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A Missed proofs

A.1 Missed proofs from Section 4

A.1.1 Proof of Proposition 1

Proof. For each node m ∈ T(A), let S(m) be the surplus obtained by the buyer when playing
an optimal strategy against A after reaching the node m. Since the price pn is rejected then the
following inequality holds (see [5, Lemma 1])

γt
n−1(v − pn) + S(r(n)) < S(lr(n)). (A.1)

The left subtree’s surplus S(lr(n)) can be upper bounded as follows (using pn ≤ pm∀m ∈ L(lr−1(n))):

S(lr(n)) ≤
T∑

t=tn+r

γt−1(v − pn) < γt
n+r−1

1− γ
(v − pn);
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while, in contrast to the proof of [2, Prop.2], we lower bound the right subtree’s surplus S(r(n)) by
γt

n
(v − pr(n))1, because, after accepting pn at the round tn, the buyer is able to earn at least this

amount at the round tn + 1. We plug these bounds in Eq. (A.1), divide by γt
n−1, and obtain

(v − pr(n) + pr(n) − pn) + γ(v − pr(n)) < γr

1− γ
(v − pr(n) + pr(n) − pn)⇔

⇔ (v − pr(n))
(

1 + γ − γr

1− γ

)
<

(
γr

1− γ
− 1

)
(pr(n) − pn),

that implies Eq. (2), since r > logγ(1− γ2) implies 1− γ2 − γr > 0.

A.1.2 Proof of Proposition 2

Proof. As in the proof of Prop. 1, let S(m) be the surplus obtained by the buyer when playing an
optimal strategy against A after reaching the node m, for each node m ∈ T(A). The condition
v < p ∀p ∈ ℘(R(n)) implies that S(r(n)) = 0 and the strategic buyer will thus gain exactly
γt

n−1(v− pn) if he accepts the price pn at the round tn. Let us show that there exists a strategy in
L(n) with a larger surplus. Indeed, if the buyer rejects r times the price pn and accepts this price
G times after that, then he gets the following surplus:

tn+r+G−1∑
s=tn+r

γs−1(v − pn) =
γt

n+r−1 − γtn+r−1+G

1− γ
(v − pn) = γt

n−1γr
1− γG

1− γ
(v − pn) > γt

n−1(v − pn),

where the last inequality holds due to the condition on G and

γr(1− γG)/(1− γ) > 1⇔ (1− γG) > (1− γ)γ−r ⇔ γG < 1− (1− γ)γ−r.

A.1.3 Proof of Lemma 2

Proof. In order to get the claims of this lemma, one just needs to straightforwardly verify few
inequalities.

The case γ ∈ ((
√

5− 1)/2, 1).
For Prop. 1, we have:

r = drγ,κe ≥ rγ,κ = logγ

(
(1− γ)

(
1 +

κ
1 + κ

γ
))

> logγ ((1− γ)(1 + γ)) = logγ(1− γ2)

since κ/(1 + κ) < 1 ∀κ > 0; and

ηr,γ =
γr + γ − 1

1− γ2 − γr
≤

(1− γ)
(

1 + κ
1+κγ

)
+ γ − 1

1− γ2 − (1− γ)
(

1 + κ
1+κγ

) =
1 + κ

1+κγ − 1

1 + γ − 1− κ
1+κγ

= κ.

For Prop. 2, we have:

r = drγ,κe < rγ,κ + 1 = logγ(1− γ) + logγ

((
1 +

κ
1 + κ

γ
)
γ

)
< logγ(1− γ)

1This term may be negative (when v < pr(n)), but the lower bound on optimal surplus S(r(n)) holds a fortiori in
this case.
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since
(

1 + κ
1+κγ

)
γ > 1 due to κ > (1− γ)/(γ2 + γ − 1); and, finally,

G ≥ Gγ,κ = logγ

(
1−

(
1 +

κ
1 + κ

γ
)−1

γ−1
)
> logγ

(
1− (1− γ)γ−r

)
,

where we used
(

1 + κ
1+κγ

)
γ < γr/(1− γ) since r < rγ,κ + 1.

The case γ ∈ (1/2, (
√

5− 1)/2)
For Prop. 1, we have:

r = drγ,κe = 1 > logγ(1− γ2)

since 1− γ2 − γ > 0 for this case of γ; and

ηr,γ =
γr + γ − 1

1− γ2 − γr
=

γ + γ − 1

1− γ2 − γ
=

2γ − 1

1− γ2 − γ
≤ κ.

For Prop. 2, we have:
r = drγ,κe = 1 < logγ(1− γ)

since γ > 1/2; and, finally,

G ≥ Gγ,κ = logγ(2γ − 1) > logγ(2γ − 1)− 1 = logγ

(
1− 1− γ

γ

)
= logγ

(
1− (1− γ)γ−r

)
.

A.1.4 Proof of Theorem 1

First of all, let us remind the following notion. A buyer strategy a is said to be locally non-losing
w.r.t. v and A if prices higher than v are never accepted2 (i.e., at = 1 implies pt ≤ v).

We also introduce some notations: for l∈N,

εl := ε2l−1 = 2−2
l
, Nl := εl−1/εl = ε−1l−1 = 22

l−1
. (A.2)

Proof. Note that the conditions of this theorem allow us to apply Lemma 2, Prop. 1, and Prop. 2.
So, let L be the number of phases conducted by the algorithm during T rounds, then we decompose
the total regret over T rounds into the sum of the phases’ regrets: SReg(T,A, v,γ) =

∑L
l=0Rl. For

the regret Rl at each phase except the last one, the following identity holds:

Rl =

Kl−1∑
k=0

(v − pl,k) + rv + g(l)(v − pl,Kl
), l = 0, . . . , L− 1, (A.3)

where the first, second, and third terms correspond to the exploration rounds with acceptance, the
reject-penalization rounds, and the exploitation rounds, respectively. First, note that here, in the
exploitation rounds, we directly use Proposition 2 (via Lemma 2 since g(l) ≥ Gγ,κ) to conclude that
pl,Kl

< v and the price pl,Kl
is thus accepted by the strategic buyer at the exploitation rounds (since

the buyer’s decisions at these rounds do not affect further pricing of the algorithm prePRRFES
and pl,Kl

< v).
Second, since the price pl,Kl

is rejected, we have v − pl,Kl+1 < κ(pl,Kl+1 − pl,Kl
) = κεl (by

Proposition 1 via Lemma 2 since ηr,γ ≤ κ for r ≥ drγ,κe and any t ∈ N). Hence, the valuation

2Note that the optimal strategy of a strategic buyer may not satisfy this property: it is easy to imagine an
algorithm that offers the price 1 at the first round and, if it is accepted, offers the price 0 all remaining rounds.
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v ∈
(
pl,Kl

, pl,Kl
+ (1 + κ)εl

)
and all accepted prices pl+1,k, ∀k ≤ Kl+1, from the next phase l + 1

satisfy:
pl+1,k ∈ (ql+1, v) ⊆

(
pl,Kl

, pl,Kl
+ (1 + κ)εl

)
∀k ≤ Kl+1,

because any accepted price has to be lower than the valuation v for the strategic buyer (whose
optimal strategy is locally non-losing one for A ∈ CR, see the discussion after [2, Lemma 1]). This
infers Kl+1 < (1+κ)Nl+1 ≤

⌈
(1+κ)Nl+1

⌉
=: Nl+1,κ since Nl+1 = εl/εl+1 by Eq. (A.2). Therefore,

for the phases l = 1, . . . , L, we have:

v − pl,Kl
< (1 + κ)εl; v − pl,k < εl

(
(1 + κ)Nl − k

)
∀k ∈ ZNl,κ ;

and

Kl−1∑
k=0

(v − pl,k) < εl

Nl,κ−2∑
k=0

(
(1 + κ)Nl − k

)
= εl

Nl,κ − 1

2

(
2(1 + κ)Nl −Nl,κ + 2

)
≤

≤ εl
(1 + κ)Nl

2

(
(1 + κ)Nl + 2

)
=

(1 + κ)2

2
Nl ·Nlεl + (1 + κ)Nlεl =

(1 + κ)2

2
+ (1 + κ)εl−1,

where we used the definitions of Nl and εl (i.e., Nlεl = εl−1 and Nl = ε−1l ), given in Eq. (A.2). For

the zeroth phase l = 0, one has trivial bound
∑K0−1

k=0 (v − p0,k) ≤ 1. Hence, by definition of the
exploitation rate g(l), we have

g(l) · εl = max{ε−1l · εl, dGγ,κe · εl} ≤ max{1, dGγ,κe/2},

and, thus,

Rl ≤
(1 + κ)(2 + κ)

2
+rv+g(l)·(1+κ)εl ≤ rv+

(1 + κ)

2
(2+max{2, dGγ,κe}+κ), l = 0, . . . , L−1.

(A.4)
The L-th phase differs from the other ones only in possible absence of some rounds: (reject-

penalization or exploitation ones). In this phase, we consider two cases on the actual number of
exploitation rounds gL(L): (a) gL(L) ≥ dGγ,κe and (b) gL(L) < dGγ,κe. In the case (a), we again
apply Proposition 2 (via Lemma 2 since gL(L) ≥ dGγ,κe) to get that pL,KL

< v and the price pL,KL

is thus accepted by the strategic buyer at the exploitation rounds. In this case, we have thus:

RL =

KL−1∑
k=0

(v − pL,k) + rv + gL(L)(v − pL,KL
). (A.5)

The right-hand side of Eq. (A.5) is upper-bounded by the right-hand side of Eq. (A.3) with l = L,
which is in turn upper-bounded by the right-hand side of Eq. (A.4). In the case (b), we have
no guarantee that pL,KL

< v and, hence, pL,KL
may be rejected by the strategic buyer at the

exploitation rounds. Hence, we have to estimate the regret in the last phase in the following way:

RL =

KL−1∑
k=0

(v − pL,k) + rLv + gL(L)v ≤ (1 + κ)(2 + κ)

2
+ (r + dGγ,κe − 1)v, (A.6)

where rL the actual number of reject-penalization rounds, rL ≤ r.
Finally, using (dGγ,κe − 1)v −max{1, dGγ,κe/2} ≤ dGγ,κe/2− 1, one has

SReg(T,A, v,γ) =

L∑
l=0

Rl ≤
(
rv +

(1 + κ)

2
(2 + max{2, dGγ,κe}+ κ)

)
(L+ 1) +

dGγ,κe
2

− 1.
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Thus, one needs only to estimate the number of phases L by the number of rounds T . So, for
2 ≤ T ≤ 2+r+g(0), we have L = 0 or 1 and thus L+1 ≤ 2 ≤ log2 log2 T+2. For T ≥ 2+r+g(0), we

have T =
∑L−1

l=0 (Kl+r+g(l))+KL+rL+gL(L) ≥ g(L−1) with L > 0. Hence, 22
L−1 ≤ g(L−1) ≤ T ,

which implies L ≤ log2 log2 T + 1. Summarizing, we get Eq. (4).

A.2 Missed proofs from Section 5

A.2.1 Proof of Corollary 1

Before the proof, we remind the definition of a regular weakly consistent algorithm and of a dense
algorithm.

Definition A.1 ([2]). A weakly consistent algorithm A is said to be regular (A in the class RWC)
if, for any node n ∈ T(A):

• when pl(n) = pn = pr(n), [pm = pn ∀m ∈ R(l(n)) ∪ L(r(n))] or [L(n) ∼= R(n)];

• when pl(n) = pn 6= pr(n), [pm = pn ∀m ∈ R(l(n))] or [R(l(n)) ∼= R(n)];

• when pl(n) 6= pn = pr(n), [pm = pn ∀m ∈ L(r(n))] or [L(r(n)) ∼= L(n)].

An algorithm A is said to be dense if the set of its prices ℘(A) is dense in [0, 1] (i.e., ℘(A) =
[0, 1]).

Proof. If the algorithm A is not dense, then the theorem holds since any non-dense horizon-
independent regular weakly consistent algorithm has linear strategic regret (see [2, Cor.1]). First,
let us consider the case when the first offered price p1 := pe(T(A)) ∈ (0, 1) and show existence of a
path ã in the tree T(A) that satisfies Eq. (7) from Definition 6.

Indeed, since A is dense there exists a node n ∈ T(A) s.t. pn ∈ (0, p1); let us take the one with
the smallest depth tn, denote p′ := pn; t′ := tn, and consider the path â1:t′−1 from the root to this
node n. For the corresponding price sequence {p̂t}t

′
t=1, the following holds:

• p̂t ≤ p1 ∀t ≤ t′ due to the weak consistency of the algorithm A;

• p̂t ∈ {0, p1} ∀t < t′ due to the choice of the node n with minimal tn.

Since the algorithm A is regular weakly consistent, for any path a from the root s.t. its price
sequence {pt}∞t=1 contains a price lower than p1, the price sequence {pt}∞t=1 must be similar to
{p̂t}t

′
t=1 at the beginning. Namely, there exists a node m ∈ T(A) s.t. the path a passes through this

node m, pm = ptm = p′, and pt ∈ {0, p1} ∀t < tm. Moreover, T(m) ∼= T(n) since A ∈ RWC as well.
Hence, if ℘(T(n)) ∩ (0, p′) = ∅, then ℘(T(A)) ∩ (0, p′) = ∅, that contradicts to the density of the
algorithm A. Therefore, there exists a node n̂ ∈ T(n) s.t. pn̂ ∈ (0, p′). Continuing the path â1:t′−1
to this node n̂, one gets the desired path ã in the tree T(A) that satisfies Eq. (7) from Definition 6.
Hence, Theorem 2 implies a linear strategic regret for the algorithm A in the case p1 ∈ (0, 1).

Let us consider the case of p1 = 0 or 1. Since A is dense, then, there exists a node n ∈ T(A)
such that pn ∈ (0, 1); we denote by ñ the one among them with the smallest depth tn. So, the
problem of strategic regret estimation reduces to the previously considered case of 0 < p1 < 1 and
resolves by replacing p1 with pñ in our reasoning. The only one thing left to be proven is that the
optimal buyer strategy will either pass trough the pricing of T(ñ), or will have a linear regret.

Let n1 → . . . → nt̃ be the path from the root n1 = e(T(A)) to the node nt̃ = ñ. If, for some
t = 1, . . . , t̃ − 1, we have pnt = pnt+1 , then pr(nt) = pl(nt), since, otherwise, by the regularity of A
(see Definition A.1), we would have:
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• either R(nt) = R(nt+1) for pnt = 0 (L(nt) = L(nt+1) for pnt = 1), that contradicts to the
definition of ñ with the smallest depth;

• or pm = pnt ∀m ∈ T(nt+1), that contradicts to the existence of ñ with pñ ∈ (0, 1).

Hence, in this case of pnt = pnt+1 , by regularity of A, we have that:

• either the buyer decision at the node nt does not affect the further pricing: R(nt) = L(nt),
i.e., the optimal buyer strategy may not pass exactly through the edge nt → nt+1, but, if the
buyer select the other edge from the node nt, he will face the subtree which is price equivalent
to the subtree T(nt+1);

• or nt+1 = r(nt) for pnt = 0 (nt+1 = l(nt) for pnt = 1) and pm = pnt ∀m ∈ L(nt) ( ∀m ∈ R(nt),
resp.); thus, if the optimal strategy passes through the alternative node l(nt) (r(nt), resp.),
then the seller will get a linear regret.

If pnt+1 6= pnt = 0, t = 1, .., t̃− 1, then, again by the regularity of A, any sub-strategy in the left
subtree L(nt) (a path starting from l(nt), i.e., from the alternative to the choice of the right child
nt+1 decision) has one of the following forms:

• (a) there is no any acceptance;

• there is an acceptance and after the first acceptance the buyer either

– (b) will receive pricing of the tree R(nt); or

– (c) will always receive the price 0.

If the buyer uses a strategy from the cases (a) and (c), then the seller will get a linear regret. The
case (b) means that the algorithm A will behave similarly whenever the buyer accepts the price 0: at
the round tnt or after several rejections. Hence, the strategic buyer will accept 0 at the round tnt (i.e.,
the buyer follows the edge nt → nt+1). The examination of the case pnt+1 6= pnt = 1, t = 1, .., t̃− 1
is similar.

B Details on prePRRFES

We present the pseudo-code for the learning algorithm prePRRFES in Algorithm B.1.
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Algorithm B.1 Pseudo-code of the prePRRFES

1: Input: r ∈ N and g : Z+ → Z+

2: Initialize: q := 0, p := 1/2, l := 0
3: while the buyer plays do
4: Offer the price q to the buyer
5: if the buyer accepts the price then
6: q := p
7: else
8: Offer the price q to the buyer for r − 1 rounds
9: if the buyer accepts one of the prices then

10: go to line 6
11: end if
12: Offer the price q to the buyer for g(l) rounds
13: l := l + 1
14: end if
15: if p < 1 then

16: p := q + 2−2l

17: end if
18: end while

C Algorithm announcement and an example from practice

Announcement of an algorithm to the buyer in advance is also known as commitment for a pricing.
Note that the studies [6, 1, 3] showed that the seller earns noticeably less revenue in settings
without commitment than with it. In particular, when the seller is faced with one buyer and does
not commit for a pricing algorithm, the buyer in perfect Bayesian equilibrium3 rejects goods all
rounds except a low number of last ones. These studies constitute economic arguments for the seller
to commit for a pricing algorithm and to do the best to assure the buyer that the commitment will
not be violated in practice.

The most popular global ad exchanges face with instances of our game, that can be described
by the following example: an Internet user searches for an apartment for rent; an advertiser (with
an ad about apartments) targets this user. An ad exchange (seller) tracks this user each time she
visits web sites related to the rent intent. Each view of a web page with a vacant ad slot by this user
is a round (t = 1, 2, ..) in a sequence of posted price auctions between the seller and the advertiser
(buyer). The advertiser holds fixed valuation v for a view of this user of his ad about apartments
until the user holds the rent intent. The discount rate γ is the probability that the user will still
search for an apartment for rent at the next round.

In practice of ad exchanges, many thousands of instances of our game are performed each day. In
this case, the buyer believes that the seller will follow the committed algorithm, since the seller does
it all previous instances; on the other hand, the seller is incentivized to follow his commitment, since
its violation will incur significant losses due to loss of trust from advertisers. So, the seller needs to
assure the buyer that the commitment will hold, what is very difficult task: buyers may doubt that
the announced algorithm is used by the seller [1] and, e.g., may try to test the commitment [4].

A right-consistent (RC) but non-WC algorithm, such as PRRFES, revises earlier rejected prices
and may offer higher ones after, what can raise doubts in the buyer on commitment. In this study,
we try to find an algorithm that is less confusing for the buyer. We believe that the full consistency
(both right, and left) is less confusing, because this property is easier to check by the buyer (he is

3Perfect Bayesian equilibrium is the main equilibrium concept that is used to study repeated games with incomplete
information.
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able to check, when he plays thousands of instances of our game within a day, as in our example
above). Therefore, we seek for a WC algorithm. However, we found an optimal algorithm with an
even less confusing property than WC: it never decreases offered prices (the algorithm prePRRFES).

D Examples of algorithms

D.1 Example: consistency VS weak consistency

Figure D.1: Examples of algorithms (represented as binary trees for 3 rounds): (a) a consistent
algorithm; (b) a weakly consistent algorithm, which is not consistent one (because 0.8 can be offered
after rejection of 0.5 at the first round).

D.2 Example: source algorithm VS its pre-transformation

Figure D.2: Example of (a) a pricing algorithm A and (b) its pre-transformation pre(0,A) (both
algorithms are represented as binary trees).
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