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Abstract
We study the problem of minimizing the sum of
three convex functions—a differentiable, twice-
differentiable and a non-smooth term—in a high
dimensional setting. To this effect we propose
and analyze a randomized block cubic Newton
(RBCN) method, which in each iteration builds
a model of the objective function formed as the
sum of the natural models of its three compo-
nents: a linear model with a quadratic regular-
izer for the differentiable term, a quadratic model
with a cubic regularizer for the twice differen-
tiable term, and perfect (proximal) model for the
nonsmooth term. Our method in each iteration
minimizes the model over a random subset of
blocks of the search variable. RBCN is the first
algorithm with these properties, generalizing sev-
eral existing methods, matching the best known
bounds in all special cases. We establish O(1/ε),
O(1/

√
ε) and O(log(1/ε)) rates under different

assumptions on the component functions. Lastly,
we show numerically that our method outperforms
the state of the art on a variety of machine learning
problems, including cubically regularized least-
squares, logistic regression with constraints, and
Poisson regression.

1. Introduction
In this paper we develop an efficient randomized algorithm
for solving an optimization problem of the form

min
x∈Q

F (x)
def
= g(x) + φ(x) + ψ(x), (1)
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where Q ⊆ RN is a closed convex set, and g, φ and ψ are
convex functions with different smoothness and structural
properties. Our aim is to capitalize on these different prop-
erties in the design of our algorithm. We assume that g has
Lipschitz gradient1, φ has Lipschitz Hessian, while ψ is
allowed to be nonsmooth, albeit “simple”.

1.1. Block Structure

Moreover, we assume that the N coordinates of x are parti-
tioned into n blocks of sizesN1, . . . , Nn, with

∑
iNi = N ,

and then write x = (x(1), . . . , x(n)), where x(i) ∈ RNi .
This block structure is typically dictated by the particular
application considered. Once the block structure is fixed,
we further assume that φ and ψ are block separable. That is,
φ(x) =

∑n
i=1 φi(x(i)) and ψ(x) =

∑n
i=1 ψi(x(i)), where

φi are twice differentiable with Lipschitz Hessians, and ψi
are closed convex (and possibly nonsmooth) functions.

Revealing this block structure, problem (1) takes the form

min
x∈Q

F (x)
def
= g(x) +

n∑
i=1

φi(x(i)) +

n∑
i=1

ψi(x(i)). (2)

We are specifically interested in the case when n is big, in
which case it make sense to update a small number of the
block in each iteration only.

1.2. Related Work

There has been a substantial and growing volume of research
related to second-order and block-coordinate optimization.
In this part we briefly mention some of the papers most
relevant to the present work.

A major leap in second-order optimization theory was
made since the cubic Newton method was proposed by
Griewank (1981) and independently rediscovered by Nes-
terov & Polyak (2006), who also provided global complexity
guarantees.

Cubic regularization was equipped with acceleration by Nes-
terov (2008), adaptive stepsizes by (Cartis et al., 2011a;b)
and extended to a universal framework by Grapiglia & Nes-
terov (2017). The universal schemes can automatically

1Our assumption is bit more general than this; see Assump-
tions 1, 2 for details.
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adjust to the implicit smoothness level of the objective. Cu-
bically regularized second-order schemes for solving sys-
tems of nonlinear equations were developed by Nesterov
(2007) and randomized variants for stochastic optimiza-
tion were considered by Tripuraneni et al. (2017); Ghadimi
et al. (2017); Kohler & Lucchi (2017); Cartis & Scheinberg
(2018).

Despite their attractive global iteration complexity guar-
antees, the weakness of second-order methods in general,
and cubic Newton in particular, is their high computational
cost per iteration. This issue remains the subject of active
research. For successful theoretical results related to the
approximation of the cubic step we refer to (Agarwal et al.,
2016) and (Carmon & Duchi, 2016).

At the same time, there are many successful attempts
to use block coordinate randomization to accelerate first-
order (Tseng & Yun, 2009; Richtárik & Takáč, 2014; 2016)
and second-order (Qu et al., 2016; Mutnỳ & Richtárik, 2018)
methods.

In this work we are addressing the issue of combining block-
coordinate randomization with cubic regularization, to get a
second-order method with proven global complexity guar-
antees and with a low cost per iteration.

A powerful advance in convex optimization theory was the
advent of composite or proximal first-order methods (see
(Nesterov, 2013) as a modern reference). This technique has
become available as an algorithmic tool in block coordinate
setting as well (Richtárik & Takáč, 2014; Qu et al., 2016).
Our aim in this work is the development of a composite
cubically regularized second-order method.

1.3. Contributions

We propose a new randomized second-order proximal al-
gorithm for solving convex optimization problems of the
form (2). Our method, Randomized Block Cubic Newton
(RBCN) (see Algorithm 1) treats the three functions appear-
ing in (1) differently, according to their nature.

Our method is a randomized block method because in each
iteration we update a random subset of the n blocks only.
This facilitates faster convergence, and is suited to problems
where n is very large. Our method is proximal because we
keep the functions ψi in our model, which is minimized in
each iteration, without any approximation. Our method is
a cubic Newton method because we approximate each φi
using a cubically-regularized second order model.

We are not aware of any method that can solve (2) via
using the most appropriate models of the three functions
(quadratic with a constant Hessian for g, cubically regular-
ized quadratic for φ and no model for ψ), not even in the
case n = 1.

Our approach generalizes several existing results:

• In the case when n = 1, g = 0 and ψ = 0, RBCN
reduces to the cubically-regularized Newton method of
Nesterov & Polyak (2006). Even when n = 1, RBCN
can be seen as an extension of this method to composite
optimization. For n > 1, RBCN provides an extension
of the algorithm in Nesterov & Polyak (2006) to the
randomized block coordinate setting, popular for high-
dimensional problems.

• In the special case when φ = 0 and Ni = 1 for all
i, RBCN specializes to the stochastic Newton (SN)
method of Qu et al. (2016). Applied to the empirical
risk minimization problem (see Section 7), our method
has a dual interpretation (see Algorithm 2). In this
case, our method reduces to the stochastic dual Newton
ascent method (SDNA) also described in (Qu et al.,
2016). Hence, RBCN can be seen as an extension of
SN and SDNA to blocks of arbitrary sizes, and to the
inclusion of the twice differentiable term φ.

• In the case when φ = 0 and the simplest over approxi-
mation of g is assumed: 0 � ∇2g(x) � LI , the com-
posite block coordinate gradient method Tseng & Yun
(2009) can be applied to solve (1). Our method extends
this in two directions: we add twice-differentiable
terms φ, and use a tighter model for g, using all global
curvature information (if available).

We prove high probability global convergence guarantees
under several regimes, summarized next:

• Under no additional assumptions on g, φ and ψ beyond
convexity (and either boundedness of Q, or bounded-
ness of the level sets of F on Q), we prove the rate

O
( n
τε

)
,

where τ is the mini-batch size (see Theorem 1).

• Under certain conditions combining the properties of
g with the way the random blocks are sampled, for-
malized by the assumption β > 0 (see (12) for the
definition of β), we obtain the rate

O
(

n

τ max{1, β}
√
ε

)
(see Theorem 2). In the special case when n = 1, we
necessarily have τ = 1 and β = µ/L (reciprocal of
the condition number of g) we get the rate O( L

µ
√
ε
). If

g is quadratic and τ = n, then β = 1 and the resulting
complexity O( 1√

ε
) recovers the rate of cubic Newton

established by Nesterov & Polyak (2006).
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• Finally, if g is strongly convex, the above result can be
improved (see Theorem 3) to

O
(

n

τ max{1, β}
log

1

ε

)
.

1.4. Contents

The rest of the paper is organized as follows. In Section 2
we introduce the notation and elementary identities needed
to efficiently handle the block structure of our model. In
Section 3 we make the various smoothness and convexity
assumptions on g and φi formal. Section 4 is devoted to
the description of the block sampling process used in our
method, along with some useful identities. In Section 5
we describe formally our randomized block cubic Newton
(RBCN) method. Section 6 is devoted to the statement and
description of our main convergence results, summarized
in the introduction. Missing proofs are provided in the
supplementary material. In Section 7 we show how to apply
our method to the empirical risk minimization problem.
Applying RBCN to its dual leads to Algorithm 2. Finally,
our numerical experiments on synthetic and real datasets
are described in Section 8.

2. Block Structure
To model a block structure, we decompose the space RN
into n subspaces in the following standard way. Let
U ∈ RN×N be a column permutation of theN×N identity
matrix I and let a decomposition U = [U1,U2, . . . ,Un]
be given, where Ui ∈ RN×Ni are n submatrices, N =∑n
i=1Ni. Subsequently, any vector x ∈ RN can be

uniquely represented as x =
∑n
i=1 Uix(i), where x(i)

def
=

UT
i x ∈ RNi .

In what follows we will use the standard Euclidean inner
product: 〈x, y〉 def

=
∑
i xiyi, Euclidean norm of a vector:

‖x‖ def
=
√
〈x, x〉 and induced spectral norm of a matrix:

‖A‖ def
= max‖x‖=1 ‖Ax‖. Using block decomposition, for

two vectors x, y ∈ RN we have:

〈x, y〉 =
〈 n∑
i=1

Uix(i),

n∑
j=1

Ujy(j)

〉
=

n∑
i=1

〈x(i), y(i)〉.

For a given nonempty subset S of [n] def
= {1, . . . , n} and

for any vector x ∈ RN we denote by x[S] ∈ RN the vector
obtained from x by retaining only blocks x(i) for which
i ∈ S and zeroing all other:

x[S]
def
=
∑
i∈S

Uix(i) =
∑
i∈S

UiU
T
i x.

Furthermore, for any matrix A ∈ RN×N we write A[S] ∈
RN×N for the matrix obtained from A by retaining only

elements whose indices are both in some coordinate blocks
from S, formally:

A[S]
def
=

(∑
i∈S

UiU
T
i

)
A

(∑
i∈S

UiU
T
i

)
.

Note that these definitions imply that

〈A[S]x, y〉 = 〈Ax[S], y[S]〉, x, y ∈ RN .

Next, we define the block-diagonal operator, which, up
to permutation of coordinates, retains diagonal blocks and
nullifies the off-diagonal blocks:

blockdiag(A)
def
=

n∑
i=1

UiU
T
i AUiU

T
i =

n∑
i=1

A[{i}].

Finally, denote RN[S]
def
=
{
x[S] |x ∈ RN

}
. This is a linear

subspace of RN composed of vectors which are zero in
blocks i /∈ S.

3. Assumptions
In this section we formulate our main assumptions about
differentiable components of (2) and provide some examples
to illustrate the concepts.

We assume that g : RN → R is a differentiable function
and all φi : RNi → R, i ∈ [n] are twice differentiable.
Thus, at any point x ∈ RN we should be able to compute all
the gradients {∇g(x),∇φ1(x(1)), . . . ,∇φn(x(n))} and the
Hessians {∇2φ1(x(1)), . . . ,∇2φn(x(n))}, or at least their
actions on arbitrary vector h of appropriate dimension.

Next, we formalize our assumptions about convexity and
level of smoothness. Speaking informally, g is similar to a
quadratic, and functions φi are arbitrary twice-differentiable
and smooth.

Assumption 1 (Convexity) There is a positive semidefinite
matrix G � 0 such that for all x, h ∈ RN :

g(x+ h) ≥ g(x) + 〈∇g(x), h〉+ 1

2
〈Gh, h〉, (3)

φi(x(i) + h(i)) ≥ φi(x(i)) + 〈∇φi(x(i)), h(i)〉, i ∈ [n].

In the special case when G = 0, (3) postulates convexity.
For positive definite G, the objective will be strongly convex
with the strong convexity parameter µ def

= λmin(G) > 0.

Note that for all φi we only require convexity. How-
ever, if we happen to know that any φi is strongly convex
(λmin(∇2φi(y)) ≥ µi > 0 for all y ∈ RNi), we can move
this strong convexity to g by subtracting µi

2 ‖x(i)‖
2 from

φi and adding it to g. This extra knowledge may in some
particular cases improve convergence guarantees for our
algorithm, but does not change the actual computations.
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Assumption 2 (Smoothness of g) There is a positive
semidefinite matrix A � 0 such that for all x, h ∈ RN :

g(x+ h) ≤ g(x) + 〈∇g(x), h〉+ 1

2
〈Ah, h〉. (4)

The main example of g is a quadratic function g(x) =
1
2 〈Mx, x〉 with a symmetric positive semidefinite M ∈
RN×N for which both (3) and (4) hold with G = A = M.

Of course, any convex g with Lipschitz-continuous gradient
with a constant L ≥ 0 satisfies (3) and (4) with G = 0 and
A = LI (Nesterov, 2004).

Assumption 3 (Smoothness of φi) For every i ∈ [n]
there is a nonnegative constant Hi ≥ 0 such that the Hes-
sian of φi is Lipschitz-continuous:

‖∇2φi(x+ h)−∇2φi(x)‖ ≤ Hi‖h‖, (5)

for all x, h ∈ RNi .

Examples of functions which satisfy (5) with a known
Lipschitz constant of Hessian H are quadratic: φ(t) =
‖Ct − t0‖2 (H = 0 for all the parameters), cubed norm:
φ(t) = (1/3)‖t− t0‖3 (H = 2, see Lemma 5 in (Nesterov,
2008)), logistic regression loss: φ(t) = log(1 + exp(t))
(H = 1/(6

√
3), see Proposition 1 in the supplementary

material).

For a fixed set of indices S ⊂ [n] denote

φS(x)
def
=
∑
i∈S

φi(x(i)), x ∈ RN .

Then we have:

〈∇φS(x), h〉 =
∑
i∈S
〈∇φi(x(i)), h(i)〉, x, h ∈ RN ,

〈∇2φS(x)h, h〉 =
∑
i∈S
〈∇2φi(x(i))h(i), h(i)〉, x, h ∈ RN .

Lemma 1 If Assumption 3 holds, then for all x, h ∈ RN
we have the following second-order approximation bound:∣∣∣φS(x+ h)− φS(x)− 〈∇φS(x), h〉 −

1

2
〈∇2φS(x)h, h〉

∣∣∣
≤ max

i∈S
{Hi} · ‖h[S]‖3. (6)

From now on we denoteHF
def
= max{H1,H2, . . . ,Hn}.

4. Sampling of Blocks
In this section we summarize some basic properties of sam-
pling Ŝ, which is a random set-valued mapping with val-
ues being subsets of [n]. For a fixed block-decomposition,

with each sampling Ŝ we associate the probability matrix
P ∈ RN×N as follows: an element of P is the probability
of choosing a pair of blocks which contains indices of this
element. Denoting by E ∈ RN×N the matrix of all ones,
we have P = E

[
E[Ŝ]

]
. Wel restrict our analysis to uniform

samplings, defined next.

Assumption 4 (Uniform sampling) Sampling Ŝ is uni-
form, i.e., P(i ∈ Ŝ) = P(j ∈ Ŝ) def

= p, for all i, j ∈ [n].

The above assumpotion means that the diagonal of P is
constant: Pii = p for all i ∈ [N ]. It is easy to see that
(Corollary 3.1 in (Qu & Richtárik, 2016)):

E
[
A[Ŝ]

]
= A ◦P, (7)

where ◦ denotes the Hadamard product.

Denote τ def
= E[|Ŝ|] = np (expected minibatch size). The

special uniform sampling defined by picking from all sub-
sets of size τ uniformly at random is called τ -nice sampling.
If Ŝ is τ -nice, then (see Lemma 4.3 in (Qu & Richtárik,
2016))

P =
τ

n
((1− γ) blockdiag(E) + γE) , (8)

where γ = (τ − 1)/(n− 1).

In particular, the above results in the following:

Lemma 2 For the τ -nice sampling Ŝ, we have

E[A[Ŝ]] =
τ

n

(
1− τ − 1

n− 1

)
blockdiag(A) +

τ(τ − 1)

n(n− 1)
A.

Proof: Combine (7) and (8).

5. Algorithm
Due to the problem structure (2) and utilizing the smooth-
ness of the components (see (4) and (5)), for a fixed subset
of indices S ⊂ [n] it is natural to consider the following
model of our objective F around a point x ∈ RN :

MH,S(x; y)
def
= F (x) + 〈(∇g(x))[S], y〉+

1

2
〈A[S]y, y〉+

+ 〈(∇φ(x))[S], y〉+
1

2
〈(∇2φ(x))[S]y, y〉+

H

6
‖y[S]‖3+

+
∑
i∈S

(
ψi(x(i) + y(i))− ψi(x(i))

)
. (9)

The above model arises as a combination of a first-order
model for g with global curvature information provided by
matrix A, second-order model with cubic regularization
(following (Nesterov & Polyak, 2006)) for φ, and perfect
model for the non-differentiable terms ψi (i.e., we keep
these terms as they are).
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Combining (4) and (6), and for large enough H (H ≥
maxi∈S Hi is sufficient), we get the global upper bound

F (x+ y) ≤MH,S(x; y), x ∈ RN , y ∈ RN[S].

Moreover, the value of all summands in MH,S(x; y) de-
pends on the subset of blocks {y(i)|i ∈ S} only, and there-
fore

TH,S(x)
def
= argmin

y∈RN
[S]

subject to x+y∈Q

MH,S(x; y) (10)

can be computed efficiently for small |S| and as long as
Q is simple (for example, affine). Denote the minimum of
the cubic model by M∗H,S(x)

def
= MH,S(x;TH,S(x)). The

RBCN method performs the update x← x+ TH,S(x), and
is formalized as Algorithm 1.

Algorithm 1 RBCN: Randomized Block Cubic Newton

1: Parameters: sampling distribution Ŝ
2: Initialization: choose initial point x0 ∈ Q
3: for k = 0, 1, 2, . . . do
4: Sample Sk ∼ Ŝ
5: Find Hk ∈ (0, 2HF ] such that

F (xk + THk,Sk
(xk)) ≤M∗Hk,Sk

(xk)

6: Make the step xk+1 def
= xk + THk,Sk

(xk)
7: end for

6. Convergence Results
In this section we establish several convergence rates for
Algorithm 1 under various structural assumptions: for the
general class of convex problems, and for the more specific
strongly convex case. We will focus on the family of uni-
form samplings only, but generalizations to other sampling
distributions are also possible.

6.1. Convex Loss

We start from the general situation where the term g(x) and
all the φi(x(i)) and ψi(x(i)), i ∈ [n] are convex, but not
necessary strongly convex.

Denote by D the maximum distance from an optimum point
x∗ to the initial level set:

D
def
= sup

{
‖x− x∗‖

∣∣ x ∈ Q, F (x) ≤ F (x0)}.
Theorem 1 Let Assumptions 1, 2, 3, 4 hold. Let solution
x∗ ∈ Q of problem (1) exist, and assume the level sets are
bounded: D < +∞. Choose required accuracy ε > 0 and
confidence level ρ ∈ (0, 1). Then after

K ≥ 2

ε

n

τ

(
1+log

1

ρ

)
max

{
LD2+HFD3, F (x0)−F ∗

}
(11)

iterations of Algorithm 1, where L def
= λmax(A), we have

P
(
F (xK)− F ∗ ≤ ε

)
≥ 1− ρ.

Given theoretical result provides global sublinear rate of
convergence, with iteration complexity of the order O

(
1/ε
)
.

Note that for a case φ(x) ≡ 0 we can put HF = 0, and
Theorem 1 in this situation restates well-known result about
convergence of composite gradient-type block-coordinate
methods (see, for example, (Richtárik & Takáč, 2014)).

6.2. Strongly Convex Loss

Here we study the case when the matrix G from the con-
vexity assumption (3) is strictly positive definite: G � 0,
which means that the objective F is strongly convex with a
constant µ def

= λmin(G) > 0.

Denote by β a condition number for the function g and
sampling distribution Ŝ: the maximum nonnegative real
number such that

β · ES∼Ŝ
[
A[S]

]
� τ

n
G. (12)

If (12) holds for all nonnegative β we put by definition
β ≡ +∞.

A simple lower bound exists: β ≥ µ
L > 0, where L =

λmax(A), as in Theorem 1. However, because (12) depends
not only on g, but also on sampling distribution Ŝ, it is
possible that β > 0 even if µ = 0 (for example, β = 1 if
P(S = [n]) = 1 and A = G 6= 0).

The following theorems describe global iteration complex-
ity guarantees of the order O

(
1/
√
ε
)

and O
(
log(1/ε)

)
for

Algorithm 1 in the cases β > 0 and µ > 0 correspondingly,
which is an improvement of general O

(
1/ε
)
.

Theorem 2 Let Assumptions 1, 2, 3, 4 hold. Let solution
x∗ ∈ Q of problem (1) exist, let level sets be bounded:
D < +∞, and assume that β, which is defined by (12), is
greater than zero. Choose required accuracy ε > 0 and
confidence level ρ ∈ (0, 1). Then after

K ≥ 2√
ε

n

τ

1

σ

(
2 + log

1

ρ

)√
max

{
HFD3, F (x0)− F ∗

}
(13)

iterations of Algorithm 1, where σ def
= min{β, 1} > 0, we

have
P
(
F (xK)− F ∗ ≤ ε

)
≥ 1− ρ.

Theorem 3 Let Assumptions 1, 2, 3, 4 hold. Let solution
x∗ ∈ Q of problem (1) exist, and assume that µ def

= λmin(G)
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is strictly positive. Then after

K ≥ 3

2
log

(
F (x0)− F ∗

ερ

)
n

τ

1

σ

√
max

{
HFD
µ

, 1

}
(14)

iterations of Algorithm 1, we have

P
(
F (xK)− F ∗ ≤ ε

)
≥ 1− ρ.

Given complexity estimates show which parameters of the
problem directly affect on the convergence of the algorithm.

Bound (13) improves initial estimate (11) by the fac-
tor

√
D0/ε. The cost is additional term σ−1 =

(min{β, 1})−1, which grows up while the condition num-
ber β becomes smaller.

Opposite and limit case is when the quadratic part of the
objective is vanished (g(x) ≡ 0⇒ σ = 1). Algorithm 1 is
turned to be a parallelized block-independent minimization
of the objective components via cubically regularized New-
ton steps. Then, the complexity estimate coincides with a
known result (Nesterov & Polyak, 2006) in a nonrandom-
ized (τ = n, ρ→ 1) setting.

Bound (14) guarantees a linear rate of convergence, which
means logarithmic dependence on required accuracy ε for
the number of iterations. The main complexity factor be-
comes a product of two terms: σ−1 ·max{HFD/µ, 1}1/2.
For the case φ(x) ≡ 0 we can put HF = 0 and get the
stochastic Newton method from (Qu et al., 2016) with its
global linear convergence guarantee.

Despite the fact that linear rate is asymptotically bet-
ter than sublinear, and O

(
1/
√
ε
)

is asymptotically better
than O

(
1/ε
)
, we need to take into account all the fac-

tors, which may slow down the algorithm. Thus, while
µ = λmin(G) → 0, estimate (13) is becoming better
than (14), as well as (11) is becoming better than (13) while
β → 0.

6.3. Implementation Issues

Let us explain how one step of the method can be performed,
which requires the minimization of the cubic model (10),
possibly with some simple convex constraints.

The first and the classical approach was proposed in (Nes-
terov & Polyak, 2006) and, before for trust-region meth-
ods, in (Conn et al., 2000). It works with unconstrained
(Q ≡ RN ) and differentiable case (ψ(x) ≡ 0). Firstly we
need to find a root of a special one-dimensional nonlinear
equation (this can be done, for example, by simple Newton
iterations). After that, we just solve one linear system to
produce a step of the method. Then, total complexity of
solving the subproblem can be estimated as O(d3) arith-
metical operations, where d is the dimension of subproblem,

in our case: d = |S|. Since some matrix factorization is
used, the cost of the cubically regularized Newton step is
actually similar by efficiency to the classical Newton one.
See also (Gould et al., 2010) for detailed analysis. For the
case of affine constraints, the same procedure can be applied.
Example of using this technique is given by Lemma 3 from
the next section.

Another approach is based on finding an inexact solution
of the subproblem by the fast approximate eigenvalue com-
putation (Agarwal et al., 2016) or by applying gradient
descent (Carmon & Duchi, 2016). Both of these schemes
provide global convergence guarantees. Additionally, they
are Hessian-free. Thus we need only a procedure of mul-
tiplying quadratic part of (9) to arbitrary vector, without
storing the full matrix. The latter approach is the most uni-
versal one and can be spread to the composite case, by using
proximal gradient method or its accelerated variant (Nes-
terov, 2013).

There are basically two strategies to find parameter Hk on
every iteration: a constant choice Hk := maxi∈Sk

{Hi}
or Hk := HF , if Lipschitz constants of the Hessians are
known, or simple adaptive procedure, which performs a
truncated binary search and has a logarithmic cost per one
step of the method. Example of such procedure can be found
in primal-dual Algorithm 2 from the next section.

6.4. Extension of the Problem Class

The randomized cubic model (9), which has been consid-
ered and analyzed before, arises naturally from the separable
structure (2) and by our smoothness assumptions (4), (5).
Let us discuss an interpretation of Algorithm 1 in terms
of general problem min

x∈RN
F (x) with twice-differentiable

F (omitting non-differentiable component for simplicity).
One can state and minimize the model mH,S(x; y) ≡
F (x)+〈(∇F (x))[S], y〉+ 1

2 〈(∇
2F (x))[S]y, y〉+ H

6 ‖y[S]‖
3

which is a sketched version of the originally proposed Cubic
Newton method (Nesterov & Polyak, 2006). For alterna-
tive sketched variants of Newton-type methods but without
cubic regularization see (Pilanci & Wainwright, 2015).

The latter model mH,S(x; y) is the same as MH,S(x; y)
when inequality (4) from the smoothness assumption for
g is exact equality, i.e. when the function g is a quadratic
with the Hessian matrix ∇2g(x) ≡ A. Thus, we may use
mH,S(x; y) instead of MH,S(x; y), which is still compu-
tationally cheap for small |S|. However, this model does
not give any convergence guarantees for the general F , to
the best of our knowledge, unless S = [n]. But it can be a
workable approach, when the separable structure (2) is not
provided.

Note also, that Assumption 3 about Lipschitz-continuity of
the Hessian is not too restrictive. Recent result (Grapiglia
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& Nesterov, 2017) shows that Newton-type methods with
cubic regularization and with a standard procedure of adap-
tive estimation of HF automatically fit the actual level of
smoothness of the Hessian without any additional changes
in the algorithm.

Moreover, step (10) of the method as the global minimum of
MH,S(x; y) is well-defined and computationally tractable
even in nonconvex cases (Nesterov & Polyak, 2006). Thus
we can try to apply the method to nonconvex objective as
well, but without known theoretical guarantees for S 6= [n].

7. Empirical Risk Minimization
One of the most popular examples of optimization problems
in machine learning is empirical risk minimization problem,
which in many cases can be formulated as follows:

min
w∈Rd

[
P (w) ≡ 1

m

m∑
i=1

φi(b
T
i w) + λg(w)

]
, (15)

where φi are convex loss functions, g is a regularizer, vari-
ables w are weights of a model and m is a size of a dataset.

7.1. Constrained Problem Reformulation

Let us consider the case, when the dimension d of prob-
lem (15) is very huge and d � m. This asks us to use
some coordinate-randomization technique. Note that formu-
lation (15) does not directly fit our problem setup (2), but
we can easily transform it to the following constrained opti-
mization problem, by introducing new variables αi ≡ bTi w:

min
w∈Rd

α∈Rm

[
1

m

m∑
i=1

φi(αi)+λg(w)+

m∑
i=1

I{αi = bTi w}
]
. (16)

Following our framework, on every step we will sample a
random subset of coordinates S ⊂ [d] of weights w, build
the cubic model of the objective (assuming that φi and g
satisfy (4), (5)):

MH,S(w,α; y, h) ≡ λ
(〈

(∇g(w))[S], y
〉
+

1

2

〈
A[S]y, y

〉)
+

+
1

m

( m∑
i=1

(
φ′i(αi)hi +

1

2
φ′′i (αi)h

2
i

)
+
H

6
‖h‖3

)
+ P (w)

and minimize it by y and h on the affine set:

(y∗, h∗) := argmin
y∈Rd

[S],h∈R
m

subject to h=By

MH,S(w,α; y, h), (17)

where rows of matrix B ∈ Rm×d are bTi . Then, updates of
the variables are: w+ := w + y∗ and α+ := α+ h∗.

The following lemma is addressing the issue of how to
solve (17), which is required on every step of the method.
Its proof can be found in the supplementary material.

Lemma 3 Denote by B̂ ∈ Rm×|S| the submatrix of B with
row indices from S, by Â ∈ R|S|×|S| the submatrix of
A with elements whose both indices are from S, by b1 ∈
R|S| the subvector of ∇g(w) with element indices from S.
Denote vector b2 ≡

(
φ′i(αi)

)m
i=1

and b ≡ mλb1 + B̂T b2.
Define the family of matrices Z(τ) : R+ → R|S|×|S|:

Z(τ)
def
= mλÂ+ B̂T

(
diag(φ′′i (αi)) +

Hτ

2
I
)
B̂.

Then the solution (y∗, h∗) of (17) can be found from
the equations: Z(τ∗)y∗S = −b, h∗ = B̂y∗S , where
τ∗ ≥ 0 satisfies one-dimensional nonlinear equation:
τ∗ = ‖B̂(Z(τ∗))†b‖ and y∗S ∈ R|S| is the subvector of
the solution y∗ with element indices from S.

Thus, after we find the root of nonlinear one-dimensional
equation, we need to solve |S|×|S| linear system to compute
y∗. Then, to find h∗ we do one matrix-vector multiplication
with the matrix of size m × |S| . Matrix B usually has a
sparse structure when m is big, which also should be used
in effective implementation.

7.2. Maximization of the Dual Problem

Another approach to solving optimization problem (15) is
to maximize its Fenchel dual (Rockafellar, 1997):

max
α∈Rm

[
D(α) ≡ 1

m

m∑
i=1

−φ∗i (−αi)− λg∗
( 1

λm
BTα

)]
,

(18)
where g∗ and {φ∗i } are the Fenchel conjugate functions of

g and {φi} respectively, f∗(s) def
= supx[ 〈s, x〉 − f(x) ] for

arbitrary f . It is know (Bertsekas, 1978), that if φi is twice-
differentiable in a neighborhood of y and ∇2φi(y) � 0
in this area, then its Fenchel conjugate φ∗i is also twice-
differentiable in some neighborhood of s = ∇φi(y) and it
holds: ∇2φ∗i (s) = (∇2φi(y))

−1.

Then, in a case of smooth differentiable g∗ and twice-
differentiable φ∗i , i ∈ [m] we can apply our framework
to (18), by doing cubic steps in random subsets of the dual
variables α ∈ Rm. The primal w ∈ Rd corresponded to
particular α can be computed from the stationary equation

w = ∇g∗
(

1

λm
BTα

)
,

which holds for solutions of primal (15) and dual (18) prob-
lems in a case of strong duality.

Let us assume that the function g is 1-strongly convex
(which is of course true for `2-regularizer 1/2‖w‖22). Then
for G(α) ≡ λg∗

(
1
λmBTα

)
the uniform bound for the Hes-

sian exists: ∇2G(α) � 1
λm2B

TB. As before we build the
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randomized cubic model and compute its minimizer (setting
Q ≡

⋂m
i=1 domφ∗i ):

MH,S(α, h) ≡ −D(α) + λ

〈
∇g∗

(
1

λm
BTα

)
, h[S]

〉
+

+
1

2λm2

∥∥Bh[S]‖2 + 1

m

∑
i∈S

[
−
〈
∇φ∗i (−αi), hi

〉
+

+
1

2

〈
∇2φ∗i (−αi)hi, hi

〉]
+
H

6
‖h[S]‖3; S ⊂ [m],

TH,S(α) ≡ argmin
h∈Rm

[S]

subject to α+h∈Q

MH,S(α, h),

M∗H,S(α) ≡MH,S(α, TH,S(α)).

Because in general we may not know exact Lipschitz-
constant for the Hessians, we do an adaptive search for
estimating H . Resulting primal-dual scheme is presented in
Algorithm 2. When a small subset of coordinates S is used,
the most expensive operations become: computation of the
objective at a current pointD(α) and the matrix-vector prod-
uct BTα. Both of them can be significantly optimized by
storing already computed values in memory and updating
only changed information on every step.

Algorithm 2 Stochastic Dual Cubic Newton Ascent (SD-
CNA)

1: Parameters: sampling distribution Ŝ
2: Initialization: choose initial α0 ∈ Q and H0 > 0
3: for k = 0, 1, 2, . . . do
4: Make a primal update wk := ∇g∗

(
1
λmBTαk

)
5: Sample Sk ∼ Ŝ
6: While M∗Hk,Sk

(αk) > −D(αk + THk,Sk
(αk)) do

7: Hk := 1/2 ·Hk

8: Make a dual update αk+1 := αk + THk,Sk
(xk)

9: Set Hk+1 := 2 ·Hk

10: end for

8. Numerical Experiments
Synthetic We consider the following synthetic regression

task: min
x∈RN

1

2
‖Ax− b‖22 +

N∑
i=1

ci
6
|xi|3 with randomly gen-

erated parameters and for different N . On each problem
of this type we run Algorithm 1 and evaluate total com-
putational time until reaching 10−12 accuracy in function
residual. Using middle-size blocks of coordinates on each
step is the best choice in terms of total computational time,
comparing it with small coordinate subsets and with full-
coordinate method. This agrees with the provided complex-
ity estimates for the method: an increase of the batch size

speeds up convergence rate linearly, but slows down the cost
of one iteration cubically. Therefore, the optimum size of
the block is on a medium level.
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Figure 1. Time it takes to solve a problem for different sampling
block sizes. Left: synthetic problem. Center and right: logistic
regression for real data.

Logistic regression In this experiment we train `2-
regularized logistic regression model for classification task
with two classes by its constrained reformulation (16) and
compare Algorithm 1 with the Block coordinate Gradient
Descent on the datasets: leukemia (m = 38, d = 7129) and
duke breast-cancer (m = 44, d = 7129). We see that using
coordinate blocks of size 25 − 50 for the Cubic Newton
outperforms all other cases of both methods in terms of total
computational time. Increasing block size further starts to
significantly slow down the method because of high cost of
every iteration.

Poisson regression In this experiment we train Poisson
model for regression task with integer responses by the
primal-dual Algorithm 2 and compare it with SDCA (Shalev-
Shwartz & Zhang, 2013) and SDNA (Qu et al., 2016) meth-
ods on synthetic (m = 1000, d = 200) and real data
(m = 319, d = 20). Our approach requires smaller num-
ber of epochs to reach given accuracy, but computational
efficiency of every step is the same as in SDNA method.
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Figure 2. Comparison of Algorithm 2 (marked as Cubic) with
SDNA and SDCA methods for minibatch sizes τ = 8, 32, 256,
training Poisson regression. Left: synthetic. Right: real data.
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Mutnỳ, M. and Richtárik, P. Parallel stochastic newton
method. Journal of Computational Mathematics, 36(3),
2018.

Nesterov, Y. Introductory lectures on convex optimization.,
2004.

Nesterov, Y. Modified gauss–newton scheme with worst
case guarantees for global performance. Optimisation
Methods and Software, 22(3):469–483, 2007.

Nesterov, Y. Accelerating the cubic regularization of New-
ton’s method on convex problems. Mathematical Pro-
gramming, 112(1):159–181, 2008.

Nesterov, Y. Gradient methods for minimizing composite
functions. Mathematical Programming, 140(1):125–161,
2013.

Nesterov, Y. and Polyak, B. T. Cubic regularization of New-
ton’s method and its global performance. Mathematical
Programming, 108(1):177–205, 2006.

Pilanci, M. and Wainwright, M. J. Randomized sketches of
convex programs with sharp guarantees. IEEE Transac-
tions on Information Theory, 61(9):5096–5115, 2015.
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