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A. Proofs of Section 3
Proof of Theorem 3.1. We first expand the loss function directly.
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Plugging in the formulas of A(w) and B (w,w⇤
) and w =

v
kvk2

, we obtain the desired result.

Proof of Theorem 3.2. We first compute the expect gradient for v. From(Salimans & Kingma, 2016), we know
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Recall the gradient formula,
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Now we calculate expectation of Equation (7) and (8) separately. For (7), by first two formulas of Lemma A.1, we have
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In summary, aggregating them together we have
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As a sanity check, this formula matches Equation (16) of (Brutzkus & Globerson, 2017) when a = a

⇤
= 1.

Next, we calculate the expected gradient of a. Recall the gradient formula of a
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derived in the proof of Theorem 3.1 we obtained the desired result.
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Lemma A.1 (Useful Identities). Given w, w⇤ with angle � and Z is a Gaussian random vector, then
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For the fourth identity, focusing on the plane spanned by w and w⇤, using the polar decomposition, we have
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B. Proofs of Qualitative Convergence Results
Proof of Lemma 5.1. When Algorithm 1 converges, since a
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C. Proofs of Quantitative Convergence Results
C.1. Useful Technical Lemmas

We first prove the lemma about the convergence of �t.

Proof of Lemma 5.5. We consider the dynamics of sin2 �t.
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have an upper bound
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C.2. Convergence of Phase I

In this section we prove the convergence of Phase I.
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We finish our joint induction proof.

C.3. Analysis of Phase II

In this section we prove the convergence of phase II and necessary auxiliary lemmas.
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�

a

T1
�>

a

⇤ kw⇤k = ⌦

⇣

kw⇤k2
2

ka⇤k2
2

⌘

and g(�T1
)� 1 =

⌦ (1). Therefore, Lemma C.1 implies for all t = T
1

, T
1

+1, . . ., (at)> a

⇤ kw⇤k = ⌦

⇣

kw⇤k2
2

ka⇤k2
2

⌘

. Combining with the

fact that kvk
2

 2 (c.f. Lemma C.3), we obtain a lower bound �t � ⌦

⇣

kw⇤k2
2

ka⇤k2
2

⌘

We also know that cos�T1
= ⌦ (1)



Gradient Descent Learns One-hidden-layer CNN

and cos�t is monotinically increasing (c.f. Lemma 5.2), so for all t = T
1

, T
1

+ 1, . . ., cos�t
= ⌦ (1). Plugging in these

two lower bounds into Theorem 5.5, we have

sin

2 �t+1 
⇣

1� ⌘C kw⇤k2
2

ka⇤k2
2

⌘

sin

2 �t.

for some absolute constant C. Thus, after O
⇣

1

⌘kw⇤k2
2ka⇤k2

2
log

�

1

✏

�

⌘

iterations, we have sin2 �t  min

⇢

✏10,
⇣

✏
ka⇤k2

|1>a⇤|

⌘

10

�

,

which implies ⇡ � g(�t
)  min

n

✏, ✏
ka⇤k2

|1>a⇤|

o

. Now using Lemma C.4,Lemma C.5 and Lemma C.6, we have after

eO
⇣

1

⌘k log

�

1

✏

�

⌘

iterations ` (v,a)  C
1

✏ ka⇤k2
2

kw⇤k2
2

for some absolute constant C
1

. Rescaling ✏ properly we obtain the
desired result.

C.3.1. TECHNICAL LEMMAS FOR ANALYZING PHASE II
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Proof. The result follows by plugging in the assumptions in Theorem 3.1.
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E. Proofs of Converging to Spurious Local Minimum
Proof of Theorem 4.3. The main idea is similar to Theorem 4.1 but here we show w ! �w

⇤ (without loss of generality,
we assume kw⇤k

2

= 1). Different from Theorem 4.1, here we need to prove the invariance a

>
a

⇤ < 0, which implies our

desired result. We prove by induction, suppose (a

t
)

>
a

⇤ > 0,
�

�

1

>
a

t
�

� 
�

�

1

>
a

⇤
�

�, g
�

�0

�

 �2

(

1>a
)

2

ka⇤k2
2

+ 1 and ⌘ < k+⇡�1

2⇡ .

Note
�

�

1

>
a

t
�

� 
�

�

1

>
a

⇤
�

� are satisfied by Lemma 5.4 and g
�

�0

�

 �2

(

1>a
)

2

ka⇤k2
2

+1 by our initialization condition and induction

hypothesis that implies �t is increasing. Recall the dynamics of (at)> a

⇤.
�

a

t+1

�>
a

⇤
=

✓

1� ⌘ (⇡ � 1)

2⇡

◆

�

a

t
�>

a

⇤
+

⌘ (g (�t
)� 1)

2⇡
ka⇤k2

2

+

⌘

2⇡

⇣

�

1

>
a

⇤�2 �
�

1

>
a

t
� �

1

>
a

⇤�
⌘


⌘
⇣

(g(�t
)� 1) ka⇤k

2

+ 2

�

1

>
a

⇤�2
⌘

2⇡
< 0

where the first inequality we used our induction hypothesis on inner product between a

t and a

⇤ and
�

�

1

>
a

t
�

� 
�

�

1

>
a

⇤
�

�

and the second inequality is by induction hypothesis on �t. Thus when gradient descent algorithm converges, according
Lemma 5.1, ✓ (v,w⇤

) = ⇡,a =

�

11

>
+ (⇡ � 1) I

��1

�

11

> � I

�

kw⇤k
2

a

⇤. Plugging these into Theorem 3.1, with some

routine algebra, we show ` (v,a) = ⌦

⇣

kw⇤k2
2

ka⇤k2
2

⌘

.


