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Appendix

A. Variational bound
We first review the variational lower bound on the data
likelihood:

log pθ(x) = log

∫
z
pθ(x|z)p(z)

= log

∫
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pθ(x|z)p(z)

qφ(z|x)

qφ(z|x)

= logEqφ(z|x)
pθ(x|z)p(z)

qφ(z|x)

≥ Eqφ(z|x) log
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qφ(z|x)

= Eqφ(z|x) log pθ(x|z)− Eqφ(z|x) log
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= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z))

Recall that the SVG frame predictor is parameterized by a
recurrent neural network. At each time step the model takes
as input xt−1 and zt and through the recurrence the model
also depends on x1:t−2 and z1:t−1. Then, we can further
simplify the bound with:

log pθ(x|z) = log
∏
t

pθ(xt|x1:t−1, z1:T )

=
∑
t

log pθ(xt|x1:t−1, z1:t,���zt+1:T )

=
∑
t

log pθ(xt|x1:t−1, z1:t)

Recall, the inference network used by SVG-FP and SVG-LP
is parameterized by a recurrent neural network that outputs
a different distribution qφ(zt|x1:t) for every time step t. Let
z = [z1, ..., zT ] denote the collection of latent variables
across all time steps and qφ(z|x) denote the distribution

1New York University 2Facebook AI Research. Correspon-
dence to: Emily Denton <denton@cs.nyu.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

over z. Due to the independence across time, we have

qφ(z|x) =
∏
t

qφ(zt|x1:t)

The independence of z1, ..., zT allows the DKL term of the
loss to be decomposed into individual time steps:
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And because
∫
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p(x) = 1 this simplifies to:
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Putting this all together we have:

log pθ(x) ≥ Lθ,φ(x1:T )

= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z))

=
∑
t

[
Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

−DKL(qφ(zt|x1:t)||p(zt))
]

B. Additional results
Stochastic Moving MNIST
In Section 4.2 we introduce the Stochastic Moving MNIST
dataset. This dataset contains videos of MNIST digits bounc-
ing around the frame. Digits moves with a constant velocity
along a trajectory until they hit at wall at which point they
bounce off with a random speed and direction.
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Figure 1. Qualitative comparison between SVG-LP and a purely deterministic baseline. Both models were conditioned on the first 10
frames (the final 5 are shown in the figure) of test sequences.
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Figure 2. Additional examples of generations from SVG-LP showing crisp and varied predictions. A large segment of the background is
occluded in conditioning frames, preventing SVG-LP from directly copying these background pixels into generated frames. In addition to
crisp robot arm movement, SVG-LP generates plausible background objects in the space occluded by the robot arm in initial frames.

The experiments in Section 4.2 assumed a uniform distribu-
tion of digit motion and speed. Here, we evaluate SVG-LP
on a more challenging, non-uniform, distribution of trajec-
tories. Fig. 3 plots the distribution of ∆x and ∆y from
which velocity vectors are initially sampled at the start of a
video sequence. All subsequent velocity vectors are sampled
from a modified variant of this distribution where invalid
directions are given zero probability and the remaining prob-
abilities are re-normalized. Note that depending which wall
the digit hits, a different subset of velocity vectors will be
valid (e.g. if the digit hits the right wall, ∆x > 0 would be
invalid) and so the distribution is dependent on the precise
location the digits hits the wall.

We trained SVG-LP on this non-uniform SM-MNIST
dataset and assessed the model’s ability to capture the digit
trajectory using the same technique described in Section 4.2.
Fig. 4 shows SVG-LP accurately capturing the distribution
of MNIST digit trajectories for many time steps. The digit
trajectory is deterministic before a collision. This is accu-
rately reflected by the highly peaked distribution of velocity
vectors from SVG-LP in the time steps leading up to a col-
lision. Following a collision, the distribution broadens and
effectively captures the complex trajectory distribution for
many time steps.

KTH
Fig. 1 shows additional generations from the SVG-FP model
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Figure 3. Initial distribution of ∆x / ∆y.

and a deterministic baseline. The deterministic model pro-
duces plausible predictions for the future frames but fre-
quently mispredicts precise limb locations. In contrast, dif-
ferent samples from SVG-FP reflect the variability of the
persons pose in future frames. By picking the sample with
the best PSNR, SVG-FP closely matches the ground truth
sequence.

BAIR robot pushing dataset
Fig. 2 shows sample generations from the SVG-LP model
up to 30 timesteps alongside ground truth video frames.
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Figure 4. Four examples of our SVG-LP model accurately capturing the distribution of MNIST digit trajectories following collision with a
wall. Digit trajectory velocity vectors are sampled from a non-uniform distribution with higher probability given to greater speeds. On
the right we show the trajectory of a digit prior to the collision. Each of the sub-plots shows the distribution of ∆x,∆y at each time
step. In the lower ground truth sequence, the trajectory is deterministic before the collision (occurring between t = 8 and t = 9 in the
first example), corresponding to a delta-function. Following the collision, the distribution broadens out and is eventually reshaped by
subsequent collisions. The upper row shows the distribution estimated by our SVG-LP model (after conditioning on ground-truth frames
from t = 1 . . . 5). Note how our model accurately captures the correct distribution many time steps into the future, despite its complex
shape. The distribution was computed by drawing many samples from the model, as well as averaging over different digits sharing the
same trajectory. The remaining examples show different trajectories with correspondingly different impact times


