefficient αu,v for each pair of (u,v)∈V ×V :

µ(k)
v =h(k)

(
{αu,v

[
w(u,v),x(u),µ

(k−1)
u

]
}u∈N (v)∪

{αu′,v
[
w(u′,v),x(u′),µ

(k−1)
u′

]
}u′ /∈N (v),

x(v),µ
(k−1)
v

)
,k∈{1,2,...,K} (17)

Let αu,v=I(u∈N (v)). That is to say, α itself is the binary
adjacency matrix. It is easy to see that the above formulation
has the same effect as in Eq (3). However, such additional
coefficients give us the gradient information with respect
to each edge (either existing or non-existing):

∂L
∂αu,v

=

K∑
k=1

∂L
µk

>
· ∂µk
∂αu,v

. (18)

In order to attack the model, we could perform the gradient
ascent, i.e., αu,v← αu,v+η

∂L
∂αu,v

. However, the attack is
on a discrete structure, where onlym edges are allowed to be
added or deleted. So here we need to solve a combinatorial
optimization problem:

max
{ut,vt}mt=1

m∑
t=1

| ∂L
∂αut,vt

|

s.t. G̃=Modify(G,{αut,vt}mt=1)

I(G,G̃,c)=1. (19)

We simply use a greedy algorithm to solve the above
optimization. Here the modification of G given a set of
coefficients {αut,vt}mt=1 is performed by sequentially

Original
Data
Sample

…
…

3.45

2.93

5.78

1.22

0.91

Population Fitness

1st generation
ℒ(# $% , ')

…
…Se

le
ct
io
n

Breeding
Population

…
…Cr

os
so
ve
r

…
…M

ut
at
io
n

2nd generation

……

In
iti
al
iza

tio
n

Figure 3. Illustration of attack using genetic algorithm. The
population evolves with selection, crossover and mutation
operations. Fitness is measured by the loss function.

modifying edges (ut,vt) of graph Ĝt:

Ĝt+1=

{
(V̂t,Êt\(ut,vt)) : ∂L

∂αut,vt
<0

(V̂t,Êt∪{(ut,vt)}) : ∂L
∂αut,vt

>0
(20)

That is to say, we modify the edges who are most likely to
cause the change to the objective. Depending on the sign
of the gradient, we either add or delete the edge. We name
it as GradArgmax since it does the greedy selection based
on gradient information.

The attack procedure is shown in Figure 2. Since this
approach requires the gradient information, we consider it
as a white-box attack method. Also, the gradient considers
all pairs of nodes in a graph, the computation cost is at
leastO(|V |2), excluding the back-propagation of gradients
in Eq (18). Without further approximation, this approach
cannot scale to large graphs.

3.2.3. GENETIC ALGORITHM

Evolution computing has been successfully applied in
many zero-order optimization scenarios, including neural
architecture search (Real et al., 2017; Miikkulainen et al.,
2017) and adversarial attack for images (Su et al., 2017). We
here propose a black-box attack method that implements a
type of genetic algorithms. Given an instance (G,c,y) and
the target classifier f , Such algorithm involves five major
components, as elaborated below:

• Population: the population refers to a set of candidate

solutions. Here we denote it as P(r) = {Ĝ(r)
j }
|P(r)|
j=1 ,

where each Ĝ(r)
j is a valid modification solution to the

original graphG. r=1,2,...,R is the index of generation
andR is the maximum numbers of evolutions allowed.

• Fitness: each candidate solution in current population
will get a score that measures the quality of the solution.
We use the loss function of target model L(f(Ĝ(r)

j ,c),y)

Adversarial Attack on Graph Structured Data

Table 1. Application scenarios for different proposed graph attack
methods. Cost is measured by the time complexity for proposing
a single attack.

WBA PBA-C PBA-D RBA Cost

RandSampling
√ √

O(1)
GradArgmax

√
O(|V |2)

GeneticAlg
√

O(|V |+|E|)
RL-S2V

√ √ √
O(|V |+|E|)

as the score function. A good attack solution should
increase such loss. Since the fitness is a continuous
score, it is not applicable in PBA-D setting, where only
classification label is accessible.

• Selection: Given the fitness scores of current population,
we can either do weighted sampling or greedy selection to
select the ‘breeding’ populationP(r)

b for next generation.
• Crossover: After the selection ofP(r)

b , we randomly pick
two candidates Ĝ1, Ĝ2 ∈ P(r)

b and do the crossover by
mixing the edges from these two candidates:

Ĝ′=(V,(Ê1∩Ê2)∪rp(Ê1\Ê2)∪rp(Ê2\Ê1)). (21)

Here rp(·) means randomly picking a subset.
• Mutation: the mutation process is also biology inspired.

For a candidate solution Ĝ∈P(r), suppose the modified
edges are δE={(ut,vt)}mt=1. Then for each edge (ut,vt),
we have a certain probability to change it to either (ut,v′)
or (u′,vt).

The population size |P(r)|, the probability of crossover used
in rp(·), the mutation probability and the number of evolu-
tionsR are all hyper-parameters that can be tuned. Due to the
limitation of the fitness function, this method can only be used
in the PBA-C setting. Also since we need to execute the target
model f to get fitness scores, the computation cost of such
genetic algorithm isO(|V |+|E|), which is mainly made up
by the computation cost of GNNs. The overall procedure is
illustrated in Figure 3. We simply name it as GeneticAlg since
it is an instantiation of general genetic algorithm framework.

4. Experiment
For GeneticAlg, we set the population size |P| = 100 and
the number of roundsR=10. We tune the crossover rate and
mutation rate in {0.1,...,0.5}. For RL-S2V, we tune the num-
ber of propagations of its S2V modelK={1,...,5}. There
is no parameter tuning for GradArgmax and RandSampling.

We use the proposed attack methods to attack the graph
classification model in Sec 4.1 and node classification model
in Sec 4.2. In each scenario, we first show the attack rate
when queries are allowed for target model, then we show the
generalization ability of the RL-S2V for RBA setting.

4.1. Graph-level attack

In this set of experiments, we use synthetic data, where the
gold classifier f∗ is known. Thus the explicit semantics
is used for the equivalency indicator I. The datasetD(ind)

(a) # comp =1 (b) # comp =2 (c) # comp =3

Figure 4. Example graphs for classification. Here we show three
graphs with 1, 2, or 3 components, with 40-50 nodes.

we constructed contains 15,000 graphs, generated with
Erdos-Renyi random graph model. It is a three class
graph classification task, where each class contains 5,000
graphs. The classifier is asked to tell how many connected
components are there in the corresponding undirected graph
G. The label set Y = {1,2,3}. So there could be up to 3
components in a graph. See Figure 4 for illustration. The
gold classifier f∗ is obtained by performing a one-time
traversal of the entire graph. The dataset is divided into
training and two test sets. The test set I contains 1,500 graphs,
while test set II contains 150 graphs. Each set contains the
same number of instances from different classes.

We choose structure2vec as the target model for attack. We
also tune its number of propagation parameterK={2,...,5}.
Table 2 shows the results with different settings. For test set
I, we can see the structure2vec achieves very high accuracy
on distinguishing the number of connected components.
Also increasing K seems to improve the generalization
in most cases. However, we can see under the practical
black-box attack scenario, the GeneticAlg and RL-S2V can
bring down the accuracy to 40% ∼ 60%. In attacking the
graph classification algorithm, the GradArgmax seems not
to be very effective. One reason could be the last pooling
step in S2V when obtaining graph-level embedding. During
back propagation, the pooling operation will dispatch the
gradient to every other node embeddings, which makes the
∂L
∂α looks similar in most entries.

For restrict black-box attack on test set II (see the lower
half of Table 2), the attacker is asked to propose adversarial
samples without any access to the target model. Since
RL-S2V is learned on test set I, it is able to transfer its learned
policy to test set II. This suggests that the target classifier
makes some form of consistent mistakes.

This experiment shows that, (1) the adversarial examples
do exist for supervised graph problems; (2) a model with
good generalization ability can still suffer from adversarial
attacks; (3) RL-S2V can learn the transferrable adversarial
policy to attack unseen graphs.

4.2. Node-level attack
In this experiment, we want to inspect the adversarial attack
to the node classification problems. Different from Sec 4.1,
here the setting is transductive, where the test samples (but
not their labels) are also seen during training. Here we
use four real-world datasets, namely the Citeseer, Cora,
Pubmed and Finance. The first three are small-scaled citation

Adversarial Attack on Graph Structured Data

Table 2. Attack graph classification algorithm. We report the 3-class classification accuracy of target model on the vanilla test set I and
II, as well as adversarial samples generated. The upper half of the table reports the attack results on test set I, with different levels of access
to the information of target classifier. The lower half reports the results of RBA setting on test set II where only RandSampling and RL-S2V
can be used. K is the number of propagation steps used in GNN family models (see Eq (3)).

attack test set I 15-20 nodes 40-50 nodes 90-100 nodes

Settings Methods K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5 K=2 K=3 K=4 K=5

(unattacked) 93.20% 98.20% 98.87% 99.07% 92.60% 96.20% 97.53% 97.93% 94.60% 97.47% 98.73% 98.20%

RBA RandSampling 78.73% 92.27% 95.13% 97.67% 73.60% 78.60% 82.80% 85.73% 74.47% 74.13% 80.93% 82.80%

WBA GradArgmax 69.47% 64.60% 95.80% 97.67% 73.93% 64.80% 70.53% 75.47% 72.00% 66.20% 67.80% 68.07%

PBA-C GeneticAlg 39.87% 39.07% 65.33% 85.87% 59.53% 55.67% 53.70% 42.48% 65.47% 63.20% 61.60% 61.13%

PBA-D RL-S2V 42.93% 41.93% 70.20% 91.27% 61.00% 59.20% 58.73% 49.47% 66.07% 64.07% 64.47% 64.67%

Restricted black-box attack on test set II

(unattacked) 94.67% 97.33% 98.67% 97.33% 94.67% 97.33% 98.67% 98.67% 96.67% 98.00% 99.33% 98.00%

RBA RandSampling 78.00% 91.33% 94.00% 98.67% 75.33% 84.00% 86.00% 87.33% 69.33% 73.33% 76.00% 80.00%

RBA RL-S2V 44.00% 40.00% 67.33% 92.00% 58.67% 60.00% 58.00% 44.67% 62.67% 62.00% 62.67% 61.33%

Table 3. Statistics of the graphs used for node classification.
Dataset Nodes Edges Classes Train/Test I/Test II

Citeseer 3,327 4,732 6 120/1,000/500
Cora 2,708 5,429 7 140/1,000/500

Pubmed 19,717 44,338 3 60/1,000/500
Finance 2,382,980 8,101,757 2 317,041/812/800

networks commonly used for node classification, where each
node is a paper with corresponding bag-of-words features.
The last one is a large-scale dataset that contains transactions
from an e-commerce within one day, where the node set con-
tains buyers, sellers and credit cards. The classifier is asked to
distinguish the normal transactions from abnormal ones. The
statistics of each dataset is shown in Table 3. The nodes also
contain features with different dimensions. For the full table
please refer to Kipf & Welling (2016). We use GCN (Kipf &
Welling, 2016) as the target model to attack. Here the “small
modifications” is used to regulate the attacker. That is to say,
given a graphG and target node c, the adversarial samples
are limited to delete single edge within 2-hops of node c.

Table 4 shows the results. We can see although deleting a sin-
gle edge is the minimum modification one can do to the graph,
the attack rate is still about 10% on those small graphs, and
4% in the Finance dataset. We also ran an exhaustive attack
as sanity check, which is the best any algorithm can do under
the attack budget. The classifier accuracy will reduce to 60%
or lower if two-edge modification is allowed. However, con-
sider the average degree in the graph is not large, deleting two
or more edges would violate the “small modification” con-
straints. We need to be careful to only create adversarial sam-
ples, instead of actually changing the true label of that sample.

In this case, the GradArgmax performs quite good, which
is different from the case in graph-level attack. Here the
gradient with respect to the adjacency matrix α is no longer
averaged, which makes it easier to distinguish the useful mod-
ifications. For the restrict black-box attack on test set II, the
RL-S2V still learns an attack policy that generalizes to unseen

Table 4. Attack node classification algorithm. In the upper half of
the table, we report target model accuracy before/after the attack
on the test set I, with various settings and methods. In the lower
half, we report accuracy on test set II with RBA setting only. In
this second part, only RandSampling and RL-S2V can be used.
Method Citeseer Cora Pubmed Finance

(unattacked) 71.60% 81.00% 79.90% 88.67%

RBA, RandSampling 67.60% 78.50% 79.00% 87.44%

WBA, GradArgmax 63.00% 71.30% 72.4% 86.33%

PBA-C, GeneticAlg 63.70% 71.20% 72.30% 85.96%

PBA-D, RL-S2V 62.70% 71.20% 72.80% 85.43%

Exhaust 62.50% 70.70% 71.80% 85.22%

Restricted black-box attack on test set II

(unattacked) 72.60% 80.20% 80.40% 91.88%

RandSampling 68.00% 78.40% 79.00% 90.75%

RL-S2V 66.00% 75.00% 74.00% 89.10%

Exhaust 62.60% 70.80% 71.00% 88.88%

(a) pred =2 (b) pred =1 (c) pred =2

Figure 5. Attack solutions proposed by RL-S2V on graph classifi-
cation problem. Target classifier is structure2vec withK=4. The
ground truth # components are: (a) 1 (b) 2 (c) 3.

samples. Though we do not have gold classifier in real-world
datasets, it is highly possible that the adversarial samples
proposed are valid: (1) the structure modification is tiny and
within 2-hop; (2) we did not modify the node features.

4.3. Inspection of adversarial samples
In this section, we visualize the adversarial samples proposed
by different attackers. The solutions proposed by RL-S2V

Adversarial Attack on Graph Structured Data

(a) pred =2 (b) pred =1 (c) pred =2

Figure 6. Attack solutions proposed by GradArgmax on node
classification problem. Attacked node is colored orange. Nodes
from the same class as the attacked node are marked black,
otherwise white. Target classifier is GCN withK=2.

Table 5. Results after adversarial training by random edge drop.
Method Citeseer Cora Pubmed Finance

(unattacked) 71.30% 81.70% 79.50% 88.55%

RBA, RandSampling 67.70% 79.20% 78.20% 87.44%

WBA, GradArgmax 63.90% 72.50% 72.40% 87.32%

PBA-C, GeneticAlg 64.60% 72.60% 72.50% 86.45%

PBA-D, RL-S2V 63.90% 72.80% 72.90% 85.80%

for graph-level classification problem are shown in Figure 5.
The ground truth labels are 1, 2, 3, while the target classifier
mistakenly predicts 2, 1, 2, respectively. In Figure 5(b) and
(c), the RL agent connects two nodes who are 4 hops away
from each other (before the red edge is added). This shows
that, although the target classifier structure2vec is trained
withK=4, it didn’t capture the 4-hop information efficiently.
Also Figure 5(a) shows that, even connecting nodes who are
just 2-hop away, the classifier makes mistake on it.

Figure 6 shows the solutions proposed by GradArgmax.
Orange node is the target node for attack. Edges with blue
color are suggested to be added by GradArgmax, while black
ones are suggested to be deleted. Black nodes have the same
node label as the orange node, while while nodes do not.
The thicker the edge, the larger the magnitude of the gradient
is. Figure 6(b) deletes one neighbor with the same label,
but still have other black nodes connected. In this case, the
GCN is over-sensitive. The mistake made in Figure 6(c) is
reasonable, since although the red edge does not connect two
nodes with the same label, it connects to a large community
of nodes from the same class in 2-hop distance. In this case,
the prediction made by GCN is reasonable.

4.4. Defense against attacks
Different from the images, here the possible number of graph
structures is finite given the number of nodes. So by adding
the adversarial samples back for further training, the im-
provement of the target model’s robustness can be expected.
For example, in the experiment of Sec 4.1, adding adversarial
samples for training is equivalent to increasing the size of
the training set, which will definitely be helpful. So here we
seek to use a cheap method for adversarial training — simply
doing edge drop during training for defense.

Dropping the edges during training is different from
Dropout (Srivastava et al., 2014). Dropout operates on the

neurons in the hidden layers, while edge drop modifies the
discrete structure. It is also different from simply drop the
entire hidden vector, since deleting a single edge can affect
more than just one edge. For example, GCN computes the
normalized graph Laplacian. So after deleting a single edge,
the normalized graph Laplacian needs to be recomputed
for some entries. This approach is similar to Hamilton
et al. (2017), who samples a fixed number of neighborhoods
during training for the efficiency. Here we drop the edges
globally at random, during each training step.

The new results after adversarial training are presented in
Table 5. We can see from the table that, though the accuracy
of target model remains similar, the attack rate of various
methods decreases about 1%. Though the scale of the
improvement is not significant, it shows some effectiveness
with such cheap adversarial training.

5. Related work
Adversarial attack in continuous and discrete space: In
recent years, the adversarial attacks to the deep learning mod-
els have raised increasing attention from researchers. Some
methods focus on the white-box adversarial attack using
gradient information, like box constrained L-BFGS (Szegedy
et al., 2013), Fast Gradient Sign (Goodfellow et al., 2014),
deep fool (Moosavi-Dezfooli et al., 2016), etc.. When
the full information of target model is not accessible, one
can train a substitute model(Papernot et al., 2017), or use
zero-order optimization method (Chen et al., 2017). There
are also some works working on the attack in discrete data
space. The one-pixel attack (Su et al., 2017) modifies the
image by only several pixels using differential evolution;
Jia & Liang (2017) attacks the text reading comprehension
system with the help of rules and human efforts. Zügner et al.
(2018) studies the problem of adversarial attack over graphs
in parallel to our work, although with very different methods.

Combinatorial optimization: Modifying the discrete
structure to fool the target classifier can be treated as a
combinatorial optimization problem. Recently, there are
some exciting works using reinforcement learning to learn to
solve the general sequential decision problems (Bello et al.,
2016) or graph combinatorial problems (Dai et al., 2017).
These are closely related to RL-S2V. The RL-S2V extends the
previous approach using hierarchical way to decompose the
quadratic action space, in order to make the training feasible.

6. Conclusion
In this paper, we study the adversarial attack on graph struc-
tured data. To perform the efficient attack, we proposed three
methods, namely RL-S2V, GradArgmax and GeneticAlg for
three different attack settings, respectively. We show that
a family of GNN models are vulnerable to such attack. By
visualizing the attack samples, we can also inspect the target
classifier. We also discussed about defense methods through
experiments. Our future work includes developing more
effective defense algorithms.

Adversarial Attack on Graph Structured Data

Acknowledgements
This project was supported in part by NSF IIS-1218749, NIH
BIGDATA 1R01GM108341, NSF CAREER IIS-1350983,
NSF IIS-1639792 EAGER, NSF CNS-1704701, ONR
N00014-15-1-2340, Intel ISTC, NVIDIA and Amazon AWS.
Tian Tian and Jun Zhu were supported by the National NSF
of China (No. 61620106010) and Beijing Natural Science
Foundation (No. L172037). We thank Bo Dai for valuable
suggestions, and the anonymous reviewers who gave useful
comments.

References
Akoglu, Leman, Tong, Hanghang, and Koutra, Danai. Graph

based anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, 29(3):626–688, 2015.

Bello, Irwan, Pham, Hieu, Le, Quoc V, Norouzi, Mo-
hammad, and Bengio, Samy. Neural combinatorial
optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

Buckman, Jacob, Roy, Aurko, Raffel, Colin, and Goodfellow,
Ian. Thermometer encoding: One hot way to resist
adversarial examples. In International Conference
on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S18Su--CW.

Chen, Pin-Yu, Zhang, Huan, Sharma, Yash, Yi, Jinfeng,
and Hsieh, Cho-Jui. Zoo: Zeroth order optimization
based black-box attacks to deep neural networks without
training substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, pp.
15–26. ACM, 2017.

Dai, Hanjun, Dai, Bo, and Song, Le. Discriminative
embeddings of latent variable models for structured data.
In ICML, 2016.

Dai, Hanjun, Khalil, Elias B, Zhang, Yuyu, Dilkina, Bistra,
and Song, Le. Learning combinatorial optimization
algorithms over graphs. arXiv preprint arXiv:1704.01665,
2017.

Duvenaud, David K, Maclaurin, Dougal, Iparraguirre, Jorge,
Bombarell, Rafael, Hirzel, Timothy, Aspuru-Guzik, Alán,
and Adams, Ryan P. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in Neural
Information Processing Systems, pp. 2215–2223, 2015.

Gilmer, Justin, Schoenholz, Samuel S, Riley, Patrick F,
Vinyals, Oriol, and Dahl, George E. Neural mes-
sage passing for quantum chemistry. arXiv preprint
arXiv:1704.01212, 2017.

Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Christian.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Hamilton, William L, Ying, Rex, and Leskovec, Jure.
Inductive representation learning on large graphs. arXiv
preprint arXiv:1706.02216, 2017.

Jia, Robin and Liang, Percy. Adversarial examples for
evaluating reading comprehension systems. arXiv
preprint arXiv:1707.07328, 2017.

Kipf, Thomas N and Welling, Max. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Lei, Tao, Jin, Wengong, Barzilay, Regina, and Jaakkola,
Tommi. Deriving neural architectures from sequence and
graph kernels. arXiv preprint arXiv:1705.09037, 2017.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel,
Richard. Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493, 2015.

Miikkulainen, Risto, Liang, Jason, Meyerson, Elliot,
Rawal, Aditya, Fink, Dan, Francon, Olivier, Raju,
Bala, Navruzyan, Arshak, Duffy, Nigel, and Hodjat,
Babak. Evolving deep neural networks. arXiv preprint
arXiv:1703.00548, 2017.

Moosavi-Dezfooli, Seyed-Mohsen, Fawzi, Alhussein, and
Frossard, Pascal. Deepfool: a simple and accurate method
to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2574–2582, 2016.

Papernot, Nicolas, McDaniel, Patrick, Goodfellow, Ian,
Jha, Somesh, Celik, Z Berkay, and Swami, Ananthram.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pp. 506–519.
ACM, 2017.

Real, Esteban, Moore, Sherry, Selle, Andrew, Saxena,
Saurabh, Suematsu, Yutaka Leon, Le, Quoc, and Kurakin,
Alex. Large-scale evolution of image classifiers. arXiv
preprint arXiv:1703.01041, 2017.

Scarselli, Franco, Gori, Marco, Tsoi, Ah Chung, Hagenbuch-
ner, Markus, and Monfardini, Gabriele. The graph neural
network model. Neural Networks, IEEE Transactions on,
20(1):61–80, 2009.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Su, Jiawei, Vargas, Danilo Vasconcellos, and Kouichi,
Sakurai. One pixel attack for fooling deep neural networks.
arXiv preprint arXiv:1710.08864, 2017.

https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW

Adversarial Attack on Graph Structured Data

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian, and
Fergus, Rob. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

Trivedi, Rakshit, Dai, Hanjun, Wang, Yichen, and Song,
Le. Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs. In ICML, 2017.

Zügner, Daniel, Akbarnejad, Amir, and Günnemann,
Stephan. Adversarial attacks on neural networks for graph
data. In KDD, 2018.

