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A. Proofs of Section 3
Proof of Theorem 3.1. We first expand the loss function directly.
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Plugging in the formulas of A(w) and B (w,w⇤
) and w =
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, we obtain the desired result.

Proof of Theorem 3.2. We first compute the expect gradient for v. From(Salimans & Kingma, 2016), we know
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Recall the gradient formula,
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Now we calculate expectation of Equation (7) and (8) separately. For (7), by first two formulas of Lemma A.1, we have
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In summary, aggregating them together we have
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As a sanity check, this formula matches Equation (16) of (Brutzkus & Globerson, 2017) when a = a

⇤
= 1.

Next, we calculate the expected gradient of a. Recall the gradient formula of a
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derived in the proof of Theorem 3.1 we obtained the desired result.
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Lemma A.1 (Useful Identities). Given w, w⇤ with angle � and Z is a Gaussian random vector, then
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For the fourth identity, focusing on the plane spanned by w and w⇤, using the polar decomposition, we have
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B. Proofs of Qualitative Convergence Results
Proof of Lemma 5.1. When Algorithm 1 converges, since a
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C. Proofs of Quantitative Convergence Results
C.1. Useful Technical Lemmas

We first prove the lemma about the convergence of �t.

Proof of Lemma 5.5. We consider the dynamics of sin2 �t.
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have an upper bound
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C.2. Convergence of Phase I

In this section we prove the convergence of Phase I.
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We finish our joint induction proof.

C.3. Analysis of Phase II

In this section we prove the convergence of phase II and necessary auxiliary lemmas.
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and cos�t is monotinically increasing (c.f. Lemma 5.2), so for all t = T
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desired result.

C.3.1. TECHNICAL LEMMAS FOR ANALYZING PHASE II

In this section we provide some technical lemmas for analyzing Phase II. Because of the positive homogeneity property,
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Next we consider the squared norm of gradient
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Lemma C.6. If ⇡ � g(�)  ✏ and ka� a

⇤ kw⇤k
2

k  ✏ ka⇤k
2

kw⇤k
2

, then the population loss satisfies ` (v,a) 
C✏ ka⇤k2

2

kw⇤k2
2

for some constant C > 0.

Proof. The result follows by plugging in the assumptions in Theorem 3.1.

D. Proofs of Initialization Scheme
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