
Alternating Randomized Block Coordinate Descent

A. Omitted Proofs from Section 4
Proof of Proposition 4.2. Let Fk−1 be the natural filtration up to iteration k − 1. Observe that, as ∇nf(xk) = 0:

E[∆k|Fk−1] = ∇f(xk). (A.1)

Since x1 is deterministic (fixed initial point) and the only random variable ∆1 depends on is i1, we have:

E[a1 ⟨∆1,x∗ − x1⟩] = a1 ⟨∇f(x1),x∗ − x1⟩
= E[a1 ⟨∇f(x1),x∗ − x1⟩].

(A.2)

Let k > 1. Observe that aj ⟨∆j ,x∗ − xj⟩ is measurable with respect to Fk−1 for j ≤ k − 1. By linearity of expectation,
using (A.1):

E[
k∑

j=1

aj ⟨∆j ,x∗ − xj⟩ |Fk−1] = ak ⟨∇f(xk),x∗ − xk⟩+
k−1∑
j=1

aj ⟨∆j ,x∗ − xj⟩ .

Taking expectations on both sides of the last equality gives a recursion on E[
∑k

j=1 aj ⟨∆j ,x∗ − xj⟩], which, combined
with (A.2), completes the proof.

Proof of Lemma 4.5. AsAk−1Γk−1 is measurable with respect to the natural filtration Fk−1, E[AkΓk|Fk−1] ≤ Ak−1Γk−1

is equivalent to E[AkΓk −Ak−1Γk−1|Fk−1] ≤ 0.

The change in the upper bound is:

AkUk −Ak−1Uk−1 = Ak(f(yk)− f(xk)) +Ak−1(f(xk)− f(yk−1)) + akf(xk).

By convexity, f(xk) − f(yk−1) ≤ ⟨∇f(xk),xk − yk−1⟩. Further, as yk = xk + IikN
ak

pik
Ak

(vk − vk−1), we have, by

smoothness of f(·), that f(yk)− f(xk) ≤
⟨
∇f(xk), I

ik
N

ak

pik
Ak

(vk − vk−1)
⟩
+

Lik
ak

2

2pik
2Ak

2 ∥vik
k − vik

k−1∥2. Hence:

AkUk −Ak−1Uk−1

≤ akf(xk) +

⟨
∇f(xk), Ak−1(xk − yk−1) + IikN

ak
pik

(vk − vk−1)

⟩
+

Likak
2

2pik
2Ak

∥vik
k − vik

k−1∥
2.

(A.3)

Let mk(u) =
∑k

j=1 aj ⟨∆j ,u− xj⟩ +
∑n

i=1
σi

2 ∥u
i − xi

1∥2 denote the function under the minimum in the definition of
Λk. Observe that mk(u) = mk−1(u) + ak ⟨∆k,u− xk⟩ and vk = argminumk(u). Then:

mk−1(vk) =mk−1(vk−1) + ⟨∇mk−1(vk−1),vk − vk−1⟩+
n−1∑
i=1

σi
2
∥vi

k − vi
k−1∥2

=mk−1(vk−1) +
σik
2

∥vik
k − vik

k−1∥
2,

as vk and vk−1 only differ over the block ik and vk−1 = argminumk−1(u) (and, thus, ∇mk−1(vk−1) = 0).

Hence, it follows that mk(vk)−mk−1(vk−1) = ak ⟨∆k,vk − xk⟩+
σik

2 ∥vik
k − vik

k−1∥2, and, thus:

AkΛk −Ak−1Λk−1 = akf(xk) + ak ⟨∆k,vk − xk⟩+
σik
2

∥vik
k − vik

k−1∥
2. (A.4)

Combining (A.3) and (A.4):

AkΓk −Ak−1Γk−1 ≤
⟨
∇f(xk), Ak−1(xk − yk−1) + IikN

ak
pik

(vk − vk−1)

⟩
− ak ⟨∆k,vk − xk⟩

+
Likak

2

2pik
2Ak

∥vik
k − vik

k−1∥
2 − σik

2
∥vik

k − vik
k−1∥

2

≤
⟨
∇f(xk), Ak−1(xk − yk−1) + IikN

ak
pik

(vk − vk−1)

⟩
− ak ⟨∆k,vk − xk⟩ ,



Alternating Randomized Block Coordinate Descent

as, by the initial assumptions, ak
2

Ak
≤

p2
ik

σik

Lik
.

Finally, taking expectations on both sides, and as xk,yk−1,vk−1 are all measurable w.r.t. Fk−1 and by the separability of
the terms in the definition of vk:

E[AkΓk −Ak−1Γk−1|Fk−1] ≤ ⟨∇f(xk), Akxk −Ak−1yk−1 − akvk−1⟩ = 0,

as, from (AAR-BCD), xk = Ak−1

Ak
yk−1 +

ak

Ak
vk−1.

B. Efficient Implementation of AAR-BCD Iterations
Using similar ideas as in (Fercoq & Richtárik, 2015; Lin et al., 2014; Lee & Sidford, 2013), here we discuss how to
efficiently implement iterations of AAR-BCD, without requiring full-vector updates. First, due to the separability of the
terms inside the minimum, between successive iterations vk changes only over a single block. This is formalized in the
following simple proposition.

Proposition B.1. In each iteration k ≥ 1, vi
k = vi

k−1, ∀i ̸= ik and vik
k = vik

k−1 +wik , where:

wik = argmin
uik

{ak
⟨
∆ik

k ,u
⟩
+
σik
2

∥uik − vik
k−1∥

2}.

Proof. Recall the definition of vk. We have:

vk =argmin
u

{ k∑
j=1

⟨∆j ,u⟩+
n−1∑
i=1

σi
2
∥ui − xi

1∥2
}

=argmin
u

{ k−1∑
j=1

⟨∆j ,u⟩+ ⟨∆k,u⟩+
n−1∑
i=1

σi
2
∥ui − xi

1∥2
}

=argmin
u

{ k−1∑
j=1

⟨∆j ,u⟩+
⟨
∆ik

k ,u
ik
⟩
+

n−1∑
i=1

σi
2
∥ui − xi

1∥2
}

=vk−1 + argmin
uik

{⟨
∆ik

k ,u
ik
⟩
+
σik
2

∥uik − vik
k−1∥

2
}
,

where the third equality is by the definition of ∆k (∆i
k = 0 for i ̸= ik) and the last equality follows from block-separability

of the terms under the min.

Since vk only changes over a single block, this will imply that the changes in xk and yk can be localized. In particular, let
us observe the patterns in changes between successive iterations. We have that, ∀i ̸= n :

xi
k =

Ak−1

Ak
yi
k−1 +

ak
Ak

vi
k−1 =

Ak−1

Ak

(
yi
k−1 − vi

k−1

)
+ vi

k−1 (B.1)

and
yi
k = xi

k +
1

pi

ak
Ak

(
vi
k − vi

k−1

)
=
Ak−1

Ak

(
yi
k−1 − vi

k−1

)
+

(
1− 1

pi

ak
Ak

)(
vi
k−1 − vi

k

)
+ vi

k.

(B.2)

Due to Proposition B.1, vk and vk−1 can be computed without full-vector operations (assuming the gradients can be
computed without full-vector operations, which we will show later in this section). Hence, we need to show that it is
possible to replace Ak−1

Ak

(
yi
k−1 − vi

k−1

)
with a quantity that can be computed without the full-vector operations. Observe

that y0 − v0 = 0 (from the initialization of (AAR-BCD)) and that, from (B.2):

yi
k − vi

k =
Ak−1

Ak

(
yi
k−1 − vi

k−1

)
+

(
1− 1

pi

ak
Ak

)(
vi
k−1 − vi

k

)
.



Alternating Randomized Block Coordinate Descent

Dividing both sides by ak
2

Ak
2 and assuming that ak

2

Ak
is constant over iterations, we get:

Ak
2

ak2
(
yi
k − vi

k

)
=
Ak−1

2

ak−1
2

(
yi
k−1 − vi

k−1

)
+
Ak

2

ak2

(
1− 1

pi

ak
Ak

)(
vi
k−1 − vi

k

)
. (B.3)

Let Nn denote the size of the nth block and define the (N − Nn)-length vector uk by ui
k = Ak

2

ak
2

(
yi
k − vi

k

)
, ∀i ̸= n.

Then (from (B.3)) ui
k = ui

k−1 +
Ak

2

ak
2

(
1− 1

pi

ak

Ak

) (
vi
k−1 − vi

k

)
, and, hence, in iteration k, uk changes only over block

ik. Combining with (B.1) and (B.2), we have the following lemma.

Lemma B.2. Assume that ak
2

Ak
is kept constant over the iterations of AAR-BCD. Let uk be the (N−Nn)-dimensional vector

defined recursively as u0 = 0, ui
k = ui

k−1 for i ∈ {1, ..., n−1}, i ̸= ik and uik
k = uik

k−1+
Ak

2

ak
2

(
1− 1

pi

ak

Ak

) (
vi
k−1 − vi

k

)
.

Then, ∀i ∈ {1, ..., n− 1}: xi
k = ak

2

Ak
2ui

k−1 + vi
k−1 and yi

k = ak
2

Ak
2ui

k−1 +
(
1− 1

pi

ak

Ak

) (
vi
k−1 − vi

k

)
+ vi

k.

Note that we will never need to explicitly compute xk,yk, except for the last iteration K, which outputs yK . To formalize
this claim, we need to show that we can compute the gradients ∇if(xk) without explicitly computing xk and that we can
efficiently perform the exact minimization over the nth block. This will only be possible by assuming specific structure
of the objective function, as is typical for accelerated block-coordinate descent methods (Fercoq & Richtárik, 2015; Lee &
Sidford, 2013; Lin et al., 2014). In particular, we assume that for some m×N dimensional matrix M :

f(x) =

m∑
j=1

ϕj(e
T
j Mx) + ψ(x), (B.4)

where ϕj : R → R and ψ =
∑n

i=1 ψi : RN → R is block-separable.

Efficient Gradient Computations. Assume for now that xn
k can be computed efficiently (we will address this at the end

of this section). Let ind denote the set of indices of the coordinates from blocks {1, 2, ..., n − 1} and denote by B the
matrix obtained by selecting the columns of M that are indexed by ind. Similarly, let indn denote the set of indices of the
coordinates from block n and let C denote the submatrix of M obtained by selecting the columns of M that are indexed
by indn. Denote ruk

= Buk, rvk
= B[v1

k,v
2
k, ...,v

n−1
k ]T , rn = Cxn

k . Let indik be the set of indices corresponding to
the coordinates from block ik. Then:

∇ikf(xk) =

m∑
j=1

(Mj,indik
)Tϕ′j

(
ak

2

Ak
2 r

j
uk−1

+ rjvk−1
+ rjn

)
+∇ikψ(x). (B.5)

Hence, as long as we maintain ruk
, rvk

, and rn (which do not require full-vector operations), we can efficiently compute
the partial gradients ∇ikf(xk) without ever needing to perform any full-vector operations.

Efficient Exact Minimization. Suppose first that ψ(x) ≡ 0. Then:

rn = argmin
r∈Rm


m∑
j=1

ϕj

(
ak

2

Ak
2 r

j
uk−1

+ rjvk−1
+ rj

) ,

and rn can be computed but solving m single-variable minimization problems, which can be done in closed form or with
a very low complexity. Computing rn is sufficient for defining all algorithm iterations, except for the last one (that outputs
a solution). Hence, we only need to compute xn

k once – in the last iteration.

More generally, xn
k is determined by solving:

xn
k = argmin

x∈RNn


m∑
j=1

ϕj

(
ak

2

Ak
2 r

j
uk−1

+ rjvk−1
+ (Cx)j

)
+ ψn(x)

 .

When m and Nn are small, high-accuracy polynomial-time convex optimization algorithms are computationally inexpen-
sive, and xn

k can be computed efficiently.



Alternating Randomized Block Coordinate Descent

In the special case of linear and ridge regression, xn
k can be computed in closed form, with minor preprocessing. In

particular, if b is the vector of labels, then the problem becomes:

xn
k = argmin

x∈RNn


m∑
j=1

(
ak

2

Ak
2 r

j
uk−1

+ rjvk−1
+ (Cx)j − bj

)2

+
λ

2
∥x∥22

 ,

where λ = 0 in the case of (simple) linear regression. Let b′ = b− ak
2

Ak
2 ruk−1

− rvk−1
. Then:

xn
k = (CTC+ λI)†(CTb′),

where (·)† denotes the matrix pseudoinverse, and I is the identity matrix. Since CTC+λI does not change over iterations,
(CTC+ λI)† can be computed only once at the initialization. Recall that CTC+ λI is an Nn ×Nn matrix, where Nn is
the size of the nth block, and thus inverting CTC+ λI is computationally inexpensive as long as Nn is not too large. This
reduces the overall per-iteration cost of the exact minimization to about the same cost as for performing gradient steps.


