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Abstract
We analyze the variance of stochastic gradients
along negative curvature directions in certain non-
convex machine learning models and show that
stochastic gradients exhibit a strong component
along these directions. Furthermore, we show
that - contrary to the case of isotropic noise - this
variance is proportional to the magnitude of the
corresponding eigenvalues and not decreasing in
the dimensionality. Based upon this observation
we propose a new assumption under which we
show that the injection of explicit, isotropic noise
usually applied to make gradient descent escape
saddle points can successfully be replaced by a
simple SGD step. Additionally - and under the
same condition - we derive the first convergence
rate for plain SGD to a second-order stationary
point in a number of iterations that is independent
of the problem dimension.

1. Introduction
In this paper we analyze the use of gradient descent (GD)
and its stochastic variant (SGD) to minimize objectives of
the form

w∗ = arg min
w∈Rd

[f(w) := Ez∼P [fz(w)]] , (1)

where f ∈ C2(Rd,R) is a not necessarily convex loss func-
tion and P is an arbitrary probability distribution.

In the era of big data and deep neural networks, (stochas-
tic) gradient descent is a core component of many training
algorithms (Bottou, 2010). What makes SGD so attractive
is its simplicity, its seemingly universal applicability and
a convergence rate that is independent of the size of the
training set. One specific trait of SGD is the inherent noise,
originating from sampling training points, whose variance
has to be controlled in order to guarantee convergence either
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through a conservative step size (Nesterov, 2013) or via
explicit variance-reduction techniques (Johnson & Zhang,
2013).

While the convergence behavior of SGD is well-understood
for convex functions (Bottou, 2010), we are here interested
in the optimization of non-convex functions which pose
additional challenges for optimization in particular due to
the presence of saddle points and suboptimal local min-
ima (Dauphin et al., 2014; Choromanska et al., 2015). For
example, finding the global minimum of even a degree 4
polynomial can be NP-hard (Hillar & Lim, 2013). Instead
of aiming for a global minimizer, a more practical goal is
to search for a local optimum of the objective. In this paper
we thus focus on reaching a second-order stationary point
of smooth non-convex functions. Formally, we aim to find
an (εg, εh)-second-order stationary point w such that the
following conditions hold:

‖∇f(w)‖ ≤ εg and ∇2f(w) < −εhI, (2)

where εg, εh > 0.

Existing work, such as (Ge et al., 2015; Jin et al., 2017a),
proved convergence to a point satisfying Eq. (2) for modified
variants of gradient descent and its stochastic variant by re-
quiring additional noise to be explicitly added to the iterates
along the entire path (former) or whenever the gradient is
sufficiently small (latter). Formally, this yields the following
update step for the perturbed GD and SGD versions:

PGD: wt+1 = wt − ηt∇f(wt) + rζt+1 (3)
PSGD: wt+1 = wt − ηt (∇fz(wt) + ζt) , (4)

where ζt is typically zero-mean noise sampled uniformly
from a unit sphere.

Isotropic noise The perturbed variants of GD and SGD
in Eqs. (3)-(4) have been analyzed for the case where the
added noise ζt is isotropic (Ge et al., 2015; Levy, 2016; Jin
et al., 2017a) or at least exhibits a certain amount of variance
along all directions in Rd (Ge et al., 2015). As shown in
Table 1, an immediate consequence of such conditions is
that they introduce a dependency on the input dimension
d in the convergence rate. Furthermore, it is unknown as
of today, if this condition is satisfied by the intrinsic noise
of vanilla SGD for any specific class of machine learning
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models. Recent empirical observations show that this is not
the case for training neural networks (Chaudhari & Soatto,
2017).

In this work, we therefore turn our attention to the following
question. Do we need to perturb iterates along all dimen-
sions in order for (S)GD to converge to a second-order sta-
tionary point? Or is it enough to simply rely on the inherent
variance of SGD induced by sampling? More than a purely
theoretical exercise, this question has some very important
practical implications since in practice the vast majority of
existing SGD methods do not add additional noise and there-
fore do not meet the requirement of isotropic noise. Thus we
instead focus our attention on a less restrictive condition for
which perturbations only have a guaranteed variance along
directions of negative curvature of the objective, i.e. along
the eigenvector(s) associated with the minimum eigenvalue
of the Hessian. Instead of explicitly adding noise as done in
Eqs. (3) and (4), we will from now on consider the simple
SGD step:

wt+1 = wt − η∇fz(wt) (5)

and propose the following sufficient condition on the
stochastic gradient ∇fz(w) to guarantee convergence to
a second-order stationary point.

Assumption 1 (Correlated Negative Curvature (CNC)). Let
vw be the eigenvector corresponding to the minimum eigen-
value of the Hessian matrix ∇2f(w). The stochastic gra-
dient∇fz(w) satisfies the CNC assumption, if the second
moment of its projection along the direction vw is uniformly
bounded away from zero, i.e.

∃γ > 0 s.t. ∀w : E[〈vw,∇fz(w)〉2] > γ . (6)

Contributions Our contribution is fourfold: First, we an-
alyze the convergence of GD perturbed by SGD steps (Al-
gorithm 1). Under the CNC assumption, we demonstrate
that this method converges to an (ε, ε2/5)-second-order sta-
tionary point in Õ(ε−2) iterations and with high probabil-
ity. Second, we prove that vanilla SGD as stated in Algo-
rithm 2 -again under Assumption 1- also convergences to an
(ε, ε2/5)-second-order stationary point in Õ(ε−4) iterations
and with high probability. To the best of our knowledge, this
is the first second-order convergence result for SGD without
adding additional noise. One important consequence of not
relying on isotropic noise is that the rate of convergence
becomes independent of the input dimension d. This can
be a very significant practical advantage when optimizing
deep neural networks that contain millions of trainable pa-
rameters. Third, we prove that stochastic gradients satisfy
Assumption 1 in the setting of learning half-spaces, which is
ubiquitous in machine learning. Finally, we provide exper-
imental evidence suggesting the validity of this condition

for training neural networks. In particular we show that,
while the variance of uniform noise along eigenvectors cor-
responding to the most negative eigenvalue decreases as
O(1/d), stochastic gradients have a significant component
along this direction independent of the width and depth of
the neural net. When looking at the entire eigenspectrum,
we find that this variance increases with the magnitude of
the associated eigenvalues. Hereby, we contribute to a better
understanding of the success of training deep networks with
SGD and its extensions.

2. Background & Related work
Reaching a 1st-order stationary point For smooth non-
convex functions, a first-order stationary point satisfying
‖∇f(x)‖ ≤ ε can be reached by GD and SGD in O(ε−2)
and O(ε−4) iterations respectively (Nesterov, 2013). Re-
cently, it has been shown that GD can be accelerated to find
such a point in O(ε−7/4 log(ε−1)) (Carmon et al., 2017).

Reaching a 2nd-order stationary point In order to reach
second-order stationary points, existing first-order tech-
niques rely on explicitly adding isotropic noise with a known
variance (see Eq. (3)). The key motivation for this step is the
insight that the area of attraction to a saddle point constitutes
an unstable manifold and thus gradient descent methods are
unlikely to get stuck, but if they do, adding noise allows
them to escape (Lee et al., 2016). Based upon this obser-
vations, recent works prove second-order convergence of
normalized GD (Levy, 2016) and perturbed GD (Jin et al.,
2017a). The later needs at mostO(max{ε−2g , ε−4h } log4(d))
iterations and is thus the first to achieve a poly-log depen-
dency on the dimensionality. The convergence of SGD
with additional noise was analyzed in (Ge et al., 2015) but
to the best of our knowledge, no prior work demonstrated
convergence of SGD without explicitly adding noise.

Using curvature information Since negative curvature
signals potential descent directions, it seems logical to apply
a second-order method to exploit this curvature direction in
order to escape saddle points. Yet, the prototypical Newton’s
method has no global convergence guarantee and is locally
attracted by saddle points and even local maxima (Dauphin
et al., 2014). Another issue is the computation (and perhaps
storage) of the Hessian matrix, which requires O(nd2) op-
erations as well as computing the inverse of the Hessian,
which requires O(d3) computations.

The first problem can be solved by using trust-region meth-
ods that guarantee convergence to a second-order stationary
point (Conn et al., 2000). Among these methods, the Cubic
Regularization technique initially proposed by (Nesterov &
Polyak, 2006) has been shown to achieve the optimal worst-
case iteration bound O(max{ε−3/2g , ε−3h }) (Cartis et al.,
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Algorithm First-order Complexity Second-order Complexity d Dependency
Perturbed SGD (Ge et al., 2015) O(dpε−4g ) O(dpε−16h ) poly
SGLD (Zhang et al., 2017) O(dpε−2g ) O(dpε−4h ) poly
PGD (Jin et al., 2017a) O(log4(d/εg)ε

−2
g ) O(log4(d/εh)ε−4h ) poly-log

SGD+NEON (Xu & Yang, 2017) Õ(ε−4g ) Õ(ε−8g ) poly-log
CNC-GD (Algorithm 1) O(ε−2g log(1/εg)) O(ε−5h log(1/εh)) free
CNC-SGD (Algorithm 2) O(ε−4g log2(1/εg)) O(ε−10h ) log2(1/εh)) free

Table 1. Dimension dependency and iteration complexity to reach a second-order stationary point as characterized in Eq. (2). The notation
O(·) hides constant factors and Õ(·) hides a poly-logarithmic factor.

2012). The second problem can be addressed by replac-
ing the computation of the Hessian by Hessian-vector prod-
ucts that can be computed efficiently inO(nd) (Pearlmutter,
1994). This is applied e.g. using matrix-free Lanczos it-
erations (Curtis & Robinson, 2017; Reddi et al., 2017) or
online variants such as Oja’s algorithm (Allen-Zhu, 2017).
Sub-sampling the Hessian can furthermore reduce the depen-
dence on n by using various sampling schemes (Kohler &
Lucchi, 2017; Xu et al., 2017). Finally, (Xu & Yang, 2017)
and (Allen-Zhu & Li, 2017) showed that noisy gradient
updates act as a noisy Power method allowing to find a neg-
ative curvature direction using only first-order information.
Despite the recent theoretical improvements obtained by
such techniques, first-order methods still dominate for train-
ing large deep neural networks. Their theoretical properties
are however not perfectly well understood in the general
case and we here aim to deepen the current understanding.

3. GD Perturbed by Stochastic Gradients
In this section we derive a converge guarantee for a combi-
nation of gradient descent and stochastic gradient steps, as
presented in Algorithm 1, for the case where the stochastic
gradient sequence meets the CNC assumption introduced
in Eq. (6). We name this algorithm CNC-PGD since it is
a modified version of the PGD method (Jin et al., 2017a),
but use the intrinsic noise of SGD instead of requiring noise
isotropy. Our theoretical analysis relies on the following
smoothness conditions on the objective function f .

Assumption 2 (Smoothness Assumption). We assume that
the function f ∈ C2(Rd,R) has L-Lipschitz gradients and
ρ-Lipschitz Hessians and that each function fz has an `-
bounded gradient.1 W.l.o.g. we further assume that ρ, `,
and L are greater than one.

Note that L-smoothness and ρ-Hessian Lipschitzness are
standard assumptions for convergence analysis to a second-
order stationary point (Ge et al., 2015; Jin et al., 2017a;
Nesterov & Polyak, 2006). The boundedness of the stochas-
tic gradient ∇fz(w) is often used in stochastic optimiza-
tion (Moulines & Bach, 2011).

1See Appendix A for formal definitions.

Algorithm 1 CNC-PGD
1: Input: gthres, tthres, T , η and r
2: tnoise ← −tthres − 1
3: for t = 1, 2, . . . , T do
4: if ‖∇f(wt)‖2 ≤ gthres and t− tnoise ≥ tthres then
5: w̃t ← wt, tnoise ← t # used in the analysis
6: wt+1 ← wt − r∇fz(wt) # z i.i.d∼ P
7: else
8: wt+1 ← wt − η∇f(wt)
9: end if

10: end for
11: return ŵ uniformly from {w1, . . . ,wT }

Parameter Value Dependency on ε
η 1/L Independent
r c1(δγε

4/5)/(`3L2) O(ε4/5)
ω log(`L/(γδε)) O(log(1/ε))
tthres c2L(

√
ρε2/5)−1ω O(ε−2/5 log(1/ε))

fthres c3δγ
2ε8/5/(`2L)2 O(ε8/5)

gthres fthres/tthres O(ε2/ log(1/ε))
T 4(f(w0)− f∗)/(ηδgthres) O(ε−2 log(1/ε))

Table 2. Parameters of CNC-PGD. Note that the constants fthres

and ω are only needed for the analysis and thus not required to run
Algorithm 1. The constant δ ∈ (0, 1) comes from the probability
statement in Theorem 1. Finally the constants c1, c2 and c3 are
independent of the parameters γ,δ, ε, `, ρ, and L (see Appendix B
for more details).

Parameters The analysis presented below relies on a par-
ticular choice of parameters. Their values are set based on
the desired accuracy ε and presented in Table 2.

3.1. PGD Convergence Result

Theorem 1. Let the stochastic gradients∇fz(wt) in CNC-
PGD satisfy Assumption 1 and let f , fz satisfy Assumption
2. Then Algorithm 1 returns an

(
ε,
√
ρε2/5

)
-second-order

stationary point with probability at least (1− δ) after

O
(

(`L)4(δγε)−2 log

(
`L

ηδγε2/5

))
steps, where δ < 1.
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Remark CNC-PGD converges polynomially to a second-
order stationary point under Assumption 1. By relying
on isotropic noise, (Jin et al., 2017a) prove convergence
to a

(
ε, (ρε)1/2

)
-stationary point in Õ

(
1/ε2

)
steps. The

result of Theorem 1 matches this rate in terms of first-order
optimality but is worse by an ε−0.1-factor in terms of the
second-order condition. Yet, we do not know whether our
rate is the best achievable rate under the CNC condition
and whether having isotropic noise is necessary to obtain a
faster rate of convergence. As mentioned previously, a major
benefit of employing the CNC condition is that it results in
a convergence rate that does not depend on the dimension
of the parameter space.2 Furthermore, we believe that the
dependency to γ (Eq. (6)) can be significantly improved.

3.2. Proof sketch of Theorem 1

In order to prove Theorem 1, we consider three different sce-
narios depending on the magnitude of the gradient and the
amount of negative curvature. Our proof scheme is mainly
inspired by the analysis of perturbed gradient descent (Jin
et al., 2017a), where a deterministic sufficient condition is
established for escaping from saddle points (see Lemma 11).
This condition is shown to hold in the case of isotropic noise.
However, the non-isotropic noise coming from stochastic
gradients is more difficult to analyze. Our contribution is to
show that a less restrictive assumption on the perturbation
noise still allows to escape saddle points. Detailed proofs of
each lemma are provided in the Appendix.

Large gradient regime When the gradient is large
enough, we can invoke existing results on the analysis of
gradient descent for non-convex functions (Nesterov, 2013).
Lemma 1. Consider a gradient descent step wt+1 = wt−
η∇f(wt) on a L-smooth function f . For η ≤ 1/L this
yields the following function decrease:

f(wt+1)− f(wt) ≤ −
η

2
‖∇f(wt)‖2. (7)

Using the above result, we can guarantee the desired de-
crease whenever the norm of the gradient is large enough.
Suppose that ‖∇f(wt)‖2 ≥ gthres, then Lemma 1 immedi-
ately yields

f(wt+1)− f(wt) ≤ −
η

2
gthres. (8)

Small gradient and sharp negative curvature regime
Consider the setting where the norm of the gradient is
small, i.e. ‖∇f(wt)‖2 ≤ gthres, but the minimum eigen-
value of the Hessian matrix is significantly less than zero,

2This result is not in conflict with the dimensionality-dependent
lower bound established in (Simchowitz et al., 2017) since they
make no initialization assumption as we do in Assumption 1
(CNC).

i.e. λmin(∇2f(w)) � 0. In such a case, exploiting As-
sumption 1 (CNC) provides a guaranteed decrease in the
function value after tthres iterations, in expectation.
Lemma 2. Let Assumptions 1 and 2 hold. Consider per-
turbed gradient steps (Algorithm 1 with parameters as in
Table 2) starting from w̃t such that ‖∇f(w̃t)‖2 ≤ gthres.
Assume the Hessian matrix∇2f(w̃t) has a large negative
eigenvalue, i.e.

λmin(∇2f(w̃t)) ≤ −
√
ρε2/5. (9)

Then, after tthres iterations the function value decreases as

E [f(wt+tthres)]− f(w̃t) ≤ −fthres, (10)

where the expectation is over the sequence {wk}t+tthres
t+1 .

Small gradient with moderate negative curvature
regime Suppose that ‖∇f(wt)‖2 ≤ gthres and that the
absolute value of the minimum eigenvalue of the Hessian is
close to zero, i.e. we already reached the desired first- and
second-order optimality. In this case, we can guarantee that
adding noise will only lead to a limited increase in terms of
expected function value.
Lemma 3. Let Assumptions 1 and 2 hold. Consider per-
turbed gradient steps (Algorithm 1 with parameters as in Ta-
ble 2) starting from w̃t such that ‖∇f(w̃t)‖2 ≤ gthres. Then
after tthres iterations, the function value cannot increase by
more than

E [f(wt+tthres)]− f(w̃t) ≤
ηδfthres

4
, (11)

where the expectation is over the sequence {wk}t+tthres
t+1 .

Joint analysis We now combine the results of the three
scenarios discussed so far. Towards this end we introduce
the set S as

S := {w ∈ Rd | ‖∇f(w)‖2 ≥ gthres

or λmin

(
∇2f(w)

)
≤ −√ρε2/5}.

Each of the visited parameters wt, t = 1, . . . , T constitutes
a random variable. For each of these random variables, we
define the event At := {wt ∈ S}. When At occurs, the
function value decreases in expectation. Since the number
of steps required in the analysis of the large gradient regime
and the sharp curvature regime are different, we use an
amortized analysis similar to (Jin et al., 2017a) where we
consider the per-step decrease 3. Indeed, when the negative
curvature is sharp, then Lemma 2 provides a guaranteed
decrease in f which - when normalized per step - yields

E [f(wt+tthres)]− f(w̃t)

tthres
≤ −fthres

tthres
= −ηgthres. (12)

3Note that the amortization technique is here used to simplify
the presentation but all our results hold without amortization.
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The large gradient norm regime of Lemma 1 guarantees a
decrease of the same order and hence

E [f(wt+1)− f(wt) | At] ≤ −
η

2
gthres (13)

follows from combining the two results. Let us now consider
the case when Act (complement of At) occurs. Then the
result of Lemma 3 allows us to bound the increase in terms
of function value, i.e.

E [f(wt+1)− f(wt) | Act ] ≤
ηδ

4
gthres. (14)

Probabilistic bound The results established so far have
shown that in expectation the function value decreases un-
til the iterates reach a second-order stationary point, for
which Lemma 3 guarantees that the function value does not
increase too much subsequently.4 This result guarantees vis-
iting a second-order stationary point in T steps (see Table 2).
Yet, certifying second-order optimality is slightly more in-
tricate as one would need to know which of the parameters
{w1, . . . ,wT } meets the required condition. One solution
to address this problem is to provide a high probability state-
ment as suggested in (Jin et al., 2017a) (see Lemma 10). We
here follow a similar approach except that unlike the result
of (Jin et al., 2017a) that relies on exact function values, our
results are valid in expectation. Our solution is to establish
a high probability bound by returning one of the visited
parameters picked uniformly at random. This approach is
often used in stochastic non-convex optimization (Ghadimi
& Lan, 2013).

The idea is simple: If the number of steps is sufficiently
large, then the results of Lemma (1)-(3) guarantee that the
number of times we visit a second-order stationary point
is high. Let R be a random variable that determines the
ratio of (ε,

√
ρε2/5)-second-order stationary points visited

through the optimization path {wt}t=1,...,T . Formally,

R :=
1

T

T∑
t=1

1 (Act) , (15)

where 1 is the indicator function. Let Pt denote the proba-
bility of event At and 1−Pt be the probability of its com-
plement Act . The probability of returning a second-order
stationary point is simply

E [R] =
1

T

T∑
t=1

(1− Pt). (16)

4Since there may exist degenerate saddle points which are
second-order stationary but not local minima we cannot guarantee
that PGD stays close to a second-order stationary point it vis-
its. One could rule out degenerate saddles using the strict-saddle
assumption introduced in (Ge et al., 2015).

Estimating the probabilities Pt is difficult due to the inter-
dependence of the random variables wt. However, we can
upper bound the sum of the individual Pt’s. Using the law
of total expectation and the results from Eq. (13) and (14),
we bound the expectation of the function value decrease as:

E [f(wt+1)− f(wt)]

≤ ηgthres (δ/2− (1 + δ/2)Pt) /2. (17)

Summing over T iterations yields

T∑
i=1

E [f(wt+1)]−E [f(wt)]

≤ ηgthres

(
δT/2− (1 + δ/2)

T∑
t=1

Pt

)
/2, (18)

which, after rearranging terms, leads to the following upper-
bound

1

T

T∑
t=1

Pt ≤
δ

2
+

2 (f(w0)− f∗))
Tηgthres

≤ δ. (19)

Therefore, the probability that Act occurs uniformly over
{1, . . . , T} is lower bounded as

1

T

T∑
t=1

(1− Pt) ≥ 1− δ, (20)

which concludes the proof of Theorem 1.

4. SGD without Perturbation
We now turn our attention to the stochastic variant of gra-
dient descent under the assumption that the stochastic gra-
dients fulfill the CNC condition (Assumption 1). We name
this method CNC-SGD and demonstrate that it converges
to a second-order stationary point without any additional
perturbation. Note that in order to provide the convergence
guarantee, we periodically enlarge the step size through the
optimization process, as outlined in Algorithm 2. This peri-
odic step size increase amplifies the variance along eigen-
vectors corresponding to the minimum eigenvalue of the
Hessian, allowing SGD to exploit the negative curvature in
the subsequent steps (using a smaller step size). Increasing
the step size is therefore similar to the perturbation step used
in CNC-PGD (Algorithm 1). Although this may not be very
common in practice, adaptive stepsizes are not unusual in
the literature (see e.g. (Goyal et al., 2017)).

Parameters The analysis of CNC-SGD relies on the par-
ticular choice of parameters presented in Table 3.
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Algorithm 2 CNC-SGD
1: Input: tthres, r, η, and T (η < r)
2: for t = 1, 2, . . . , T do
3: if (t mod tthres) = 0 then
4: w̃t ← wt # used in the analysis
5: wt+1 ← wt − r∇fz(wt) # z i.i.d∼ P
6: else
7: wt+1 ← wt − η∇fz(wt) # z i.i.d∼ P
8: end if
9: end for

10: return wt uniformly from {w1, . . . ,wT }.

Parameter Value Dependency to ε
r c1δγε

4/5/(`3L) O(ε4/5)
fthres c2δγ

2ε8/5/(`4L) O(ε8/5)
ω c3 log(`L/(ηεr)) O(log(1/ε))
η c4δ

2γ2ε2/(`6L2ω) O(ε2/ log(1/ε))
tthres (ηε2/5)−1ω O(ε−12/5 log2(1/ε))
gthres fthres/tthres O(ε4/ log2(1/ε))
T 4(f(w0)− f∗)/(δgthres) O(ε−4 log2(1/ε))

Table 3. Parameters of CNC-SGD: the parameters fthres and gthres

are used exclusively in the analysis and are thus not needed to run
the algorithm. The constants c1, c2, . . . , c4 are independent of the
parameters γ,δ, ε, ρ, and L (see Appendix B for more details).

Theorem 2. Let the stochastic gradients∇fz(wt) in CNC-
SGD satisfy Assumption 1 and let f , fz satisfy Assumption
2. Then Algorithm 2 returns an

(
ε,
√
ρε2/5

)
-second-order

stationary point with probability at least (1− δ) after

O

((
δγε

L`5/2

)−4
log2

(
`L

εδγ

))
steps, where δ < 1.

Remarks As reported in Table 1, perturbed SGD - with
isotropic noise - converges to an (ε, ε1/4)-second-order sta-
tionary point in O(dpε−4) steps (Ge et al., 2015). Here, we
prove that under the CNC assumption, vanilla SGD - i.e.
without perturbations - converges to an (ε,

√
ρε2/5)second-

order stationary point using Õ(ε−4) stochastic gradient
steps. Our result matches the result of (Ge et al., 2015)
in terms of first-order optimality and yields an improve-
ment by an ε0.15-factor in terms of second-order optimality.
However, this second-order optimality rate is still worse
by an ε−0.1-factor compared to the best known conver-
gence rate for perturbed SGD established by (Zhang et al.,
2017), which requires O(dpε−4) iterations for an (ε, ε1/2)-
second-order stationary point. One can even improve the
convergence guarantee of SGD by using the NEON frame-
work (Allen-Zhu & Li, 2017; Xu & Yang, 2017) but a pertur-
bation with isotropic noise is still required. The theoretical
guarantees we provide in Theorem 2, however, are based on

a less restrictive assumption. As we prove in the following
Section, this assumption actually holds for stochastic gradi-
ents when learning half-spaces. Subsequently, in Section 6,
we present empirical observations that suggest its validity
even for training wide and deep neural networks.

5. Learning Half-spaces with Correlated
Negative Curvature

The analysis presented in the previous sections relies on
the CNC assumption introduced in Eq. (6). As mentioned
before, this assumption is weaker than the isotropic noise
condition required in previous work. In this Section we
confirm the validity of this condition for the problem of
learning half-spaces which is a core problem in machine
learning, commonly encountered when training Perceptrons,
Support Vector Machines or Neural Networks (Zhang et al.,
2015). Learning a half-space reduces to a minimization
problem of the following form

min
w∈Rd

[
f(w) := Ez∼P

[
ϕ(w>z)

]]
, (21)

where ϕ is an arbitrary loss function and the data distribu-
tion P might have a finite or infinite support. There are
different choices for the loss function ϕ, e.g. zero-one loss,
sigmoid loss or piece-wise linear loss (Zhang et al., 2015).
Here, we assume that ϕ(·) is differentiable. Generally, the
objective f(w) is non-convex and might exhibit many local
minima and saddle points. Note that the stochastic gradient
is unbiased and defined as

∇fz(w) = ϕ′(w>z)z, ∇f(w) = Ez [∇fz(w)] , (22)

where the samples z are drawn from the distribution P .

Noise isotropy vs. CNC assumption. First, one can eas-
ily find a scenario where the noise isotropy condition is
violated for stochastic gradients. Take for example the case
where the data distribution from which z is sampled lives
in a low-dimensional space L ⊂ Rd. In this case, one
can prove that there exists a vector u ∈ Rd orthogonal to
all z ∈ L. Then clearly E

[
(u>∇fz(w))2

]
= 0 and thus

∇fz(w) does not have components along all directions.

However - under mild assumptions - we show that the
stochastic gradients do have a significant component along
directions of negative curvature. Lemma 4 makes this argu-
ment precise by establishing a lower bound on the second
moment of the stochastic gradients projected onto eigenvec-
tors corresponding to negative eigenvalues of the Hessian
matrix ∇2f(w). To establish this lower bound we require
the following structural property of the loss function ϕ.

Assumption 3. Suppose that the magnitude of the second-
order derivative of ϕ is bounded by a constant factor of its
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1. Stochastic gradients 2. Isotropic noise 3. Extreme eigenvalues

Figure 1. Average variance of stochastic gradients (1) and isotropic noise (2) along eigenvectors corresponding to λmin and extreme
eigenvalues (3) of 30 random weight settings in a 1-Layer Neural Network with increasing number of units U (top) and multi-layer Neural
Network with increasing number of hidden layers HL (bottom).

first-order derivative, i.e.

|ϕ′′(α)| ≤ c|ϕ′(α)| (23)

holds for all α in the domain of ϕ and c > 0.

The reader might notice that this condition resembles the
self-concordant assumption often used in the optimization
literature (Nesterov, 2013), for which the second derivative
is bounded by the third derivative. One can easily check that
this condition is fulfilled by commonly used activation func-
tions in neural networks, such as the sigmoid and softplus.
We now leverage this property to prove that the stochastic
gradient ∇fz(w) satisfies Assumption 1 (CNC).

Lemma 4. Consider the problem of learning half-spaces
as stated in Eq. (21), where ϕ satisfies Assumption 3. Fur-
thermore, assume that the support of P is a subset of the
unit sphere.5 Let v be a unit length eigenvector of∇2f(w)
with corresponding eigenvalue λ < 0. Then

Ez

[
(∇fz(w)>v)2

]
≥ (λ/c)2. (24)

Discussion Since the result of Lemma 4 holds for any
eigenvector v associated with a negative eigenvalue λ < 0,
this naturally includes the eigenvector(s) corresponding to
λmin. As a result, Assumption 1 (CNC) holds for stochastic

5This assumption is equivalent to assuming the random variable
z lies inside the unit sphere, which is common in learning half-
space (Zhang et al., 2015).

gradients on learning half-spaces. Combining this result
with the derived convergence guarantees in Theorem 1 im-
plies that a mix of SGD and GD steps (Algorithm 1) obtains
a second-order stationary point in polynomial time. Fur-
thermore, according to Theorem 2, vanilla SGD obtains a
second-order stationary point in polynomial time without
any explicit perturbation. Notably, both established conver-
gence guarantees are dimension free.

Furthermore, Lemma 4 reveals an interesting relationship
between stochastic gradients and eigenvectors at a certain it-
erate w. Namely, the variance of stochastic gradients along
these vectors scales proportional to the magnitude of the
negative eigenvalues within the spectrum of the Hessian
matrix. This is in clear contrast to the case of isotropic noise
variance which is uniformly distributed along all eigenvec-
tors of the Hessian matrix. The difference can be important
form a generalization point of view. Consider the simplified
setting where ϕ is square loss. Then the eigenvectors with
large eigenvalues correspond to the principal directions of
the data. In this regard, having a lower variance along the
non-principal directions avoids over-fitting.

In the following section we confirm the above results and
furthermore show experiments on Neural Networks that
suggest the validity of these results beyond the setting of
learning half-spaces.
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6. Experiments
In this Section we first show that vanilla SGD (Algorithm 2)
as well as GD with a stochastic gradient step as perturbation
(Algorithm 1) indeed escape saddle points. Towards this
end, we initialize SGD, GD, perturbed GD with isotropic
noise (ISO-PGD) (Jin et al., 2017a) and CNC-PGD close
to a saddle point on a low dimensional learning-halfspaces
problem with Gaussian input data and sigmoid loss. Figure
2 shows suboptimality over epochs for an average of 10 runs.
The results are in line with our analysis since all stochas-
tic methods quickly find a negative curvature direction to
escape the saddle point. See Appendix E for more details.6

Figure 2. Learning halfspaces (n = 40, d = 4): The stochastic
methods need less iterations to escape the saddle.

Secondly - and more importantly - we study the proper-
ties of the variance of stochastic gradients depending on
the width and depth of neural networks. All of these ex-
periments are conducted using feed-forward networks on
the well-known MNIST classification task (n = 70′000).
Specifically, we draw m = 30 random parameters wi in
each of these networks and test Assumption 1 by estimating
the second moment of the stochastic gradients projected
onto the eigenvectors vk of∇2f(wi) as follows

µk =
1

m

m∑
i=1

 1

n

n∑
j=1

(
∇fj(wi)

>vk
)2 . (25)

We do the same for n isotropic noise vectors drawn from the
unit ball Bd around each wi.7 Figure 1 shows this estimate
for eigenvectors corresponding to the minimum eigenval-
ues for a 1 hidden layer network with increasing number
of units (top) and for a 10 hidden unit network with in-
creasing number of layers (bottom). Similar results on the
entire negative eigenspectrum can be found in Appendix E.
Figure 3 shows how µk varies with the magnitude of the
corresponding negative eigenvalues λk. Again we evalu-
ate 30 random parameter settings in neural networks with

6Rather than an encompassing benchmark of the different meth-
ods, this result is to be seen as a proof of concept.

7For a fair comparison all involved vectors were normalized.

Figure 3. Variance of stochastic gradients along eigenvectors cor-
responding to eigenvalues of different magnitudes computed on
neural networks with 8, 16 and 32 hidden layers. Scatterplot and
fitted linear model with 95% confidence interval.

increasing depth. Two conclusions can be drawn from the
results: (i) Although the variance of isotropic noise along
eigenvectors corresponding to λmin decreases as O(1/d),
the stochastic gradients maintain a significant component
along the directions of most negative curvature independent
of width and depth of the neural network (see Figure 1), (ii)
the stochastic gradients yield an increasing variance along
eigenvectors corresponding to larger eigenvalues (see Fig-
ure 3). These findings suggest important implications. (i)
justify the use and explain the success of training wide and
deep neural networks with pure SGD despite the presence
of saddle points. (ii) suggests that the bound established in
Lemma 4 may well be extended to more general settings
such as training neural networks and illustrates the implicit
regularization of optimization methods that rely on stochas-
tic gradients since directions of large curvature correspond
to principal (more robust) components of the data for many
machine learning models.

7. Conclusion
In this work we have analyzed the convergence of PGD and
SGD for optimizing non-convex functions under a new as-
sumption -named CNC - that requires the stochastic noise to
exhibit a certain amount of variance along the directions of
most negative curvature. This is a less restrictive assumption
than the noise isotropy condition required by previous work
which causes a dependency to the problem dimensionality
in the convergence rate. We have shown theoretically that
stochastic gradients satisfy the CNC assumption and reveal
a variance proportional to the eigenvalue’s magnitude for the
problem of learning half-spaces. Furthermore, we provided
empirical evidence that suggests the validity of this assump-
tion in the context of neural networks and thus contributes to
a better understanding of training these models with stochas-
tic gradients. Proving this observation theoretically and
investigating its implications on the optimization and gen-
eralization properties of stochastic gradients methods is an
interesting direction of future research.
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