A. Omitted Proofs from Section 4

Proof of Proposition 4.2. Let \mathcal{F}_{k-1} be the natural filtration up to iteration $k-1$. Observe that, as $\nabla_{n} f\left(\mathbf{x}_{k}\right)=\mathbf{0}$:

$$
\begin{equation*}
\mathbb{E}\left[\Delta_{k} \mid \mathcal{F}_{k-1}\right]=\nabla f\left(\mathbf{x}_{k}\right) \tag{A.1}
\end{equation*}
$$

Since \mathbf{x}_{1} is deterministic (fixed initial point) and the only random variable Δ_{1} depends on is i_{1}, we have:

$$
\begin{align*}
\mathbb{E}\left[a_{1}\left\langle\Delta_{1}, \mathbf{x}_{*}-\mathbf{x}_{1}\right\rangle\right] & =a_{1}\left\langle\nabla f\left(\mathbf{x}_{1}\right), \mathbf{x}_{*}-\mathbf{x}_{1}\right\rangle \\
& =\mathbb{E}\left[a_{1}\left\langle\nabla f\left(\mathbf{x}_{1}\right), \mathbf{x}_{*}-\mathbf{x}_{1}\right\rangle\right] \tag{A.2}
\end{align*}
$$

Let $k>1$. Observe that $a_{j}\left\langle\Delta_{j}, \mathbf{x}_{*}-\mathbf{x}_{j}\right\rangle$ is measurable with respect to \mathcal{F}_{k-1} for $j \leq k-1$. By linearity of expectation, using (A.1):

$$
\mathbb{E}\left[\sum_{j=1}^{k} a_{j}\left\langle\Delta_{j}, \mathbf{x}_{*}-\mathbf{x}_{j}\right\rangle \mid \mathcal{F}_{k-1}\right]=a_{k}\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{*}-\mathbf{x}_{k}\right\rangle+\sum_{j=1}^{k-1} a_{j}\left\langle\Delta_{j}, \mathbf{x}_{*}-\mathbf{x}_{j}\right\rangle
$$

Taking expectations on both sides of the last equality gives a recursion on $\mathbb{E}\left[\sum_{j=1}^{k} a_{j}\left\langle\Delta_{j}, \mathbf{x}_{*}-\mathbf{x}_{j}\right\rangle\right]$, which, combined with (A.2), completes the proof.

Proof of Lemma 4.5. As $A_{k-1} \Gamma_{k-1}$ is measurable with respect to the natural filtration $\mathcal{F}_{k-1}, \mathbb{E}\left[A_{k} \Gamma_{k} \mid \mathcal{F}_{k-1}\right] \leq A_{k-1} \Gamma_{k-1}$ is equivalent to $\mathbb{E}\left[A_{k} \Gamma_{k}-A_{k-1} \Gamma_{k-1} \mid \mathcal{F}_{k-1}\right] \leq 0$.
The change in the upper bound is:

$$
A_{k} U_{k}-A_{k-1} U_{k-1}=A_{k}\left(f\left(\mathbf{y}_{k}\right)-f\left(\mathbf{x}_{k}\right)\right)+A_{k-1}\left(f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{y}_{k-1}\right)\right)+a_{k} f\left(\mathbf{x}_{k}\right)
$$

By convexity, $f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{y}_{k-1}\right) \leq\left\langle\nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k}-\mathbf{y}_{k-1}\right\rangle$. Further, as $\mathbf{y}_{k}=\mathbf{x}_{k}+I_{N}^{i_{k}} \frac{a_{k}}{p_{i_{k}} A_{k}}\left(\mathbf{v}_{k}-\mathbf{v}_{k-1}\right)$, we have, by smoothness of $f(\cdot)$, that $f\left(\mathbf{y}_{k}\right)-f\left(\mathbf{x}_{k}\right) \leq\left\langle\nabla f\left(\mathbf{x}_{k}\right), I_{N}^{i_{k}} \frac{a_{k}}{p_{i_{k}} A_{k}}\left(\mathbf{v}_{k}-\mathbf{v}_{k-1}\right)\right\rangle+\frac{L_{i_{k}} a_{k}{ }^{2}}{2 p_{i_{k}}{ }^{2} A_{k}{ }^{2}}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}$. Hence:

$$
\begin{align*}
A_{k} U_{k}- & A_{k-1} U_{k-1} \\
& \leq a_{k} f\left(\mathbf{x}_{k}\right)+\left\langle\nabla f\left(\mathbf{x}_{k}\right), A_{k-1}\left(\mathbf{x}_{k}-\mathbf{y}_{k-1}\right)+I_{N}^{i_{k}} \frac{a_{k}}{p_{i_{k}}}\left(\mathbf{v}_{k}-\mathbf{v}_{k-1}\right)\right\rangle+\frac{L_{i_{k}} a_{k}^{2}}{2 p_{i_{k}}{ }^{2} A_{k}}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2} \tag{A.3}
\end{align*}
$$

Let $m_{k}(\mathbf{u})=\sum_{j=1}^{k} a_{j}\left\langle\Delta_{j}, \mathbf{u}-\mathbf{x}_{j}\right\rangle+\sum_{i=1}^{n} \frac{\sigma_{i}}{2}\left\|\mathbf{u}^{i}-\mathbf{x}_{1}^{i}\right\|^{2}$ denote the function under the minimum in the definition of Λ_{k}. Observe that $m_{k}(\mathbf{u})=m_{k-1}(\mathbf{u})+a_{k}\left\langle\Delta_{k}, \mathbf{u}-\mathbf{x}_{k}\right\rangle$ and $\mathbf{v}_{k}=\operatorname{argmin}_{\mathbf{u}} m_{k}(\mathbf{u})$. Then:

$$
\begin{aligned}
m_{k-1}\left(\mathbf{v}_{k}\right) & =m_{k-1}\left(\mathbf{v}_{k-1}\right)+\left\langle\nabla m_{k-1}\left(\mathbf{v}_{k-1}\right), \mathbf{v}_{k}-\mathbf{v}_{k-1}\right\rangle+\sum_{i=1}^{n-1} \frac{\sigma_{i}}{2}\left\|\mathbf{v}_{k}^{i}-\mathbf{v}_{k-1}^{i}\right\|^{2} \\
& =m_{k-1}\left(\mathbf{v}_{k-1}\right)+\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}
\end{aligned}
$$

as \mathbf{v}_{k} and \mathbf{v}_{k-1} only differ over the block i_{k} and $\mathbf{v}_{k-1}=\operatorname{argmin}_{\mathbf{u}} m_{k-1}(\mathbf{u})$ (and, thus, $\nabla m_{k-1}\left(\mathbf{v}_{k-1}\right)=\mathbf{0}$).
Hence, it follows that $m_{k}\left(\mathbf{v}_{k}\right)-m_{k-1}\left(\mathbf{v}_{k-1}\right)=a_{k}\left\langle\Delta_{k}, \mathbf{v}_{k}-\mathbf{x}_{k}\right\rangle+\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}$, and, thus:

$$
\begin{equation*}
A_{k} \Lambda_{k}-A_{k-1} \Lambda_{k-1}=a_{k} f\left(\mathbf{x}_{k}\right)+a_{k}\left\langle\Delta_{k}, \mathbf{v}_{k}-\mathbf{x}_{k}\right\rangle+\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2} \tag{A.4}
\end{equation*}
$$

Combining (A.3) and (A.4):

$$
\begin{aligned}
A_{k} \Gamma_{k}-A_{k-1} \Gamma_{k-1} \leq & \left\langle\nabla f\left(\mathbf{x}_{k}\right), A_{k-1}\left(\mathbf{x}_{k}-\mathbf{y}_{k-1}\right)+I_{N}^{i_{k}} \frac{a_{k}}{p_{i_{k}}}\left(\mathbf{v}_{k}-\mathbf{v}_{k-1}\right)\right\rangle-a_{k}\left\langle\Delta_{k}, \mathbf{v}_{k}-\mathbf{x}_{k}\right\rangle \\
& +\frac{L_{i_{k}} a_{k}^{2}}{2 p_{i_{k}}^{2} A_{k}}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}-\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{v}_{k}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2} \\
& \leq\left\langle\nabla f\left(\mathbf{x}_{k}\right), A_{k-1}\left(\mathbf{x}_{k}-\mathbf{y}_{k-1}\right)+I_{N}^{i_{k}} \frac{a_{k}}{p_{i_{k}}}\left(\mathbf{v}_{k}-\mathbf{v}_{k-1}\right)\right\rangle-a_{k}\left\langle\Delta_{k}, \mathbf{v}_{k}-\mathbf{x}_{k}\right\rangle
\end{aligned}
$$

as, by the initial assumptions, $\frac{a_{k}{ }^{2}}{A_{k}} \leq \frac{p_{i_{k}}^{2} \sigma_{i_{k}}}{L_{i_{k}}}$.
Finally, taking expectations on both sides, and as $\mathbf{x}_{k}, \mathbf{y}_{k-1}, \mathbf{v}_{k-1}$ are all measurable w.r.t. \mathcal{F}_{k-1} and by the separability of the terms in the definition of \mathbf{v}_{k} :

$$
\mathbb{E}\left[A_{k} \Gamma_{k}-A_{k-1} \Gamma_{k-1} \mid \mathcal{F}_{k-1}\right] \leq\left\langle\nabla f\left(\mathbf{x}_{k}\right), A_{k} \mathbf{x}_{k}-A_{k-1} \mathbf{y}_{k-1}-a_{k} \mathbf{v}_{k-1}\right\rangle=0
$$

as, from (AAR-BCD), $\mathbf{x}_{k}=\frac{A_{k-1}}{A_{k}} \mathbf{y}_{k-1}+\frac{a_{k}}{A_{k}} \mathbf{v}_{k-1}$.

B. Efficient Implementation of AAR-BCD Iterations

Using similar ideas as in (Fercoq \& Richtárik, 2015; Lin et al., 2014; Lee \& Sidford, 2013), here we discuss how to efficiently implement iterations of AAR-BCD, without requiring full-vector updates. First, due to the separability of the terms inside the minimum, between successive iterations \mathbf{v}_{k} changes only over a single block. This is formalized in the following simple proposition.
Proposition B.1. In each iteration $k \geq 1, \mathbf{v}_{k}^{i}=\mathbf{v}_{k-1}^{i}, \forall i \neq i_{k}$ and $\mathbf{v}_{k}^{i_{k}}=\mathbf{v}_{k-1}^{i_{k}}+\mathbf{w}^{i_{k}}$, where:

$$
\mathbf{w}^{i_{k}}=\underset{\mathbf{u}^{i_{k}}}{\operatorname{argmin}}\left\{a_{k}\left\langle\Delta_{k}^{i_{k}}, \mathbf{u}\right\rangle+\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{u}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}\right\} .
$$

Proof. Recall the definition of \mathbf{v}_{k}. We have:

$$
\begin{aligned}
\mathbf{v}_{k} & =\underset{\mathbf{u}}{\operatorname{argmin}}\left\{\sum_{j=1}^{k}\left\langle\Delta_{j}, \mathbf{u}\right\rangle+\sum_{i=1}^{n-1} \frac{\sigma_{i}}{2}\left\|\mathbf{u}^{i}-\mathbf{x}_{1}^{i}\right\|^{2}\right\} \\
& =\underset{\mathbf{u}}{\operatorname{argmin}}\left\{\sum_{j=1}^{k-1}\left\langle\Delta_{j}, \mathbf{u}\right\rangle+\left\langle\Delta_{k}, \mathbf{u}\right\rangle+\sum_{i=1}^{n-1} \frac{\sigma_{i}}{2}\left\|\mathbf{u}^{i}-\mathbf{x}_{1}^{i}\right\|^{2}\right\} \\
& =\underset{\mathbf{u}}{\operatorname{argmin}}\left\{\sum_{j=1}^{k-1}\left\langle\Delta_{j}, \mathbf{u}\right\rangle+\left\langle\Delta_{k}^{i_{k}}, \mathbf{u}^{i_{k}}\right\rangle+\sum_{i=1}^{n-1} \frac{\sigma_{i}}{2}\left\|\mathbf{u}^{i}-\mathbf{x}_{1}^{i}\right\|^{2}\right\} \\
& =\mathbf{v}_{k-1}+\underset{\mathbf{u}^{i_{k}}}{\operatorname{argmin}}\left\{\left\langle\Delta_{k}^{i_{k}}, \mathbf{u}^{i_{k}}\right\rangle+\frac{\sigma_{i_{k}}}{2}\left\|\mathbf{u}^{i_{k}}-\mathbf{v}_{k-1}^{i_{k}}\right\|^{2}\right\},
\end{aligned}
$$

where the third equality is by the definition of $\Delta_{k}\left(\Delta_{k}^{i}=0\right.$ for $\left.i \neq i_{k}\right)$ and the last equality follows from block-separability of the terms under the min.

Since \mathbf{v}_{k} only changes over a single block, this will imply that the changes in \mathbf{x}_{k} and \mathbf{y}_{k} can be localized. In particular, let us observe the patterns in changes between successive iterations. We have that, $\forall i \neq n$:

$$
\begin{equation*}
\mathbf{x}_{k}^{i}=\frac{A_{k-1}}{A_{k}} \mathbf{y}_{k-1}^{i}+\frac{a_{k}}{A_{k}} \mathbf{v}_{k-1}^{i}=\frac{A_{k-1}}{A_{k}}\left(\mathbf{y}_{k-1}^{i}-\mathbf{v}_{k-1}^{i}\right)+\mathbf{v}_{k-1}^{i} \tag{B.1}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbf{y}_{k}^{i} & =\mathbf{x}_{k}^{i}+\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\left(\mathbf{v}_{k}^{i}-\mathbf{v}_{k-1}^{i}\right) \\
& =\frac{A_{k-1}}{A_{k}}\left(\mathbf{y}_{k-1}^{i}-\mathbf{v}_{k-1}^{i}\right)+\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right)+\mathbf{v}_{k}^{i} \tag{B.2}
\end{align*}
$$

Due to Proposition B.1, \mathbf{v}_{k} and \mathbf{v}_{k-1} can be computed without full-vector operations (assuming the gradients can be computed without full-vector operations, which we will show later in this section). Hence, we need to show that it is possible to replace $\frac{A_{k-1}}{A_{k}}\left(\mathbf{y}_{k-1}^{i}-\mathbf{v}_{k-1}^{i}\right)$ with a quantity that can be computed without the full-vector operations. Observe that $\mathbf{y}_{0}-\mathbf{v}_{0}=0($ from the initialization of (AAR-BCD)) and that, from (B.2):

$$
\mathbf{y}_{k}^{i}-\mathbf{v}_{k}^{i}=\frac{A_{k-1}}{A_{k}}\left(\mathbf{y}_{k-1}^{i}-\mathbf{v}_{k-1}^{i}\right)+\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right)
$$

Dividing both sides by $\frac{a_{k}{ }^{2}}{A_{k}{ }^{2}}$ and assuming that $\frac{a_{k}{ }^{2}}{A_{k}}$ is constant over iterations, we get:

$$
\begin{equation*}
\frac{A_{k}^{2}}{a_{k}^{2}}\left(\mathbf{y}_{k}^{i}-\mathbf{v}_{k}^{i}\right)=\frac{A_{k-1}^{2}}{a_{k-1}^{2}}\left(\mathbf{y}_{k-1}^{i}-\mathbf{v}_{k-1}^{i}\right)+\frac{A_{k}^{2}}{a_{k}^{2}}\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right) \tag{B.3}
\end{equation*}
$$

Let N_{n} denote the size of the $n^{\text {th }}$ block and define the $\left(N-N_{n}\right)$-length vector \mathbf{u}_{k} by $\mathbf{u}_{k}^{i}=\frac{A_{k}{ }^{2}}{a_{k}{ }^{2}}\left(\mathbf{y}_{k}^{i}-\mathbf{v}_{k}^{i}\right), \forall i \neq n$. Then (from (B.3)) $\mathbf{u}_{k}^{i}=\mathbf{u}_{k-1}^{i}+\frac{A_{k}{ }^{2}}{a_{k}^{2}}\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right)$, and, hence, in iteration k, \mathbf{u}_{k} changes only over block i_{k}. Combining with (B.1) and (B.2), we have the following lemma.
Lemma B.2. Assume that $\frac{a_{k}{ }^{2}}{A_{k}}$ is kept constant over the iterations of $A A R-B C D$. Let \mathbf{u}_{k} be the $\left(N-N_{n}\right)$-dimensional vector defined recursively as $\mathbf{u}_{0}=\mathbf{0}$, $\mathbf{u}_{k}^{i}=\mathbf{u}_{k-1}^{i}$ for $i \in\{1, \ldots, n-1\}, i \neq i_{k}$ and $\mathbf{u}_{k}^{i_{k}}=\mathbf{u}_{k-1}^{i_{k}}+\frac{A_{k}{ }^{2}}{a_{k}{ }^{2}}\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right)$. Then, $\forall i \in\{1, \ldots, n-1\}: \mathbf{x}_{k}^{i}=\frac{a_{k}{ }^{2}}{A_{k}{ }^{2}} \mathbf{u}_{k-1}^{i}+\mathbf{v}_{k-1}^{i}$ and $\mathbf{y}_{k}^{i}=\frac{a_{k}{ }^{2}}{A_{k}{ }^{2}} \mathbf{u}_{k-1}^{i}+\left(1-\frac{1}{p_{i}} \frac{a_{k}}{A_{k}}\right)\left(\mathbf{v}_{k-1}^{i}-\mathbf{v}_{k}^{i}\right)+\mathbf{v}_{k}^{i}$.

Note that we will never need to explicitly compute $\mathbf{x}_{k}, \mathbf{y}_{k}$, except for the last iteration K, which outputs \mathbf{y}_{K}. To formalize this claim, we need to show that we can compute the gradients $\nabla_{i} f\left(\mathbf{x}_{k}\right)$ without explicitly computing \mathbf{x}_{k} and that we can efficiently perform the exact minimization over the $n^{\text {th }}$ block. This will only be possible by assuming specific structure of the objective function, as is typical for accelerated block-coordinate descent methods (Fercoq \& Richtárik, 2015; Lee \& Sidford, 2013; Lin et al., 2014). In particular, we assume that for some $m \times N$ dimensional matrix \mathbf{M} :

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{m} \phi_{j}\left(e_{j}^{T} \mathbf{M} \mathbf{x}\right)+\psi(\mathbf{x}) \tag{B.4}
\end{equation*}
$$

where $\phi_{j}: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi=\sum_{i=1}^{n} \psi_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is block-separable.
Efficient Gradient Computations. Assume for now that \mathbf{x}_{k}^{n} can be computed efficiently (we will address this at the end of this section). Let ind denote the set of indices of the coordinates from blocks $\{1,2, \ldots, n-1\}$ and denote by \mathbf{B} the matrix obtained by selecting the columns of \mathbf{M} that are indexed by ind. Similarly, let $i n d_{n}$ denote the set of indices of the coordinates from block n and let \mathbf{C} denote the submatrix of \mathbf{M} obtained by selecting the columns of \mathbf{M} that are indexed by ind $_{n}$. Denote $\mathbf{r}_{\mathbf{u}_{k}}=\mathbf{B u} \mathbf{u}_{k}, \mathbf{r}_{\mathbf{v}_{k}}=\mathbf{B}\left[\mathbf{v}_{k}^{1}, \mathbf{v}_{k}^{2}, \ldots, \mathbf{v}_{k}^{n-1}\right]^{T}, \mathbf{r}_{n}=\mathbf{C} \mathbf{x}_{k}^{n}$. Let $i n d_{i_{k}}$ be the set of indices corresponding to the coordinates from block i_{k}. Then:

$$
\begin{equation*}
\nabla_{i_{k}} f\left(\mathbf{x}_{k}\right)=\sum_{j=1}^{m}\left(\mathbf{M}_{j, i n d_{i k}}\right)^{T} \phi_{j}^{\prime}\left(\frac{a_{k}^{2}}{A_{k}^{2}} \mathbf{r}_{\mathbf{u}_{k-1}}^{j}+\mathbf{r}_{\mathbf{v}_{k-1}}^{j}+\mathbf{r}_{n}^{j}\right)+\nabla_{i_{k}} \psi(\mathbf{x}) \tag{B.5}
\end{equation*}
$$

Hence, as long as we maintain $\mathbf{r}_{\mathbf{u}_{k}}, \mathbf{r}_{\mathbf{v}_{k}}$, and \mathbf{r}_{n} (which do not require full-vector operations), we can efficiently compute the partial gradients $\nabla_{i_{k}} f\left(\mathrm{x}_{k}\right)$ without ever needing to perform any full-vector operations.

Efficient Exact Minimization. Suppose first that $\psi(\mathbf{x}) \equiv 0$. Then:

$$
\mathbf{r}_{n}=\underset{\mathbf{r} \in \mathbb{R}^{m}}{\operatorname{argmin}}\left\{\sum_{j=1}^{m} \phi_{j}\left(\frac{a_{k}^{2}}{A_{k}{ }^{2}} \mathbf{r}_{\mathbf{u}_{k-1}}^{j}+\mathbf{r}_{\mathbf{v}_{k-1}}^{j}+\mathbf{r}^{j}\right)\right\}
$$

and \mathbf{r}_{n} can be computed but solving m single-variable minimization problems, which can be done in closed form or with a very low complexity. Computing \mathbf{r}_{n} is sufficient for defining all algorithm iterations, except for the last one (that outputs a solution). Hence, we only need to compute \mathbf{x}_{k}^{n} once - in the last iteration.
More generally, \mathbf{x}_{k}^{n} is determined by solving:

$$
\mathbf{x}_{k}^{n}=\underset{\mathbf{x} \in \mathbb{R}^{N_{n}}}{\operatorname{argmin}}\left\{\sum_{j=1}^{m} \phi_{j}\left(\frac{a_{k}^{2}}{A_{k}{ }^{2}} \mathbf{r}_{\mathbf{u}_{k-1}}^{j}+\mathbf{r}_{\mathbf{v}_{k-1}}^{j}+(\mathbf{C x})^{j}\right)+\psi_{n}(\mathbf{x})\right\}
$$

When m and N_{n} are small, high-accuracy polynomial-time convex optimization algorithms are computationally inexpensive, and \mathbf{x}_{k}^{n} can be computed efficiently.

In the special case of linear and ridge regression, \mathbf{x}_{k}^{n} can be computed in closed form, with minor preprocessing. In particular, if \mathbf{b} is the vector of labels, then the problem becomes:

$$
\mathbf{x}_{k}^{n}=\underset{\mathbf{x} \in \mathbb{R}^{N_{n}}}{\operatorname{argmin}}\left\{\sum_{j=1}^{m}\left(\frac{a_{k}{ }^{2}}{{A_{k}}^{2}} \mathbf{r}_{\mathbf{u}_{k-1}}^{j}+\mathbf{r}_{\mathbf{v}_{k-1}}^{j}+(\mathbf{C x})^{j}-\mathbf{b}^{j}\right)^{2}+\frac{\lambda}{2}\|\mathbf{x}\|_{2}^{2}\right\}
$$

where $\lambda=0$ in the case of (simple) linear regression. Let $\mathbf{b}^{\prime}=\mathbf{b}-\frac{a_{k}{ }^{2}}{A_{k}{ }^{2}} \mathbf{r}_{\mathbf{u}_{k-1}}-\mathbf{r}_{\mathbf{v}_{k-1}}$. Then:

$$
\mathbf{x}_{k}^{n}=\left(\mathbf{C}^{T} \mathbf{C}+\lambda \mathbf{I}\right)^{\dagger}\left(\mathbf{C}^{T} \mathbf{b}^{\prime}\right)
$$

where $(\cdot)^{\dagger}$ denotes the matrix pseudoinverse, and \mathbf{I} is the identity matrix. Since $\mathbf{C}^{T} \mathbf{C}+\lambda \mathbf{I}$ does not change over iterations, $\left(\mathbf{C}^{T} \mathbf{C}+\lambda \mathbf{I}\right)^{\dagger}$ can be computed only once at the initialization. Recall that $\mathbf{C}^{T} \mathbf{C}+\lambda \mathbf{I}$ is an $N_{n} \times N_{n}$ matrix, where N_{n} is the size of the $n^{\text {th }}$ block, and thus inverting $\mathbf{C}^{T} \mathbf{C}+\lambda \mathbf{I}$ is computationally inexpensive as long as N_{n} is not too large. This reduces the overall per-iteration cost of the exact minimization to about the same cost as for performing gradient steps.

