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Abstract
Estimators computed from adaptively collected
data do not behave like their non-adaptive
brethren. Rather, the sequential dependence of
the collection policy can lead to severe distri-
butional biases that persist even in the infinite
data limit. We develop a general method – W -
decorrelation – for transforming the bias of adap-
tive linear regression estimators into variance.
The method uses only coarse-grained informa-
tion about the data collection policy and does not
need access to propensity scores or exact knowl-
edge of the policy. We bound the finite-sample
bias and variance of the W -estimator and de-
velop asymptotically correct confidence intervals
based on a novel martingale central limit theo-
rem. We then demonstrate the empirical benefits
of the genericW -decorrelation procedure in two
different adaptive data settings: the multi-armed
bandit and the autoregressive time series.

1. Introduction
Consider a dataset of n sample points (yi,xi)i≤n where yi
represents an observed outcome and xi ∈ Rp an associ-
ated vector of covariates. In the standard linear model, the
outcomes and covariates are related through a parameter β:

yi = 〈xi, β〉+ εi. (1)

In this model, the ‘noise’ term εi represents inherent vari-
ation in the sample, or the variation that is not captured in
the model. Parametric models of the type (1) are a funda-
mental building block in many machine learning problems.
A common additional assumption is that the covariate vec-
tor xi for a given datapoint i is independent of the other
sample point outcomes (yj)j 6=i and the inherent variation
(εj)j∈[n]. This paper is motivated by experiments where
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the sample (yi,xi)i≤n is not completely randomized but
rather adaptively chosen. By adaptive, we mean that the
choice of the data point (yi,xi) is guided from inferences
on past data (yj ,xj)j<i. Consider the following sequential
paradigms:

1. Multi-armed bandits: This class of sequential deci-
sion making problems captures the classical ‘explo-
ration versus exploitation’ tradeoff. At each time i,
the experimenter chooses an ‘action’ xi from a set
of available actions X and accrues a reward R(yi)
where (yi,xi) follow the model (1). Here the experi-
menter must balance the conflicting goals of learning
about the underlying model (i.e., β) for better future
rewards, while still accruing reward in the current time
step.

2. Active learning: Acquiring labels yi is potentially
costly, and the experimenter aims to learn with as few
outcomes as possible. At time i, based on prior data
(yj ,xj)j≤i−1 the experimenter chooses a new data
point xi to label based on its value in learning.

3. Time series analysis: Here, the data points (yi,xi)
are naturally ordered in time, with (yi)i≤n denoting a
time series and the covariates xi include observations
from the prior time points.

Here, time induces a natural sequential dependence across
the samples. In the first two instances, the actions or policy
of the experimenter are responsible for creating such de-
pendence. In the case of time series data, this dependence
is endogenous and a consequence of the modeling. A com-
mon feature, however, is that the choice of the design or se-
quence (xi)i≤n is typically not made for inference on the
model after the data collection is completed. This does not,
of course, imply that accurate estimates on the parameters
β cannot be made from the data. Indeed, it is often the case
that the sample is informative enough to extract consistent
estimators of the underlying parameters. Indeed, this is of-
ten crucial to the success of the experimenter’s policy. For
instance, ‘regret’ in sequential decision-making or risk in
active learning are intimately connected with the accurate
estimation of the underlying parameters (Castro & Nowak,
2008; Audibert & Bubeck, 2009; Bubeck et al., 2012; Rus-
mevichientong & Tsitsiklis, 2010) . Our motivation is the
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natural follow-up question of accurate ex post inference in
the standard statistical sense:

Can adaptive data be used to compute accurate
confidence regions and p-values?

As we will see, the key challenge is that even in the simple
linear model of (1), the distribution of classical estimators
can differ from the predicted central limit behavior of non-
adaptive designs. In this context we make the following
contributions:

• Decorrelated estimators: We present a general
method to decorrelate arbitrary estimators β̂(y,Xn)
constructed from the data. This construction admits
a simple decomposition into a ‘bias’ and ‘variance’
term. In comparison with competing methods, like
propensity weighting, our proposal requires little ex-
plicit information about the data-collection policy.

• Bias and variance control: Under a natural explo-
ration condition on the data collection policy, we es-
tablish that the bias and variance can be controlled at
nearly optimal levels. In the multi-armed bandit set-
ting, we prove this under an especially weak averaged
exploration condition.

• Asymptotic normality and inference: We establish
a martingale central limit theorem (CLT) under a mo-
ment stability assumption. Applied to our decorre-
lated estimators, this allows us to construct confidence
intervals and conduct hypothesis tests in the usual
fashion.

• Validation: We demonstrate the usefulness of the
decorrelating construction in two different scenarios:
multi-armed bandits (MAB) and autoregressive (AR)
time series. We observe that our decorrelated estima-
tors retain expected central limit behavior in regimes
where the standard estimators do not, thereby facili-
tating accurate inference.

The rest of the paper is organized with our main results
in Section 2, discussion of related work in Section 3, and
experiments in Section 4. Due to page constraints, all
proofs are given in Appendix A in the supplementary in-
formation.

2. Main results: W -decorrelation
We focus on the linear model and assume that the data pairs
(yi,xi) satisfy:

yi = 〈xi, β〉+ εi, (2)

where εi are independent and identically distributed ran-
dom variables with E{εi} = 0, E{ε2i } = σ2 and bounded
third moment. We assume that the samples are ordered
naturally in time and let {Fi}i≥0 denote the filtration rep-
resenting increasing information in the sample. Formally,
we let data points (yi,xi) be adapted to this filtration, i.e.
(yi,xi) are measurable with respect to Fj for all j ≥ i.

Our goal in this paper is to use the available data to con-
struct ex post confidence intervals and p-values for individ-
ual parameters, i.e. entries of β. A natural starting point is
to consider is the standard least squares estimate:

β̂OLS = (XT
nXn)−1XT

nyn,

where Xn = [xT
1 , . . .x

T
n] ∈ Rn×p is the design ma-

trix and yn = [y1, . . . yn] ∈ Rn. When data collection
is non-adaptive, classical results imply that the standard
least squares estimate β̂OLS is distributed asymptotically
as N(β, σ2(XT

nXn)−1), where N(µ,Σ) denotes the Gaus-
sian distribution with mean µ and covariance Σ. Lai & Wei
(1982) extend these results to the current scenario:
Theorem 1 (Theorems 1, 3 (Lai & Wei, 1982)). Let
λmin(n) (λmax(n)) denote the minimum (resp. maxi-
mum) eigenvalue of XT

nXn. Under the model (2), as-
sume that (i) εi have finite third moment and (ii) almost
surely, λmin(n) → ∞ with λmin = Ω(log λmax) and (iii)
log λmax = o(n). Then the following limits hold almost
surely:

‖β̂OLS − β‖22 ≤ C
σ2p log λmax

λmin

| 1
nσ2 ‖yn −Xnβ̂OLS‖22 − 1| ≤ C(p) 1+log λmax

n .

Further assume the following stability condition: there ex-
ists a deterministic sequence of matricesAn such that (iii)
A−1n (Xn

TXn)1/2 → Ip and (iv) maxi
∥∥A−1n xi∥∥2 → 0

in probability. Then,

(XT
nXn)1/2(β̂OLS − β)

d⇒N(0, σ2Ip).

At first blush, this allows to construct confidence regions
in the usual way. More precisely, the result implies that
σ̂2 = ‖yn − Xnβ̂OLS‖22/n is a consistent estimate of
the noise variance. Therefore, the interval [β̂OLS,1 −
1.96σ̂(XT

nXn)−111 , β̂OLS,1 + 1.96σ̂(XT
nXn)−111 ] is a 95%

two-sided confidence interval for the first coordinate β1.
Indeed, this result is sufficient for a variety of scenarios
with weak dependence across samples, such as when the
(yi,xi) form a Markov chain that mixes rapidly. How-
ever, while the assumptions for consistency are minimal,
the additional stability assumption required for asymptotic
normality poses some challenges. In particular:

1. The stability condition can provably fail to hold for
scenarios where the dependence across samples is



Accurate Inference for Adaptive Linear Models

non-negligible. This is not a weakness of Theorem
1: the CLT need not hold for the OLS estimator (Lai
& Wei, 1982; Lai & Siegmund, 1983).

2. The rate of convergence to the asymptotic CLT de-
pends on the quantitative rate of the stability condi-
tion. In other words, variability in the inverse covari-
ance XT

nXn can cause deviations from normality of
OLS estimator (Dvoretzky, 1972). In finite samples,
this can manifest itself in the bias of the OLS estima-
tor as well as in higher moments.

An example of this phenomenon is the standard multi-
armed bandit problem (Lai & Robbins, 1985). At each time
point i ≤ n, the experimenter (or data collecting policy)
chooses an arm k ∈ {1, 2, . . . , p} and observes a reward
yi with mean βk. With β ∈ Rp denoting the mean re-
wards, this falls within the scope of model (2), where the
vector xi takes the value ek (the kth basis vector), if the kth

arm or option is chosen at time i.1 Other stochastic bandit
problems with covariates such as contextual or linear ban-
dits (Rusmevichientong & Tsitsiklis, 2010; Li et al., 2010;
Deshpande & Montanari, 2012) can also be incorporated
fairly naturally into our framework. For the purposes of
this paper, however, we restrict ourselves to the simple case
of multi-armed bandits without covariates. In this setting,
ordinary least squares estimates correspond to computing
sample means for each arm. The stability condition of The-
orem 1 requires that Nk(n), the number of times a specific
arm k ∈ [p] is sampled is asymptotically deterministic as
n grows large. This is true for certain regret-optimal algo-
rithms (Russo, 2016; Garivier & Cappé, 2011). Indeed, for
such algorithms, as the sample size n grows large, the sub-
optimal arm is sampled Nk(n) ∼ Ck(β) log n for a con-
stant Ck(β) that depends on β and the distribution of noise
εi. However, in finite samples, the dependence on Ck(β)
and the slow convergence rate of (log n)−1/2 lead to sig-
nificant deviation from the expected central limit behavior.

Villar et al. (2015) studied a variety of multi-armed ban-
dit algorithms in the context of clinical trials. They empir-
ically demonstrate that sample mean estimates from data
collected using many standard multi-armed bandit algo-
rithms are biased. Recently, (Nie et al., 2017) proved that
this bias is negative for Thompson sampling and UCB. The
presence of bias in sample means demonstrates that stan-
dard methods for inference, as advocated by Theorem 1,
can be misleading when the same data is now used for infer-
ence. As a pertinent example, testing the hypotheses “the
mean reward of arm 1 exceeds that of 2” based on clas-
sical theory can be significantly affected by adaptive data

1Strictly speaking, the model (2) assumes that the errors have
the same variance, which need not be true for the multi-armed
bandit as discussed. We focus on the homoscedastic case where
the errors have the same variance in this paper.

collection.

The papers (Villar et al., 2015; Nie et al., 2017) focus on the
finite sample effect of the data collection policy on the bias
and suggest methods to reduce the bias. It is not hard to find
examples where higher moments or tails of the distribution
can be influenced by the data collecting policy. A simple,
yet striking, example is the standard autoregressive model
(AR) for time series data. In its simplest form, the AR
model has one covariate, i.e. p = 1 with xi = yi−1. In this
case:

yi = βyi−1 + εi.

Here the least squares estimate is given by β̂OLS =∑
i≤n−1 yi+1yi/

∑
i≤n−1 y

2
i−1. When |β| is bounded

away from 1, the series is asymptotically stationary and the
OLS estimate has Gaussian tails. On the other hand, when
β − 1 is on the order of 1/n the limiting distribution of the
least squares estimate is non-Gaussian and dependent on
the gap β − 1 (cf. (Chan & Wei, 1987)). A histogram for
the OLS errors in two cases: (i) stationary with β = 0.02
and (ii) (nearly) nonstationary with β = 0.9 is shown on
the left in Figure 1 where the large β example case is clearly
non-Gaussian.

On the other hand, using the same data our decorrelating
procedure is able to obtain estimates admitting Gaussian
limit distributions, as evidenced in the right panel of Fig-
ure 1. We show a similar phenomenon in the MAB setting
where our decorrelating procedure corrects for the unsta-
ble behavior of the OLS estimator (see Section 4 for details
on the empirics). Delegating discussion of further related
work to 3, we now describe this procedure and its motiva-
tion.

2.1. Removing the effects of adaptivity

We propose to decorrelate the OLS estimator by construct-
ing:

β̂d = β̂OLS +W n(y −Xnβ̂OLS),

for a specific choice of a ‘decorrelating’ or ‘whitening’
matrix W n ∈ Rp×n. This is inspired by the high-
dimensional linear regression debiasing constructions of
(Zhang & Zhang, 2014; Javanmard & Montanari, 2014b;a;
Van de Geer et al., 2014). As we will see, this construction
is useful also in the present regime where we keep p fixed
and n & p. By rearranging:

β̂d − β = (Ip −W nXn)(β̂OLS − β) +W nεn

≡ b + v.

We interpret b as a ‘bias’ and v as a ‘variance’. This is
based on the following critical constraint on the construc-
tion of the whitening matrixW n:
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Figure 1. The distribution of errors for (left) the OLS estimator for stationary and (nearly) nonstationary AR(1) time series and (right)
error distribution for both models after decorrelation. n = 50, εi ∼ N(0, 1).

Definition 1 (Well-adaptedness of W n). Without loss of
generality, we assume that εi are adapted to Fi. Let Gi ⊂
Fi be a filtration such that xi are adapted w.r.t. Gi and εi
is independent of Gi. We say thatWn is well-adapted if the
columns ofW n are adapted to Gi, i.e. the ith columnwi is
measurable with respect to Gi.

With this in hand, we have the following simple lemma.
Lemma 2. AssumeW n is well-adapted. Then:

‖β − E{β̂d}‖2 ≤ E{‖b‖2},
Var(v) = σ2E{W nW

T
n}.

A concrete proposal is to trade-off the bias, controlled by
the size of Ip −W nXn, with the the variance which ap-
pears through W nW

T
n. This leads to the following opti-

mization problem:

W n = arg minW ‖Ip −WXn‖2F + λTr(WW T). (3)

Solving the above in closed form yields ridge estimators for
β, and by continuity, also the standard least squares estima-
tor. Departing from (Zhang & Zhang, 2014; Javanmard &
Montanari, 2014a), we solve the above in an online fashion
in order to obtain a well-adaptedW n. We define,W 0 = 0,
X0 = 0, and recursivelyW n = [W n−1wn] for

wn = arg min
w∈Rp

‖I−W n−1Xn−1 −wxTn‖2F + λ ‖w‖22 .

As in the case of the offline optimization, we may obtain
closed form formulae for the columns wi (see Algorithm
1). The method as specified requires O(np2) additional
computational overhead, which is typically minimal com-
pared to computing β̂OLS or a regularized version like the
ridge or lasso estimate. We refer to β̂d as a W -estimate or
aW -decorrelated estimate.

2.2. Interpretation as reverse implicit SGD

While we motivated W -decorrelation decorrelation as an
online procedure for optimizing the bias-variance trade-

off objective (3), it holds a dual interpretation as im-
plicit stochastic gradient descent (SGD) (see, e.g., Kulis
& Bartlett, 2010), also known as incremental proximal
minimization (Bertsekas, 2011) or the normalized least
mean squares filter (Nagumo & Noda, 1967) in this con-
text, with step-size λ applied to the least-squares objec-
tive, 1

n

∑n
i=1(yi − 〈β,xi〉)2. Importantly, to obtain the

well-adapted form of our updates, one must apply implicit
SGD in reverse, starting with the final observation (yn,xn)
and ending with the initial observation (y1,x1); this recipe
yields the parameter updates β̂0 = β̂OLS and

β̂i+1 = β̂i + xn−i(yn−i − 〈xn−i, β̂i+1〉)/λ

= (Ip + xn−ix
T
n−i/λ)−1(β̂i + yn−ixn−i/λ)

= (Ip − xn−ixT
n−i/(λ+ ‖xn−i‖22))β̂i

+ yn−ixn−i/(λ+ ‖xn−i‖22).

Unrolling the recursion, we obtain β̂n = β̂OLS +∑n
i=1 yiwi with each wi precisely as in Algorithm 1:

wi =
∏n
j=1(Ip − xjxT

j /(λ+ ‖xj‖22)).

2.3. Bias and variance

We now examine the bias and variance control for β̂d. We
first begin with a general bound for the variance:

Theorem 3 (Variance control). For any λ ≥ 1 set non-
adaptively, we have that

Tr{Var(v)} ≤ σ2

λ (p− E{‖Ip −W nXn‖2F }).

In particular, Tr{Var(v)} ≤ σ2p/λ. Further, if ‖xi‖22 ≤ C
for all i:

Tr{Var(v)} � σ2

λ (p− E{‖Ip −W nXn‖2F }).

This theorem suggests that one must set λ as large as pos-
sible to minimize the variance. While this is accurate, one
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must take into account the bias of β̂d and its dependence on
the regularization λ. Indeed, for large λ, one would expect
that Ip −W nXn ≈ Ip, which would not help control the
bias. In general, one would hope to set λ, thereby determin-
ing β̂d, at a level where its bias is negligible in comparison
to the variance. The following theorem formalizes this:

Theorem 4 (Variance dominates MSE). Recall that the
matrix W n is a function of λ. Suppose that there exists
a deterministic sequence λ(n) such that:

E{‖Ip −W nXn‖2op} = o(1/ log n), (4)

P{λmin(XnX
T
n) ≤ λ(n) log n} ≤ 1/n, (5)

Then we have

E{‖b‖22}
Tr{Var(v)} = o(1).

The conditions of Theorem 4, in particular the bias con-
dition on Ip −W nXn are quite general. In the follow-
ing proposition, we verify some sufficient conditions under
which the premise of Theorem 4 hold.

Proposition 5. Either of the following conditions suffices
for the requirements of Theorem 4.

1. The data collection policy satisfies for some sequence
µn(i) and for all λ ≥ 1:

E{ xix
T
i

λ+‖xn‖22
|Gi−1}< µn(i)

λ Ip, (6)∑
i µn(i) ≡ nµ̄n ≥ K

√
n, (7)

for a large enough constant K. Here we keep λ(n) �
nµ̄n/ log n.

2. The matrices (xix
T
i )i≤n commute and λ(n) log n is

(at most) the 1/nth percentile of λmin(XT
nXn).

It is useful to consider the intuition for the sufficient con-
ditions given in Proposition 5. By Lemma 2, note that
the bias is controlled by ‖I−W nXn‖op, which increases
with λ. Consider a case in which the samples xi lie in
a strict subspace of Rp. In this case, controlling the bias
uniformly over β ∈ Rp is now impossible regardless of
the choice of W n. For example, in a multi-armed bandit
problem, if the policy does not sample a specific arm, there
is no information available about the reward distribution
of that arm. Proposition 5 the intuition that the data col-
lecting policy should explore the full parameter space. For
multi-armed bandits, policies such as epsilon-greedy and
Thompson sampling satisfy this assumption with appropri-
ate µn(i).

Given sufficient exploration, Proposition 5 recommends a
reasonable value to set for the regularization parameter. In

Algorithm 1W -Decorrelation Method
Input: sample (yi,xi)i≤n, regularization λ, unit vector v ∈
Rp, confidence level α ∈ (0, 1), noise estimate σ̂2.
Compute: β̂OLS = (XT

nXn)−1Xnyn.
Setting W 0 = 0, compute W i = [W i−1wi] with wi =

(Ip −W i−1X
T
i )xi/(λ+ ‖xi‖22), for i = 1, 2, . . . , n.

Compute β̂d = β̂OLS + W n(y − Xnβ̂OLS) and σ̂(v) =
σ̂〈v,W nW

T
nv〉1/2

Output: decorrelated estimate β̂d and CI interval I(v, α) =

[〈v, β̂d〉 − σ̂(v)Φ−1(1− α), 〈v, β̂d〉+ σ̂(v)Φ−1(1− α)].

particular setting λ to a value such that λ � λmin oc-
curs with high probability suffices to ensure that the W -
decorrelated estimate is approximately unbiased. Corre-
spondingly, the MSE (or equivalently variance) of the W -
decorrelated estimate need not be smaller than that of the
original OLS estimate. Indeed the variance scales as 1/λ,
which exceeds with high probability the 1/λmin scaling for
the MSE. This is the cost paid for debiasing OLS estimate.

Before we move to the inference results, note that the
procedure requires only access to high probability lower
bounds on λmin, which intuitively quantifies the explo-
ration of the data collection policy. In comparison with
methods such as propensity score weighting or conditional
likelihood optimization, this represents rather coarse in-
formation about the data collection process. In particular,
given access to propensity scores or conditional likelihoods
one can simulate the process to extract appropriate values
for the regularization λ(n). This is the approach we take in
the experiments of Section 4. Moreover, propensity scores
or conditional likelihoods are ineffective when data collec-
tion policies make adaptive decisions that are deterministic
given the history. A important example is that of UCB al-
gorithms for bandits, which make deterministic choices of
arms.

2.4. A central limit theorem and confidence intervals

Our final result is a simple CLT that provides an alternative
to the stability condition of Theorem 1 and standard mar-
tingale CLTs.2 We state it for martingales of the form of∑
iwiεi, as required, but a form for general martingales

also holds true. Define, for any vector t ∈ Rp, the condi-
tional variance σi(t) ≡

∑
j≤i〈wj , t〉2. We make the fol-

lowing crucial moment stability assumption on the condi-
tional covariance:

2Many standard martingale CLTs (see, e.g., Lai & Wei, 1982;
Dvoretzky, 1972) demand the convergence of

∑
i wiw

T
i /n to a

constant, but this convergence condition is violated in many ex-
amples of interest, including the AR examples in Section 4.
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Assumption 1. For a = 1, 2, and positive integer k

sup‖t‖2≤1
∑m(n)
i=1 E{|E{εai σm(t)k|Fi−1}−

E{εai |Fi−1}E{σm(t)k}|Fi−1}|} = on(1).

Theorem 6 (Martingale CLT). Let
(wi(n), εi(n),Fi(n))i≤m(n) be a triangular martin-
gale difference array. Here for each n ≥ 1, Fi(n) is a
non-decreasing sequence of sub-sigma-algebras, εi(n)
are i.i.d. (uniformly) bounded random variables with
E{εi|Fi−1} = 0,E{ε2i |Fi−1} = 1 and wi ∈ mFi−1 is
predictable and bounded by 1 almost surely. Suppose a
Lyapunov condition holds, i.e.

∑
i E{w3

i } = on(1). Then

(
∑
iwiw

T
i )−1/2

∑
iwiεi

d⇒N(0, σ2Ip). In particular, for
any bounded, continuous ϕ : Rp → R

lim
n→∞

E
{
ϕ
(∑

i

wiεi

)
− ϕ

(
σ
[∑

i

wiw
T
i

]1/2
ξ
)}

= 0,

where ξ ∼ N(0, Ip) is independent of
∑
iwiw

T
i .

The assumptions on ε are made for simplicity of proof,
which uses the usual Fourier-analytic approach to prove the
central limit theorem (Billingsley, 2008). These can be re-
laxed significantly to standard third moment assumptions
as in a Lyapunov CLT. Assumption 1 is an alternate form of
stability. It controls the dependence of the conditional co-
variance of

∑
iwiεi on the first two conditional moments

of the martingale increments εi. In words, it states that con-
ditioning on the conditional covariance

∑
iwiw

T
i does not

change the first two moments of the random variables εi by
much. In particular, this holds given a quantitative version
of the stability condition of (Lai & Wei, 1982; Dvoretzky,
1972). We have the following
Lemma 7. Consider a martingale sequence

∑
iwiεi as

in Theorem 6. If a non-random sequence An satisfies
A−1n

∑
iwiw

T
i −Ip = o(n−1/2), then Assumption 1 holds.

With a CLT in hand, one can now assign confidence inter-
vals in the standard fashion, based on the assumption that
the bias is negligible. For instance, we have the following
result on two-sided confidence intervals.
Proposition 8. Fix any α > 0. Suppose that the data col-
lection process satisfies the assumptions of Theorems 4 and
6. Set λ = λ(n) as in Theorem 4, and let σ̂ be a consis-
tent estimate of σ as in Theorem 1. DefineQ = σ̂2W nW

T
n

and the interval I(a, α) = [β̂da−
√
QaaΦ−1(1−α/2), β̂da+√

QaaΦ−1(1− α/2). Then

lim supn→∞ P{βa 6∈ I(a, α)} ≤ α.

3. Related work
There is extensive work in statistics and econometrics on
stochastic regression models (Wei, 1985; Lai, 1994; Chen

et al., 1999; Heyde, 2008) and non-stationary time series
(Shumway & Stoffer, 2006; Enders, 2008; Phillips & Per-
ron, 1988). This line of work is analogous to Theorem 1
or restricted to specific time series models. We instead fo-
cus on literature from sequential decision-making, policy
learning and causal inference that closely resembles our
work in terms of goals, techniques and applicability.

The seminal work of Lai and Robbins (Robbins, 1985;
Lai & Robbins, 1985) has spurred a vast literature on
multi-armed bandit problems and sequential experiments
that propose allocation algorithms based on confidence
bounds (see (Bubeck et al., 2012) and references therein).
A variety of confidence bounds and corresponding rules
have been proposed (Auer, 2002; Dani et al., 2008; Rus-
mevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al.,
2011; Jamieson et al., 2014) based on martingale concen-
tration and the law of iterated logarithm. While these re-
sults can certainly be used to compute valid confidence in-
tervals, they are conservative for a few reasons. First, they
do not explicitly account for bias in OLS estimates and, cor-
respondingly, must be wider to account for it. Second, ob-
taining optimal constants in the concentration inequalities
can require sophisticated tools even for non-adaptive data
(Ledoux, 1996; 2005). This is evidenced in all of our ex-
periments which show that concentration inequalities yield
valid, but conservative intervals.

A closely-related line of work is that of learning from
logged data (Li et al., 2011; Dudı́k et al., 2011; Swami-
nathan & Joachims, 2015) and policy learning (Athey &
Wager, 2017; Kallus, 2017). The focus here is efficiently
estimating the reward (or value) of a certain test policy us-
ing data collected from a different policy. For linear mod-
els, this reduces to accurate prediction which is directly re-
lated to the estimation error on the parameters β. While
our work shares some features, we focus on unbiased esti-
mation of the parameters and obtaining accurate confidence
intervals for linear functions of the parameters. Some of the
work on learning from logged data also builds on propen-
sity scores and their estimation (Imbens, 2000; Lunceford
& Davidian, 2004).

Villar et al. (2015) empirically demonstrate the presence of
bias for a number of multi-armed bandit algorithms. Recent
work by Dimakopoulou et al. (2017) also shows a similar
effect in contextual bandits. Along with a result on the sign
of the bias, (Nie et al., 2017) also propose conditional like-
lihood optimization methods to estimate parameters of the
linear model. Through the lens of selective inference, they
also propose methods to randomize the data collection pro-
cess that simultaneously lower bias and reduce the MSE.
Their techniques rely on considerable information about
(and control over) the data generating process, in partic-
ular the probabilities of choosing a specific action at each
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Figure 2. Left: One-sided confidence region coverage for OLS
and decorrelated W -decorrelated estimator trials. Right:
Quantile-quantile (QQ) plots and empirical excess kurtosis (inset)
for the OLS and W -decorrelated estimator errors

point in the data selection. This can be viewed as lying
on the opposite end of the spectrum from our work, which
attempts to use only the data at hand, along with coarse ag-
gregate information on the exploration inherent in the data
generating process. It is an interesting, and open, direction
to consider approaches that can combine the strengths of
our approach and that of (Nie et al., 2017).

4. Experiments
In this section we empirically validate the decorrelated es-
timators in two scenarios that involve sequential depen-
dence in covariates. Our first scenario is a simple exper-
iment of multi-armed bandits while the second scenario is
autoregressive time series data. In these cases, we com-
pare the empirical coverage and typical widths of confi-
dence intervals for parameters obtained via three meth-
ods: (i) classical OLS theory, (ii) concentration inequal-
ities and (iii) decorrelated estimates. Jupyter notebooks
reproducing our experiments are available on the first au-
thor’s Github (Deshpande et al., 2018).

4.1. Multi-armed bandits

In this section, we demonstrate the utility of the W -
estimator for a stochastic multi-armed bandit setting. Vil-

lar et al. (2015) studied this problem in the context of pa-
tient allocation in clinical trials. Here the trial proceeds
in a sequential fashion with the ith patient given one of p
treatments, encoded as xi = ea with a ∈ [p], and yi de-
noting the outcome observed. We model the outcome as
yi = 〈xi, β〉 + εi where εi ∼ Unif([−1, 1]) with β being
the mean outcome of the p treatments.

We sequentially assign one of p = 2 treatments to each
of n = 444 patients using one of three policies (i) an ε-
greedy policy (called ECB or Epsilon Current Belief), (ii)
a practical UCB strategy based on the law of iterated log-
arithm (UCB) (Jamieson et al., 2014) and (iii) Thompson
sampling (Thompson, 1933). The ECB and TS sampling
strategies are Bayesian. They place an independent Gaus-
sian prior (with mean µ0 = 0.3 and variance σ2

0 = 0.33) on
each unknown mean outcome parameter β = (0.3, 0.31)
and form an updated posterior belief concerning β follow-
ing each treatment administration xi and observation yi.
For ECB, the treatment administered to patient i is, with
probability 1 − ε = .9, the treatment with the largest pos-
terior mean; with probability 1 − ε, a uniformly random
treatment is administered instead, to ensure sufficient ex-
ploration of all treatments. Note that this strategy satis-
fies condition (6) with µn(i) = ε/p. For TS, at each pa-
tient i, a sample β̂ of the mean treatment effect is drawn
from the posterior belief. The treatment assigned to pa-
tient is the one maximizing the sampled mean treatment,
i.e. a∗(i) = arg maxa∈[p] β̂a. In UCB, the algorithm main-
tains a score for each arm a ∈ [p] that is a combination
of the mean reward that the arm achieves and the empiri-
cal uncertainty of the reward. For each patient i, the UCB
algorithm chooses the arm maximizing this score, and up-
dates the score according to a fixed rule. For details on the
specific implementation, see Jamieson et al. (2014). Our
goal is to produce confidence intervals for the mean effect
βa of each treatment based on the data adaptively collected
from these standard bandit algorithms.

We repeat this simulation 4000 times. From each trial
simulation, we estimate the parameters β using both OLS
and the W -estimator with λ = λ̂10%,π which is the
10th percentile of λmin(n) achieved by the policy π ∈
{ECB,UCB,TS}. This choice is guided by Corollary
4. We compare the quality of W -decorrelated estima-
tor confidence regions, OLS Gaussian confidence regions
(OLSgsn), and the OLS-based concentration inequality re-
gions (OLSconc) (Abbasi-Yadkori et al., 2011, Sec. 4). Fig-
ure 2 (left column) shows that the OLS Gaussian have lower
tail regions that typically overestimate coverage and upper
tail regions that typically underestimate coverage. This is
consistent with the observation that the sample means are
biased negatively (Nie et al., 2017). The concentration OLS
tail bounds are all conservative, producing nearly 100%
coverage, irrespective of the nominal level. Meanwhile, the
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Figure 3. Mean 2-sided confidence interval widths (error bars show 1 standard deviation) for the 2 arms in the MAB experiment.

decorrelated intervals improves coverage uniformly over
OLS intervals, often achieving the nominal coverage.

Figure 2 (right column) shows the QQ plots of OLS and
W -estimator errors for each parameter βa. The distribu-
tion of OLS errors is distinctly non-Gaussian with consid-
erable excess kurtosis for every policy. Conversely, for the
W estimator the excess kurtosis is reduced for every policy
by an order of magnitude (0 for ECB and UCB).

Figure 3 summarizes the distribution of 2-sided interval
widths produced by each method for each arm. As ex-
pected, the W -decorrelation intervals are wider than those
of OLSgsn but compare favorably with those provided by
OLSconc. For UCB and for ‘arm 0’ for all policies, the
mean OLSconc widths are always largest. For ‘arm 1’ in
the ECB and TS policies, W -decorrelation yields smaller
intervals than OLSconc for moderate confidence levels and
larger for high confidence levels.

4.2. Autoregressive time series

In this section, we consider the classical AR(p) model
where yi =

∑
`≤p β`yi−` + εi.. We generate data for the

model with parameters p = 2, n = 50, β = (0.95, 0.2),
y0 = 0 and εi ∼ Unif([−1, 1]); all estimates are computed
over 4000 monte carlo iterations.

We plot the coverage confidences for various values of the
nominal on the right panel of Figure 4. The QQ plot of
the error distributions on the bottom right panel of Figure
4 shows that the OLS errors are skewed downwards, while
the W -estimate errors are nearly Gaussian. We obtain the
following improvements over the comparison methods of
OLS standard errors OLSgsn and concentration inequality
widths OLSconc (Abbasi-Yadkori et al., 2011)

The Gaussian OLS confidence regions systematically give
incorrect empirical coverage. Meanwhile, the concentra-
tion inequalities provide very conservative intervals, with
nearly 100% coverage, irrespective of the nominal level. In
contrast, our decorrelated intervals achieve empirical cov-
erage that closely approximates the nominal levels. These
coverage improvements are enabled by an increase in width
over that of OLSgsn, but theW -estimate widths are system-
atically smaller than those of the concentration inequalities.

Figure 4. Lower (Top left) and upper (Top right) coverage proba-
bilities for OLS with Gaussian intervals, OLS with concentration
inequality intervals and W -decorrelated estimate intervals. QQ
plot with kurtosis inset (bottom right) errors in OLS estimate and
W -decorrelated estimate. Mean confidence widths (bottom left)
for OLS, concentration and W -decorrelated estimates. Error bars
show one standard deviation.
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