
Escaping Saddles with Stochastic Gradients

Appendix
A. Preliminaries
Assumptions Recall that we assumed the function f is L-smooth (or L-Lipschitz gradient) and ρ-Lipschitz Hessian. We
define these two properties below.

Definition 1 (Smooth function). A differentiable function f is L-smooth (or L-Lipschitz gradient) if

‖∇f(w1)−∇f(w2)‖ ≤ L‖w1 −w2‖, ∀w1,w2 ∈ Rd (26)

Definition 2 (Hessian Lipschitz). A twice-differentiable function f is ρ-Lipschitz Hessian if

‖∇2f(w1)−∇2f(w2)‖ ≤ ρ‖w1 −w2‖, ∀w1,w2 ∈ Rd (27)

Definition 3 (Bounded Gradient). A differentiable function f is `-bounded gradient 8 if

‖∇fz(w)‖ ≤ `, ∀w ∈ Rd (28)

Lemma 5. Let wt+1 be obtained from one stochastic gradient step at wt on the L-smooth objective f , namely

wt+1 = wt − η∇fz(wt)

where Ez [∇fz(wt)] = ∇f(wt) and fz is `-bounded gradient. Then the function value decreases in expectation as

Ez [f(wt+1)]− f(wt) ≤ −ηE‖∇f(wt)‖2 + Lη2`2/2. (29)

Convergence of SGD on a smooth function

Proof. The proof is based on a straightforward application of smoothness:

Ez [f(wt+1)]− f(wt) ≤ −η(∇f(wt))
>E [∇fz(wt)] + L/2η2E‖∇fz(wt)‖2

≤ −η‖∇f(wt)‖2 + Lη2‖∇fz(wt)‖2/2
≤ −η‖∇f(wt)‖2 + Lη2`2/2.

Bounded series

Lemma 6. For all 1 > β > 0, the following series are bounded as

t∑
i=1

(1 + β)t−i ≤ 2β−1(1 + β)t (30)

t∑
i=1

(1 + β)t−ii ≤ 2β−2(1 + β)t (31)

t∑
i=1

(1 + β)t−ii2 ≤ 6β−3(1 + β)t (32)

8This assumption guarantees `-Lipschitzness of f .
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Proof. The proof is based on the following bounds on power series for |z| < 1:

∞∑
k=1

zk ≤ 1/(1− z)

∞∑
k=1

zkk = z/(1− z)2

∞∑
k=1

zkk2 = z(1 + z)/(1− z)3.

Yet, for the sake of brevity, we omit the subsequent (straightforward) derivations needed to prove the statement.

B. PGD analysis
B.1. Choosing the parameters

Table 4 represents the choice of parameters together with the collection of required constraints on the parameters. This table
summarizes our approach for choosing the parameters of CNC-PGD presented in Algorithm 1.

Parameter Value Dependency to ε Constraint Source constant
η 1/L Independent η ≤ 1/L Lemma 1
r c1(δγε

4/5)/(`3L2) O(ε4/5) γε4/5/(16L`3) Lemma 7 (Eq. (57)) c1 = 1/64

tthres c2L(
√
ρε2/5)−1 log(`L/(γδε)) O(ε−2/5 log(1/ε)) cL(

√
ρε2/5)−1 log(`L/(γr))) Lemma 7 (Eq. (59)) c2 = c

fthres c3δγ
2ε8/5/(`2L)2 O(ε8/5) ≤ γε4/5r/(32`) Lemma 7 (Eq. (58)) c3 = (64)−2

fthres ” ” ≥ 2L2(`r)2/δ Lemma 15 (Eq. (60))
gthres fthres/tthres O(ε2/ log(1/ε))
T 4(f(w0)− f∗)/(ηδgthres) O(ε−2 log(1/ε))

Table 4. Parameters of CNC-PGD.(Restated Table 2)

B.2. Sharp negative curvature regime

Lemma 7 (Restated Lemma 2). Let Assumption 1 and 2 hold. Consider perturbed gradient steps (Algorithm 1 with
parameters as in Table 2) starting from w̃t such that ‖∇f(w̃t)‖2 ≤ gthres. Assume the Hessian matrix∇2f(w̃t) has a
large negative eigenvalue, i.e.

λmin(∇2f(w̃t)) ≤ −
√
ρε2/5. (33)

Then, after tthres iterations the function value decreases as

E [f(wt+tthres)]− f(w̃t) ≤ −fthres, (34)

where the expectation is over the sequence {wk}t+tthres
t+1 .

Notation Without loss of generality, we assume that t = 0. Let v be the eigenvector And we use the simplified notation
ξ := ∇fz(w̃0), v := v0. We also use the compact notations:

ft := f(wt),∇ft := ∇f(wt), f̃ := f(w̃),∇f̃ := ∇f(w̃t),H := ∇2f(w̃),∇gt := g(wt),

Note that w̃ denote parameter w0 before perturbation and wi is obtained by i GD steps after perturbation. Recall the
compact notation λ as

λ := |min{λmin

(
∇2f(w̃), 0}

)
|

Finally, we set κ := 1 + ηλ.
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Proof sketch The proof presented below proceeds by contradiction and is inspired by the analysis of accelerated gradient
descent in non-convex settings as done in (Jin et al., 2017b). We first assume that the sufficient decrease condition is not met
and show that this implies an upper bound on the distance moved over a given number of iterations. We then derive a lower
bound on the iterate distance and show that - for the specific choice of parameters introduced earlier - this lower bound
contradicts the upper bound for a large enough number of steps T . We therefore conclude that we get sufficient decrease for
t > T .

Proof of Lemma 7:

Part 1: Upper bounding the distance on the iterates in terms of function decrease. We assume that PGD does not
obtain the desired function decrease in tthres iterations, i.e.

E [f(wtthres)− f(w̃)] > −fthres. (35)

The above assumption implies the iterates wt stay close to w̃, for all t ≤ tthres. We formalize this result in the following
lemma.

Lemma 8 (Distance Bound). Under the setting of Lemma 7, assume Eq (35) holds. Then the expected distance to the
initial parameter can be bounded as

E
[
‖wt − w̃‖2

]
≤ 2

(
2ηfthres + ηL(`r)2

)
t+ 2(`r)2 ∀t ≤ tthres, (36)

as long as η ≤ 1/L.

Proof. Here, we use the proposed proof strategy of normalized gradient descent (Levy, 2016). First of all, we bound the
effect of the noise in the first step. Recall the first update of Algorithm 1 under the above setting

w1 = w̃ − rξ, ξ := ∇fz(w̃).

Then by a straightforward application of lemma 5, we have

E
[
f1 − f̃

]
≤ −r‖∇f̃‖2 +

L

2
(`r)2. (37)

We proceed using the result of Lemma 1 that relates the function decrease to the norm of the visited gradients:

E
[
ftthres − f̃

]
=

tthres∑
t=1

E [ft − ft−1]

≤ −η
2

tthres−1∑
t=1

E‖∇ft‖2 + E
[
f1 − f̃

]
≤ −η

2

tthres−1∑
t=1

E‖∇ft‖2 +
L

2
(`r)2. [Eq. 37]

(38)

According to Eq. (35), the function value does not decrease too much. Plugging this bound into the above inequality yields
an upper bound on the sum of the squared norm of the visited gradients, i.e.

tthres−1∑
t=1

E‖∇ft‖2 ≤ (2fthres + L(`r)2)/η. (39)
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Using the above result allows us to bound the expected distance in the parameter space as:

E
[
‖wt −w1‖2

]
= E

[
‖

t∑
i=2

wi −wi−1‖2
]

≤ E

( t∑
i=2

‖wi −wi−1‖

)2
 [Triangle inequality]

≤ E

[
t

t∑
i=2

‖wi −wi−1‖2
]

[Cauchy-Schwarz inequality]

≤ t

(
E

[
η2

t−1∑
i=1

‖∇fi‖2
])

≤
(
2ηfthres + ηL(`r)2

)
t, ∀t ≤ tthres. [Eq. (39)]

(40)

Replacing the above inequality into the following bound completes the proof:

E‖wt − w̃‖2 ≤ 2E‖wt −w1‖2 + 2E‖w1 − w̃‖2

≤ 2
(
2ηfthres + ηL(`r)2

)
t+ 2(`r)2

Part 2: Quadratic approximation Since the parameter vector stays close to w̃ under the condition in Eq. (35), we can
use a ”stale” Taylor expansion approximation of the function f at w̃:

g(w) = f̃ + (w − w̃)>∇f(w̃) +
1

2
(w − w̃)>H(w − w̃).

Using a stale Taylor approximation over all iterations is the essential part of the proof that is firstly proposed by (Ge et al.,
2015) for analysis of PSGD method. The next lemma proves that the gradient of f can be approximated by the gradient of g
as long as w is close enough to w̃.

Lemma 9 (Taylor expansion bound for the gradient (Nesterov, 2013)). For every twice differentiable, function
f : Rd → R with ρ-Lipschitz Hessians the following bound holds true.

‖∇f(w)−∇g(w)‖ ≤ ρ

2
‖w − w̃‖2 (41)

Furthermore, the guaranteed closeness to the initial parameter allows us to use the gradient of the quadratic objective g in
the GD steps as follows,

wt+1 − w̃ = wt − η∇ft − w̃

= wt − w̃ − η∇gt + η (∇gt −∇ft)
= (I− ηH)(wt − w̃) + η(∇gt −∇ft −∇f(w̃))

= ut + η(δt + dt),

(42)

where the vectors ut, δt and dt are defined in Table 5.

As long as w1 − w̃ is correlated with the negative curvature, the norm of ut grows exponentially. In this case, the upper
bound of Lemma 8 doesn’t hold anymore after a certain number of iterations, as we formally prove in part 3. Indeed, the
term ut constitutes power iterations on the hessian matrixH. The term δt arises from the stale Taylor approximation errors
through all iterations. Assuming that wt stays close to w̃, we will bound this term. Finally, the dt terms depend on the
initial gradient. We will show that the distance E‖w1 − w̃‖2 is eventually dominated by the power iterates ut.
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Vector Formula Indication
ut (I− ηH)

t
(w1 − w̃) Power Iteration

δt
∑t
i=1 (I− ηH)

t−i
(∇ft −∇gt) Stale Taylor Approximation Error

dt −
∑t
i=1 (I− ηH)

t−i∇f(w̃) Initial Gradient Dependency

Table 5. Components of CNC-PGD expanded steps.

Part 3: Lower bounding the iterate distance.

A lower-bound on the distance Our goal is to provide a lower-bound on E‖wtthres −w0‖2 that contradicts the result of
Lemma 8. To obtain a lower bound on the distance, we use the classical result ‖a+ b‖2 ≥ ‖a‖2 + 2a>b. Setting a = ut
and b = η(δt + dt) yields

E‖wt+1 − w̃‖ ≥ E‖ut‖2 + 2ηE
[
u>t δt

]
+ 2ηE

[
u>t
]
dt

≥ E‖ut‖2 − 2ηE [‖ut‖‖δt‖] + 2ηE
[
u>t
]
dt

(43)

Removing the initial gradient dependency The established lower-bound in Eq. (43) has a dependency to the gradient
∇f(w̃) through the term E

[
u>t
]
dt. Intuitively, the initial gradient should not cause a problem for negative curvature

exploration phase. More precisely, the third term of the lower bound of Eq. (43) should be positive. This result is proven in
the next lemma.

Lemma 10 (Removing initial gradient dependency). Under the setting of Lemma 7,

E
[
u>t
]
dt ≥ 0. (44)

Proof. Assumption 1 (CNC) implies that E [w1 − w̃] = −r∇f(w̃), hence the expectation of the power iteration term is

E [ut] = (I− ηH)
t
E [w1 − w̃] = −r (I− ηH)

t∇f(w̃).

Using this result, as well as the fact that (I− ηH) � 0 for η ≤ 1/L we have

E
[
u>t
]
dt = r

(
(I− ηH)t∇f(w̃)

)> t∑
i=1

(I− ηH)
t−i∇f(w̃)

= r

t∑
i=1

∇f(w̃)>(I− ηH)2t−i∇f(w̃) ≥ 0,

which proves the assertion.

Plugging the result of the last lemma into the lower-bound established in Eq. (43) yields

E
[
‖wt − w̃‖2

]
≥ E‖ut‖2 − 2ηE [‖ut‖‖δt‖] . (45)

To complete our lower bound, we need : (I) a lower bound on E‖ut‖2, (II) an upper bound on ‖ut‖ and (III) an upper bound
on E‖δt‖.

Lemma 11 (Exponential Growing Power Iteration). Under the setting of Lemma 7, t steps of PGD yield an exponentially
growing lower bound on the expected squared norm of ut, i.e.

E
[
‖ut‖2

]
≥ γr2κ2t. (46)
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(I) Lower-bound on E‖ut‖2

Proof. We first use Cauchy-Schwarz inequality to derive the following lower bound:

E
[
‖ut‖2

]
= E

[
‖v‖2‖ut‖2

]
≥ E

[
(v>ut)

2
]
.

(47)

Now, supposeH = U>ΣU . Since any non-zero vector u ∈ Rd is an eigenvector of the identity matrix we can decompose
I = U>IU and thus (I − ηH) = U>(I − ηΣ)U . As a result, we have

v>(I − ηH) = v>(1− ηλmin(H)) = v>(1 + ηλ). (48)

for the leftmost eigenvector v of the HessianH. Plugging Equation (48) into (47) and recalling κ := 1 + ηλ as well as the
definition of ut as given in Table 5 yields

E
[
‖ut‖2

]
≥ (1 + ηλ)2tE

[
(v>(w1 − w̃))2

]
= r2κ2tE

[
(v>ξ)2

]
= γr2κ2t,

where the last inequality follows from Assumption 1.

(II) Upper-bound on ‖ut‖ Using the definition of the scaling factor r and the fact that the noise lies inside the unit sphere
the next lemma proves a deterministic bound on this term.

Lemma 12. Under the setting of Lemma 7 the norm of ut is deterministically bounded as

‖ut‖ ≤ κt`r. (49)

Proof. Starting from the definition of ut and recalling that ξ has at most unit norm by Assumption 1, we have

‖ut‖ ≤ ‖ (I− ηH)
t
(w1 − w̃)‖

≤ ‖I− ηH‖t‖w1 − w̃‖
≤ (1 + ηλ)tr‖ξ‖
≤ κtr`

(III) Upper bound on E‖δt‖ To bound this term, we use the fact proved in Lemma 8 that wt stays close to w0 for all
t ≤ tthres.

Lemma 13. Under the setting of Lemma 7, if

E
[
ft+1 − f̃

]
≥ −fthres,

then the norm of δt is bounded in expectation:

E‖δt‖ ≤
(

4ηfthres + 2ηL(`r)2

(ηλ)2
+

2(`r)2

ηλ

)
ρκt, ∀t ≤ tthres. (50)
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Proof. Using the result of Lemma 9 as well as the distance bound established in Lemma 8, we have

E [‖δt‖] = E

[
‖

t∑
i=1

(I−H)
t−i

(∇gi −∇fi) ‖

]

≤
t∑
i=1

‖I− ηH‖t−iE‖∇gi −∇fi‖

≤ ρ

2

t∑
i=1

κt−iE‖wi − w̃‖2 []Lemma 9]

≤ ρ
t∑
i=1

κt−i
((

2ηfthres + ηL(`r)2
)
i+ (`r)2

)
. [Lemma 8]

(51)

Now, the results on convergence of power series derived in Lemma 6 and the definition κ := 1 + ηλ give

t∑
i=1

κt−i ≤ 2κt

ηλ
and

t∑
i=1

κt−ii ≤ 2κt

(ηλ)2
. (52)

By combining Equation (51) and (52) we can establish the desired bound on δt:

E [‖δt‖] ≤
(

4ηfthres + 2ηL(`r)2

(ηλ)2
+

2(`r)2

ηλ

)
ρκt. (53)

We are now ready to combine the results of Lemma 11, 12, and 13, into Eq. (45) in order to obtain the desired lower bound
on the distance travelled by the iterates of PGD.

Lemma 14 (Distance lower bound). Under the setting of Lemma 7 and for each t ≤ tthres and for the choice of
parameters as in Table 4 we have

E‖wt − w̃‖2 ≥ γr2κ2t

4
, (54)

where κ := 1 + η|λmin

(
∇2f(w̃)

)
|.

Proof. To prove this statement we introduce each bound in Eq. (45) step by step:

E‖wt − w̃‖2 ≥ E‖ut‖2 − 2ηE [‖ut‖‖δt‖]
≥ γr2κ2t − 2ηE [‖ut‖‖δt‖] [Lemma 11]

≥ γr2κ2t − 2η`rκtE‖δt‖ [Lemma 12]

≥
(
γr − 8ρ`fthres + 4ρL`3r2

λ2
− 4ρ`3r2

λ

)
rκ2t [Lemma 13]

(55)

We need the lower bound to be positive to complete the proof. In this regard, we require the following condition to hold,

γr − 8ρ`fthres

λ2︸ ︷︷ ︸
≤γr/4

− 4Lρ`3r2

λ2︸ ︷︷ ︸
≤γr/4

− 4ρ`3r2

λ︸ ︷︷ ︸
≤γr/4

!
≥ γr

4
. (56)
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Using the lower bound the absolute value of the minimum eigenvalue as λ ≥ √ρε2/5 (in Eq. (33)), we choose parameters r,
fthres, and gthres such that the above constraints are satisfied,9 i.e.

r ≤ γε4/5/(16L`3) ≤ γλ2/(16ρL`3)
[λ<L]

≤ (γλ)/(16ρ`3) (57)

fthres ≤ γε4/5r/(32`) ≤ γλ2r/(32ρ`) (58)

These choices of parameters establish an exponential lower bound on the distance as

E‖wt − w̃‖2 ≥ γr2κ2t

4
.

According to the result of Lemma 8, if the expected distance from the initial parameter is sufficiently large, then the
assumption E

[
ft − f̃

]
> −fthres cannot be valid. To derive the contradiction, we have to choose the number of step such

that the established lower-bound exceeds the upper-bound in Lemma 8, namely

1

4
γr2κ2t

?
≥ 2

(
2ηfthres + ηL(`r)2

)
t+ 2(`r)2.

Since the left hand side is exponentially growing, we can derive the contradiction by choosing a large enough number of
steps as:

tthres ≥ c(ηλ)−1 log (`L/(γr)) ≥ cL(
√
ρε2/5)−1 log(`L/(γr))), (59)

which completes the proof of Lemma 7.

�

B.3. Moderate negative curvature regime

Lemma 15 (Restate of Lemma 3). Let Assumption 1 and 2 hold. Consider perturbed gradient steps (Algorithm 1 with
parameters as in Table 4) starting from w̃t such that ‖∇f(w̃t)‖2 ≤ gthres. Then after tthres iterations, the function value
cannot increase by more than

E [f(wt+tthres)]− f(w̃t) ≤
ηδfthres

4
,

where the expectation is over the sequence {wk}t+tthres
t+1 .

Proof. Using the resulf of lemma 5, we bound the decrease in the function value as

E [f(w1)]− f(w̃t) ≤ L(`r)2/2 ≤ δηfthres/4 (60)

Since there is no perturbation in following tthres steps, GD doesn’t increase the function value in following tthres-steps
(according to the result of lemma 1).

C. SGD analysis
C.1. Parameters and Constraints

Table 6 lists the parameters of CNC-SGD presented in Algorithm 2 together with the constraints that determines our choice
of parameters. These constraints are driven by the theoretical analysis.

9Note that the second requirement in (56) is always more restrictive than the last since λ < L.
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Parameter Value Dependency to ε Constraint Constraint Origin Constant
r c1δγε

4/5/(`3L) O(ε4/5) ≤ γε4/5/(24`3L) Lemma 16 (Eq. (77)) c1 = 1/34

fthres c2δγ
2ε8/5/(`4L) O(ε8/5) ≤ γε4/5r/(48`) Lemma 16(Eq. (79)) c2 = c1/48

fthres ” ” ≥ 2L(`r)2/δ Eq. (63)
ω c3 log(`L/(ηεr)) O(log(1/ε)) c3 = c (Eq.(81))
η c4δ

2γ2ε2/(`6L2ζ) O(ε2/ log(1/ε)) ≤ ε2/(2L) Eq. (65)
η ” ” ≤ γ√ρε6/5r/(72`3L) Lemma 16(Eq.(78)) c4 = c1/72

tthres (ηε2/5)−1ω O(ε−12/5 log2(1/ε)) ≥ c(ηλ)−1 log(`L/(γrηλ)) Lemma 16(Eq.(81))
gthres fthres/tthres O(ε4/ log2(1/ε)) ≥ 2L(`η)2/δ Eq. (69)
gthres ” ” ≤ ηε2/2 Eq. (66)
T 2(f(w0)− f∗)/(δgthres) O(ε−4 log2(1/ε))

Table 6. Parameters of CNC-SGD (Restated Table 3)

C.2. Proof of the Main Theorem

Theorem 3 (Restated Theorem 2). Let the stochastic gradients ∇fz(wt) in CNC-SGD satisfy Assumption 1 and let f
and fz satisfy Assumption 2. Then algorithm 2 returns an

(
ε,
√
ρε2/5

)
-second order stationary point with probability

at least (1− δ) after

O

((
δγε

L`5/2

)−4
log2

(
`L

εδγ

))
steps, where δ < 1.

Proof. We decompose the SGD step as

w̃t = wt−1 − rξt [Large Step-Size] (61)
wt+1 = wt − η∇f(wt) + η (∇f(wt)−∇fz(wt))︸ ︷︷ ︸

ζt

, [Small Step-Size] (62)

where the noise term ζts are i.i.d and zero-mean and the noise term ξt satisfies CNC assumption 1. Our analysis relay on the
CNC assumption only at steps with a larger step-size r. Indeed, we only exploit the negative curvature in the steps with a
large step size r. In this regard, we need to use the larger step size r > η in these steps. This is different from Perturbed
SGD – with isotropic noise– (Ge et al., 2015) where the variance of perturbations in all steps is exploited in the analysis.

Amortized increase due enlarging step size Recall Algorithm 2 increases the step size every tthres step. The increase in
the function value in this step is bounded as

E [f(wt+1)]− f(wt)
lemma 5
≤ (L/2)(`r)2 ≤ δfthres/4 (63)

which leads to a per step increase of

E [f(wt+1)]− f(wt)

tthres
≤ (δ/4)fthres/tthres = δgthres/4 (64)

Large gradient regime: If the norm of the gradient is large, i.e.

‖∇f(wt)‖2 ≥ ε2 ≥ 2Lη, (65)

then the result on convergence of one step of SGD in Lemma 5 guarantees the desired decrease

Ez [f(wt+1)]− f(wt) ≤ −η‖∇f(wt)‖2 + Lη2

≤ −ηε2/2
≤ −gthres.

(66)
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Sharp curvature regime: When the minimum eigenvalue is significantly less than zero, SGD steps with a large step-size
r provides enough variance for following SGD steps –with a smaller step size η– to exploit the negative curvature direction.
This estatement is formally proved in the next lemma.

Lemma 16 (Negative curvature exploration by CNC-SGD). Suppose Assumptions 1 and 2 hold. If the Hessian matrix
at w̃t has a small negative eigenvalue, i.e.

λmin(∇2f(w̃t)) ≤ −
√
ρε2/5. (67)

Then there exists a k < tthres such that the expectation of the function value decreases as

E [f(wt+k)]− f(w̃t) ≤ −fthres, (68)

where the expectation is taken over the sequence {wk}t+kt+1 .

Moderate curvature and gradient regime: Suppose that the minimum eigenvalue of the Hessian is quite small and
visited gradients has also a small norm. In this case, we need to bound increase in the function caused by the variance of
SGD. A straight-forward application of lemma 5 obtains the desired bound on the increase of function value caused by the
variance of SGD:

E [f(wt+1)]− f(wt) ≤ L(`η)2/2 ≤ δgthres/4 (69)

Probabilistic bound The probabilistic lower bound on returning the desired second stationary point can be derived from
Eq.s (66) and (69) as well as Lemma 16 using exactly the same argument as the probabilistic argument on perturbed gradient
descent. We define the event At as

At := {‖∇f(wt)‖ ≥ ε or λmin(∇2f(wt)) ≤ −
√
ρε2/5}.

According to the result fpr the large gradient regime (in Eq. (66)) and the large curvature result (in Lemma 16), SGD obtains
the guaranteed decrease in function value –amortized per step– conditional on At:

E [f(wt+1)− f(wt)|At] ≤ −gthres.

Furthermore, the increase of the function value due to the stochastic gradient steps is controlled by using our choice of steps
sizes, according to the result of Eq. (64) and (69):

E [f(wt+1)− f(wt)|Act ] ≤ δgthres/2.

Let Pt is the probability associated with At, hence 1− Pt is the probability associated with its complement event Act . Note
that computing the probabilities Pt is very hard due to the dependency of wt to all stochastic gradient steps before iteration
t. Plugging these probabilities into the above conditional expectation results yields

E [f(wt+1)− f(wt)] ≤ (1− Pt)δgthres/2− Ptgthres.

Summing the above inequalities over the T steps obtains the following upper-bound on the average of Pts

1

T

T∑
t=1

Pt ≤
f(w0)− f∗

Tgthres
+
δ

2
.

The above bound allows us to lower-bound the probability of retrieving an (ε,
√
ρε2/5)-second order stationary point (which

is equivalent to the occurrence of the complement event Act ) uniformly over T steps:

T∑
t=1

(1− Pt)/T ≥ 1− δ.

This concludes the proof of the convergence guarantee of CNC-SGD under Assumption 1.
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C.3. Proof of the main Lemma 16

Lemma 17 (Restated Lemma 16). Suppose Assumptions 1 and 2 hold. If the Hessian matrix at w̃t has a small negative
eigenvalue, i.e.

λmin(∇2f(w̃t)) ≤ −
√
ρε2/5. (70)

Then there exists a k < tthres such that the expectation of the function value decreases as

E [f(wt+k)]− f(w̃t) ≤ −fthres (71)

where the expectation is taken over the sequence {wk}t+tthres
t+1 .

Proof. Our analysis for the large curvature case in CNC-PGD (lemma 7) can be extended to SGD. Here, we borrow the
compact notations from Lemma 7. Similar to the proof scheme of lemma 7, our proof is based on contradiction. We assume
that for all t < tthres the desired decrease in the function value is not obtained, namely

E [f(wt)]− f̃ ≥ −fthres, ∀t ≤ tthres. (72)

A direct result of the above assumption is that we can establish a bound on the expectation of the distance to w̃ for all
iterates wt such that t < tthres.

Lemma 18 (Distance Bound for SGD). Suppose that expectation of the decrease in function value is lower-bounded as
stated in (72). Then, the expectation of the distance from the current iterate to w̃ is bounded as

E
[
‖wt − w̃‖2

]
≤
(
4fthresη + 2Lη(`r)2 + 4(`η)2

)
t+ 2Lη3`2t2 + 2(`r)2, ∀t ≤ tthres,

as long as Assumption 2 holds.

We postpone the proof of the last lemma to section C.4. The proposed bound in the last lemma is larger than the established
distance bound for PGD steps , in lemma 8. This is due to the variance of stochastic gradients. In the rest of the proof,
we will construct a lower-bound that contradicts to the above upper-bound using the CNC assumption 1. To this end, we
expansion SGD steps (in Eq. (61)) using the gradient of the stale Taylor expansion g(w̃):

wt+1 − w̃ = wt − w̃ − η∇ft + ηζt

= wt − w̃ − η∇gt + η (∇ft −∇gt −∇f(w̃) + ζt)

= (I− ηH) (wt − w̃) + η (∇ft −∇gt −∇f(w̃) + ζt)

= ut + η (δt + dt + ζt)

where the vectors ut, δt, dt, and ζt are defined in Table 7. The only new term in the expansion is the noise of the stochastic
gradient steps ζts. Similarly to PGD, the power iterations ut plays an essential rule in the negative curvature exploration.

Vector Formula Indication Included in PGD analysis?
ut (I− ηH)

t
(w1 − w̃) Power Iteration Yes

δt
∑t
i=1 (I− ηH)

t−i
(∇ft −∇gt) Stale Taylor Approximation Error Yes

dt −
∑t
i=1 (I− ηH)

t−i∇f(w̃) Initial Gradient Dependency Yes
ζt

∑t
i=1 (I− ηH)

t−i
ζi Noise of Stochastic Gradients No

Table 7. Components of CNC-SGD expanded steps.

For this term, we can reuse our analysis in lemmas 12, and 11. The term δt is caused by using a stale Taylor approximation
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in all iterates t ≤ tthres. We need to bound the perturbation effect of this term to guarantee that power iterates ut exploit
the negative curvature. To this end, we required a bound on E‖δt‖. This bound is established in the next lemma using the
distance bound of Lemma 18.

Lemma 19. Under the condition of Lemma 18, the bound

E‖δt‖ ≤ ρ
(

2(`r)2

ηλ
+

4ηfthres + 2Lη(`r)2 + 4(`η)2

(λη)2
+

6Lη3`2

(λη)3

)
(73)

holds true.

Proof.

E‖δt‖ = E‖
t∑

k=1

(I− ηH)
t−k

(∇fk −∇gk) ‖

≤
t∑

k=1

(1 + ηλ)t−kE‖∇fk −∇gk‖

≤ (ρ/2)

t∑
k=1

κt−kE‖wk − w̃‖2

≤ (ρ/2)

t∑
k=1

κt−k
((

4fthresη + 2Lη(`r)2 + 4(`η)2
)
k + 2Lη3`2k2 + 2(`r)2

)
[Lemma 18]

≤ ρ
(

2(`r)2

ηλ
+

4ηfthres + 2Lη(`r)2 + 4(`η)2

(λη)2
+

6Lη3`2

(λη)3

)
κt [Lemma 6]

(74)

Lower-bound on the distance Using the step expansion, we lower-bound the distance from the pivot w̃ as

E‖wt+1 − w̃‖2 ≥ E‖ut‖2 − 2η‖ut‖E‖δt‖+ 2ηE
[
u>t dt

]
+ 2ηE [ut]E [ζt]︸ ︷︷ ︸

=0

≥ E‖ut‖2 − 2η‖ut‖E‖δt‖+ 2ηE
[
u>t dt

]
≥ E‖ut‖2 − 2η‖ut‖E‖δt‖ [Lemma 10]

≥ γr2κ2t − 2η`rκtE [‖δt‖] [Lemma 11 & 12]

≥
(
γr − 4ρ`3r2

λ
− 8ρ`fthres

λ2
− 4Lρ`3r2

λ2
− 8ρη`3

λ2
− 12Lρη`3

λ3

)
rκ2t [Lemma 19]

(75)

Constraints on the parameter To derived the desired contradiction, i.e. E [ft]− f̃ ≤ −fthres, we need to prove that the
distance E

[
‖wt − w̃‖2

]
is larger than the upper-bound established in lemma 18. To this end, we have to choose parameters

such that the established lower-bound on the distance in Eq. (75) be positive, i.e.

γr − 4ρ`3r2

λ︸ ︷︷ ︸
≤γr/6

− 8ρ`fthres

λ2︸ ︷︷ ︸
≤γr/6

− 4ρL`3r2

λ2︸ ︷︷ ︸
≤γr/6

− 8ρη`3

λ2︸ ︷︷ ︸
≤γr/6

− 12ρLη`3

λ3︸ ︷︷ ︸
≤γr/6

!
≥ γr/6 (76)

Using the lower-bound on the absolute value of minimum eigenvalue, i.e. λ ≥ √ρε2/5, we choose parameters such that the
above constraints are satisfied:
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r ≤ γε4/5/(24`3L) ≤ (γλ2)/(24Lρ`3) ≤ λγ/(24ρ`3) (77)

η ≤ γ√ρε6/5r/(72`3L) ≤ γλ3r/(72Lρ`3) (78)

fthres ≤ γε4/5r/(48`) ≤ γλ2r/(48ρ`). (79)

Our choice of parameters fulfills the above constraints. Plugging the above result into Eq. (75) obtains the exponential
growing lower-bound on the distance

E [‖wt+1 − w̃] ≥ γr2κ2t/6 (80)

Contradiction by choosing the number of iterations tthres Using the lower bound of Eq. (80), we can establish a
contradictory result with the upperbound on the distance proposed in lemma 18

γr2κ2tthres/6
!
≥
(
2fthresη + Lη(`r)2 + 2(`η)2

)
t+ Lη3`2t2 + 2(`r)2.

Since the left-side of the above inequality is exponentially growing, one can choose the number iterations tthres large enough
to derive the contradiction:

tthres ≥ c(ηλ)−1 log(L`/(γrηλ)) (81)

where c is a constant independent of parameters λ,γ,L and ρ.

C.4. Bound on the expectation of distance

Here, we complete the proof of lemma 7 by proving the following lemma, which is used in lemma 15.

Lemma 20 (Restated Lemma 18). Suppose that expectation of the decrease in function value is lower-bounded as

E [f(wt)]− f̃ ≥ −fthres, ∀t ≤ tthres. (82)

Then, the expectation of the distance from the current iterate to w̃ is bounded as

E
[
‖wt − w̃‖2

]
≤
(
4fthresη + 2Lη(`r)2 + 4(`η)2

)
t+ 2Lη3`2t2 + 2(`r)2, ∀t ≤ tthres, (83)

as long as Assumption 2 holds.

Proof. We use the result of lemma 5

−fthres ≤ E
[
ft+1 − f̃

]
= E

[
t∑
i=1

fi+1 − fi

]

≤ −η
t∑
i=1

E‖∇fi‖2 + L(`η)2t/2 + L(`r)2/2 [Lemma 5].

Rearranging terms obtains a bound on the sum of the squared norm of visited gradients:
t∑
i=1

E‖∇fi‖2 ≤ fthres/η + L`2ηt/2 + L(`r)2/(2η) (84)

Using the Telescopic expansion of the difference wt+1 −w1, we relate the distance to the visited stochastic gradients:

E
[
‖wt+1 −w1‖2

]
= E

[
‖

t∑
i=1

wi+1 −wi‖2
]

≤ η2E‖
t∑
i=1

(ζi −∇fi) ‖2. [SGD-step decomposition, Eq. (61)]

(85)
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To upper bound the right-side of the above inequality, we rely on i.i.d and zero-mean assumption of ζts:

E‖
t∑
i=1

(ζi −∇fi)‖2 ≤ 2E‖
t∑
i=1

∇fi‖2 + 2E‖
t∑
i=1

ζi‖2 [Parallelogram law]

= 2E‖
t∑
i=1

∇fi‖2 + 2
∑
i6=j

E
[
ζ>i ζj

]︸ ︷︷ ︸
Independent

+2

t∑
i=1

E
[
ζ>i ζi

]

= 2E‖
t∑
i=1

∇fi‖2 + 2

t∑
i=1

E‖ζi‖2

≤ 2E‖
t∑
i=1

∇fi‖2 + 2t`2

≤ 2E

(
t∑
i=1

‖∇fi‖

)2

+ 2t`2 [Triangle inequality]

≤ 2t
t∑
i=1

E‖∇fi‖2 + 2t`2 [CauchySchwarz inequality]

(84)
≤ 2t

(
fthres/η + Lη`2t/2 + L(`r)2/(2η) + `2

)
.

(86)

Replacing the above bound into Eq. (85) yields:

E‖wt+1 −w1‖2 ≤ t
(
2fthresη + Lη(`r)2 + 2(`η)2

)
+ Lη3`2t2.

Using the above result, we bound the distance as:

E‖wt+1 − w̃‖2 ≤ 2E‖wt+1 −w1‖2 + 2E
[
‖w1 − w̃‖2

]
[Parallelogram law]

≤ 2E‖wt+1 −w1‖2 + 2(`r)2

≤
(
4fthresη + 2Lη(`r)2 + 4(`η)2

)
t+ 2Lη3`2t2 + 2(`r)2

(87)

Finally, replacing t+ 1 by t concludes the proof.

D. Analysis of Learning Half-spaces

Lemma 21 (Restated 4). Consider the problem of learning half-spaces as stated in Eq. (21), where ϕ satisfies
Assumption 3. Furthermore, assume that the support of P is a subset of the unit sphere. Let v be a unit length
eigenvector of∇2f(w) with corresponding eigenvalue λ < 0. Then

Ez

[
(∇fz(w)>v)2

]
≥ (λ/c)2. (88)

Proof. Using the definition of an eigenvector,∇2f(w)v = λv and since∇2f(w) = ϕ′′(w>z)zz> we have:

λ = v>∇2f(w)v

= E
[
ϕ′′(w>z)(z>v)2

]
≥ −E

[
|ϕ′′(w>z)|(z>v)2

]
≥ −cE

[
|ϕ′(w>z)|(z>v)2

]
[Eq. (23])

≥ −cE
[
|ϕ′(w>z)||z>v|

]
[‖z‖ ≤ 1]

≥ −cE
[
|ϕ′(w>z)z>v|

]
.

(89)
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Using the above result and as well as Jensen’s inequality, we derive the desired result:

E
[
(∇fz(w)>v)2

]
= E

[
(ϕ′(w>z)z>v)2

]
=

(√
E [(ϕ′(w>z)z>v)2]

)2

≥
(
E

[√
(ϕ′(w>z)z>v)2

])2

≥
(
E|ϕ′(w>z)z>v)|

)2
≥ (λ/c)2,

(90)

where the last inequality follows from Eq. (89) and the fact that λ < 0.

E. Additional experimental results
Learning halfspaces From each of two multivariat gaussian distributions we draw n/2 = 20 samples xi ∈ R4 and assign
them the labels yi ∈ {0, 1} respectively. We then optimize the loss function

f(w) = sigmoid
(
−yix>i w

)
+

1

2
‖w‖2

with the following methods and hyperparameters:

Gradient Descent, Stochastic Gradient Descent, PGD as in (Jin et al., 2017a) with perturbation radius r = 0.1 and PGD-CNC
with a stochastic gradient step as perturbation. All methods use the step size α = 1/4, the stochastic gradient steps are
performed with batch size 1 and the perturbed gradient descent methods perturb as soon as∇f(w) < gthres := 0.01.

To complete the picture of Figure 2 we here also present the gradient norms and minimum/maximum eigenvalues along the
trajectories of the different methods. It becomes apparent that all of them indeed started at a saddle and eventually move
towards (and along) the flat end of the sigmoid. However, Gradient Descent is much slower in finding regions of significant
negative curvature than the stochastic methods.

1. Suboptimality 2. Gradient norm 3. min and max eigenvalues

Figure 4. Learning halfspaces: more details.

Neural Networks The neural network experiments were implemented using the Pytorch library and conducted on a GPU
server. Note that we downsized the mnist dataset to an image size of 10× 10 and applied sigmoid acivations in the hidden
layers as well as a cross-entropy loss over the 10 classes.

While we present covariances between the stochastic gradients/isotropic noise vectors with the leftmost Eigenvectors in the
main paper, Figure 5 plots the covariances with the entire negative eigenspectrum.

In Figure 3 we show that the correlation of eigenvectors and stochastic gradients increases with the magnitude of the
associated eigenvalues. As expected, this is not the case for noise vectors that are drawn randomly from the unit sphere.
Furthermore, these correlations show a decrease with an increasing dimension as can be seen in Figure 6.
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1. SGD covariance w/ left eigenvectors 2. isotropic noise covariance w/ left eigenvectors 3. min and max eigenvalues

Figure 5. Average covariances and eigenvalues of 30 random parameters in Neural Networks with increasing width (top) and depth
(bottom).

Figure 6. Correlation of stochastic gradients with eigenvectors corresponding to eigenvalues of different magnitudes on Neural Nets with
8, 16 and 32 hidden layers. Scatterplot and fitted linear model with 95% confidence interval.


