
Supplementary Material

for the paper

Computational Optimal Transport: Complexity by

Accelerated Gradient Descent Is Better Than by

Sinkhorn's Algorithm

In this document, we provide some details on the dual problem for the regularized OT
problem, which is used in the analysis of the Sinkhorn's algorithm, details on the e�cient
implementation of our APDAGD algorithm for the case of the Sinkhorn's kernel being easy
to apply, e.g. when the measures are supported on regular grids and C is given by squared
Euclidean distance. Finally, we provide the missing proofs for the APDAGD-based approach.
This is a separate document and, if not explicitly stated, all the references refer to formulas,
algorithms, lemmas and theorems in this document.

1 Details for the Sinkhorn's Algorithm Approach

Below we provide the derivation of the dual problem for the regularized OT problem, which
is used in Section 2.

min
X∈U(r,c)

〈C,X〉+ γ〈X, lnX〉 = min
X∈Rn×n

+

max
y,z∈Rn

〈C,X〉+ γ〈X, lnX〉+ 〈y,X1− r〉+ 〈z,XT1− c〉

= max
y,z∈Rn

−〈y, r〉 − 〈z, c〉+ min
Xij≥0

n∑
i,j=1

X ij(Cij + γ lnX ij + yi + zj)[
X ij = exp

(
−1

γ
(yi + zj + Cij)− 1

)]
max
y,z∈Rn

−〈y, r〉 − 〈z, c〉 − γ
n∑

i,j=1

exp

(
−1

γ
(yi + zj + Cij)− 1

)
.

(1)

Changing the variables u = −y/γ − 1/2, v = −z/γ − 1/2, disregarding the constant term
−1 and dividing the objective by −γ, we obtain the dual problem considered in Section 2.
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2 Details for the Accelerated Gradient Descent Approach

2.1 E�cient Implementation for Entropic Regularization

In this subsection, we show that the steps of APDAGD can be written in terms of the
multiplication of the Sinkhorn kernel matrix K = exp(−C/γ) by a vector. Then, similarly
to the Sinkhorn's algorithm the step of APDAGD can be performed faster, if this kernel is
easy to apply, e.g. the measures are supported on regular grids and C is given by squared
Euclidean distance.

In the particular case of solving the entropy-regularized OT problem by APDAGD, we
have f(x) = 〈C,X〉 + γ〈X, lnX〉, Q = Rn2

+ , bT = (rT , cT ) and A : Rn2 → R2n de�ned by
the identity (A vec(X))T = ((X1)T , (XT1)T ), λ = (y, z), where y, z are the dual variables,
de�ned in (1). Then, x(λ) = arg minx∈Q

(
−f(x)− 〈ATλ, x〉

)
satis�es x(λ) = vec(X(y, z)),

where, due to (1), X(y, z) = e−1 · diag
(
ey/γ

)
Kdiag

(
ez/γ

)
. At the same time,

∇ϕ(λ) = b− Ax(λ) =

(
r −X(y, z)1

c−X(y, z)T1

)
Hence, in order to calculate the gradient ∇ϕ(λ) in step 6 of APDAGD algorithm, one needs
to apply the kernelK to the vector ey/γ and to the vector ez/γ, which is easy in the considered
situation. Step 8 also involves the kernel K for calculating the value ϕ(λ). This is also easy
since ϕ(λ) can be written as

ϕ(λ) = γ1TX(y, z)1 + 〈y, r〉+ 〈z, c〉 =
γ

e
ey/γKez/γ + 〈y, r〉+ 〈z, c〉.

Again K is used only through matrix-vector multiplication. Other steps operate with dual
variables λ, η, ζ ∈ R2n and, thus are also easy. Overall, APDAGD uses the same set
of operations as the Sinkhorn's algorithm and, thus can also be implemented in parallel
framework.

2.2 Adaptive Primal-Dual Accelerated Gradient Descent (AP-
DAGD) Convergence Analysis

We provide the missing convergence rate proofs for the Adaptive Primal-Dual Accelerated
Gradient Descent method for constrained convex optimization problem, which was considered
in Section 3 of the main part of the paper.

We consider the problem

(P1) min
x∈Q⊆E

{f(x) : Ax = b} ,

where f(x) is a γ-strongly convex function on Q. The Lagrange dual problem to Problem
(P1) in a form of a minimization problem is

min
λ∈Λ

{
ϕ(λ) := 〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
,
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where Λ is the space of Lagrange multipliers and, hence is unbounded.
Our Adaptive Primal-Dual Accelerated Gradient Descent method can be considered as

an Adaptive Accelerated Gradient Descent applied to the dual problem and supplied with
a procedure to reconstruct the primal iterate. Since it can be of independent interest, we
�rst, in subsection 2.3 consider Adaptive Accelerated Gradient Descent method for a general
convex optimization problem and prove in Theorem 1 its convergence rate in a primal-dual
friendly fashion. Then, in subsection 2.4 we use this result to analyze our Adaptive Primal-
Dual Accelerated Gradient Descent method.

2.3 Adaptive Accelerated Gradient Descent for Convex Optimiza-
tion

In this section, we consider a general optimization problem

min
λ∈Λ

ϕ(λ), (2)

where Λ ∈ H∗ is a closed convex, generally speaking, unbounded, set, ϕ(λ) is a convex
function with L-Lipschitz-continuous gradient, i.e.

ϕ(η) ≤ ϕ(λ) + 〈∇ϕ(λ), η − λ〉+
L

2
‖η − λ‖2

H,∗, ∀η, λ ∈ H∗. (3)

2.3.1 Proximal Setup

In this subsection, we introduce proximal setup, which is usually used in proximal gradient
methods, see e.g. Ben-Tal and Nemirovski [2015]. We choose some norm ‖ · ‖ on the space
of vectors λ and a prox-function d(λ) which is continuous, convex on Λ and

1. admits a continuous in λ ∈ Λ0 selection of subgradients ∇d(λ), where λ ∈ Λ0 ⊆ Λ is
the set of all λ, where ∇d(λ) exists;

2. is 1-strongly convex on Λ with respect to ‖ · ‖, i.e., for any λ ∈ Λ0, η ∈ Λ, d(η)−d(λ)−
〈∇d(λ), η − λ〉 ≥ 1

2
‖η − λ‖2.

We de�ne also the corresponding Bregman divergence V [ζ](λ) := d(λ)−d(ζ)−〈∇d(ζ), λ−ζ〉,
λ ∈ Λ, ζ ∈ Λ0. It is easy to see that

V [ζ](λ) ≥ 1

2
‖λ− ζ‖2, λ ∈ Λ, ζ ∈ Λ0. (4)

Standard proximal setups, i.e. Euclidean, entropy, `1/`2, simplex, nuclear norm, spectahe-
dron can be found in Ben-Tal and Nemirovski [2015].
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2.3.2 Algorithm and Complexity Analysis

In this subsection, we present Adaptive Accelerated Gradient Descent (see Algorithm 1 be-
low) and prove its convergence rate theorem. Our algorithm in its form is very close to
[Tseng, 2008, Alg.1] and [Lan et al., 2011, "Variant of Nesterov's algorithm"]. Nevertheless,
the algorithms in those two papers assume the Lipschitz constant L to be known and ex-
plicitly use it in the algorithm. Our algorithm is free of this drawback. Another distinction
of our algorithm is that we prove convergence rate in a primal-dual-friendly manner. As we
show in subsection 2.4, this allows us to apply our AAGD to the Lagrange dual problem for
(P1), and reconstruct also primal iterates. In his paper, Tseng obtains primal-dual rates, but
only for the case of bounded set Λ. In our case this analysis is inapplicable since the feasible
set of the Lagrange dual problem is unbounded. Lan, Lu and Monteiro, consider a special
problem of minimizing a linear function and do not prove primal-dual rates for their variant
of Nesterov's algorithm.

We denote by ηk, ζk, λk three sequences of iterates of the algorithm and by αk, βk two
sequences of numbers. The convergence rate is proved for the points ηk.

Lemma 1. Algorithm 1 is de�ned correctly in the sense that the inner cycle of checking the
inequality (9) is �nite.

Proof. Since, before each check of the inequality (9) on the step k, we multiply Mk by
2, after �nite number of these multiplications, we will have Mk ≥ L. Since ϕ has L-
Lipschitz-continuous gradient, due to (3), we obtain that (9) holds after �nite number of
these repetitions.

Lemma 2. Let the sequences {λk, ηk, ζk, αk, βk}, k ≥ 0 be generated by Algorithm 1. Then,
for all λ ∈ Λ, it holds that

αk+1〈∇ϕ(λk+1), ζk − λ〉 ≤ βk+1(ϕ(λk+1)− ϕ(ηk+1)) + V [ζk](λ)− V [ζk+1](λ). (10)

Proof. Note that, from the optimality condition in (7), for any λ ∈ Λ, we have

〈∇V [ζk](ζk+1) + αk+1∇ϕ(λk+1), λ− ζk+1〉 ≥ 0. (11)

By the de�nition of V [ζ](λ), we obtain, for any λ ∈ Λ,

V [ζk](λ)− V [ζk+1](λ)− V [ζk](ζk+1) =d(λ)− d(ζk)− 〈∇d(ζk), λ− ζk〉
− (d(λ)− d(ζk+1)− 〈∇d(ζk+1), λ− ζk+1〉)
− (d(ζk+1)− d(ζk)− 〈∇d(ζk), ζk+1 − ζk〉)

= 〈∇d(ζk)−∇d(ζk+1), ζk+1 − λ〉
= 〈−∇V [ζk](ζk+1), ζk+1 − λ〉. (12)
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Algorithm 1 Adaptive Accelerated Gradient Descent (AAGD)

Input: starting point λ0 ∈ Λ0, initial guess 0 < L0 < 2L, prox-setup: d(λ) � 1-strongly convex

w.r.t. ‖ · ‖, V [ζ](λ) := d(λ)− d(ζ)− 〈∇d(ζ), λ− ζ〉, λ ∈ Λ, ζ ∈ Λ0.

1: Set k = 0, β0 = α0 = 0, η0 = ζ0 = λ0.

2: repeat

3: Set Mk = Lk/2.
4: repeat

5: Set Mk = 2Mk, �nd αk+1 as the largest root of the equation

βk+1 := βk + αk+1 = Mkα
2
k+1. (5)

6:

λk+1 =
αk+1ζk + βkηk

βk+1
. (6)

7:

ζk+1 = arg min
λ∈Λ
{V [ζk](λ) + αk+1(ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉)}. (7)

8:

ηk+1 =
αk+1ζk+1 + βkηk

βk+1
. (8)

9: until

ϕ(ηk+1) ≤ ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉+
Mk

2
‖ηk+1 − λk+1‖2. (9)

10: Set Lk+1 = Mk/2, k = k + 1.
11: until Option 1: k = kmax.

Option 2: R2/βk ≤ ε.
Option 3:

ϕ(ηk)− min
λ∈Λ:V [ζ0](λ)≤R2

{
k∑
i=0

αi
βk

(ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
≤ ε.

Here R is such that V [ζ0](λ∗) ≤ R2 and ε is the desired accuracy.

Output: The point ηk+1.

Further, for any λ ∈ Λ,

αk+1〈∇ϕ(λk+1), ζk − λ〉 = αk+1〈∇ϕ(λk+1), ζk − ζk+1〉+ αk+1〈∇ϕ(λk+1), ζk+1 − λ〉
(11)

≤ αk+1〈∇ϕ(λk+1), ζk − ζk+1〉+ 〈−∇V [ζk](ζk+1), ζk+1 − λ〉
(12)
= αk+1〈∇ϕ(λk+1), ζk − ζk+1〉+ V [ζk](λ)− V [ζk+1](λ)− V [ζk](ζk+1)

(4)

≤ αk+1〈∇ϕ(λk+1), ζk − ζk+1〉+ V [ζk](λ)− V [ζk+1](λ)− 1

2
‖ζk − ζk+1‖2

(6),(8)
= βk+1〈∇ϕ(λk+1), λk+1 − ηk+1〉+ V [ζk](λ)− V [ζk+1](λ)−

β2
k+1

2α2
k+1

‖λk+1 − ηk+1‖2

(5)
= βk+1

(
〈∇ϕ(λk+1), λk+1 − ηk+1〉 −

Mk

2
‖λk+1 − ηk+1‖2

)
+ V [ζk](λ)− V [ζk+1](λ)

(9)

≤ βk+1 (ϕ(λk+1)− ϕ(ηk+1)) + V [ζk](λ)− V [ζk+1](λ).5



Lemma 3. Let the sequences {λk, ηk, ζk, αk, βk}, k ≥ 0 be generated by Algorithm 1. Then,
for all λ ∈ Λ, it holds that

βk+1ϕ(ηk+1)− βkϕ(ηk) ≤ αk+1 (ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉) + V [ζk](λ)− V [ζk+1](λ).
(13)

Proof. For any λ ∈ Λ,

αk+1〈∇ϕ(λk+1), λk+1 − λ〉 = αk+1〈∇ϕ(λk+1), λk+1 − ζk〉+ αk+1〈∇ϕ(λk+1), ζk − λ〉
(5),(6)

= βk〈∇ϕ(λk+1), ηk − λk+1〉+ αk+1〈∇ϕ(λk+1), ζk − λ〉
conv-ty

≤ βk (ϕ(ηk)− ϕ(λk+1)) + αk+1〈∇ϕ(λk+1), ζk − λ〉
(10)

≤ βk (ϕ(ηk)− ϕ(λk+1)) + βk+1 (ϕ(λk+1)− ϕ(ηk+1)) + V [ζk](λ)− V [ζk+1](λ)

= αk+1ϕ(λk+1) + βkϕ(ηk)− βk+1ϕ(ηk+1) + V [ζk](λ)− V [ζk+1](λ). (14)

Rearranging terms, we obtain the statement of the Lemma.

Theorem 1. Let the sequences {λk, ηk, ζk, αk, βk}, k ≥ 0 be generated by Algorithm 1. Then,
for all k ≥ 0, it holds that

βkϕ(ηk) ≤ min
λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) + V [ζ0](λ)

}
. (15)

The number of inner cycle iterations after an iteration k ≥ 0 does not exceed

4k + 4 + 2 log2

(
L

L0

)
, (16)

where L is the Lipschitz constant for the gradient of ϕ.

Proof. Let us change the counter in Lemma 2 from k to i and sum all the inequalities for
i = 0, ..., k − 1. Then, for any λ ∈ Λ,

βkϕ(ηk)− β0ϕ(η0) ≤
k−1∑
i=0

αi+1 (ϕ(λi+1) + 〈∇ϕ(λi+1), λ− λi+1〉) + V [ζ0](λ)− V [ζk](λ). (17)

Whence, since β0 = α0 = 0 and V [ζk](λ) ≥ 0,

βkϕ(ηk) ≤
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) + V [ζ0](λ), λ ∈ Λ. (18)
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Taking in the right hand side the minimum in λ ∈ Λ, we obtain the �rst statement of the
Theorem.

The second statement of the Theorem is proved in the same way as in Nesterov and
Polyak [2006], but we provide the proof for the reader's convenience. Let us again change
the iteration counter in Algorithm 1 from k to i. Let ji ≥ 1 be the total number of checks of
the inequality (9) on the step i ≥ 0. Then, j0 = 1 + log2

M0

L0
and, for i ≥ 1, Mi = 2ji−1Li =

2ji−1Mi−1

2
. Thus, ji = 2 + log2

Mi

Mi−1
, i ≥ 1. Further, by the same reasoning as in Lemma 2,

we obtain that Mi ≤ 2L, i ≥ 0. Then, the total number of checks of the inequality (9) is

k∑
i=0

ji = 1 + log2

M0

L0

+
k∑
i=1

(
2 + log2

Mi

Mi−1

)
= 2k + 1 + log2

Mk

L0

≤ 2k + 2 + log2

L

L0

.

At the same time, each check of the inequality (9) requires two oracle calls. This proves the
second statement of the Theorem.

Corollary 1. Let the sequences {λk, ηk, ζk, αk, βk}, k ≥ 0 be generated by Algorithm 1. Then,
for all k ≥ 0, it holds that

ϕ(ηk)−min
λ∈Λ

ϕ(λ) ≤ V [ζ0](λ∗)

βk
, (19)

where λ∗ is the solution of minλ∈Λ ϕ(λ) s.t. V [ζ0](λ∗) is minimal among all the solutions.

Proof. Let λ∗ be the solution of minλ∈Λ ϕ(λ) s.t. V [ζ0](λ∗) is minimal among all the solutions.
Using convexity of ϕ, from Theorem 1, we obtain

βkϕ(ηk) ≤
k∑
i=0

αiϕ(λ∗) + V [ζ0](λ∗).

Since βk =
∑k

i=0 αi, we obtain the statement of the Corollary.

The following Corollary justi�es the stopping criteria in Algorithm 1.

Corollary 2. Let λ∗ be a solution of minλ∈Λ ϕ(λ) such that V [ζ0](λ∗) is minimal among
all the solutions. Let R be such that V [ζ0](λ∗) ≤ R2 and ε be the desired accuracy. Let
the sequences {λk, ηk, ζk, αk, βk}, k ≥ 0 be generated by Algorithm 1. Then, if one of the
following inequalities holds

R2/βk ≤ ε, (20)

ϕ(ηk)− min
λ∈Λ:V [ζ0](λ)≤R2

{
k∑
i=0

αi
βk

(ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
≤ ε, (21)

then
ϕ(ηk)−min

λ∈Λ
ϕ(λ) ≤ ε. (22)
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Proof. If the inequality (20) holds, the statement of the Corollary follows from inequality
V [ζ0](λ∗) ≤ R2 Corollary 1.

Since V [ζ0](λ∗) ≤ R2, the point λ∗ is a feasible point in the problem

min
λ∈Λ:V [ζ0](λ)≤R2

{
k∑
i=0

αi
βk

(ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
.

Then, by convexity of ϕ, we obtain

min
λ∈Λ:V [ζ0](λ)≤R2

{
k∑
i=0

αi
βk

(ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
≤

k∑
i=0

αi
βk

(ϕ(λi) + 〈∇ϕ(λi), λ∗ − λi〉)

≤ ϕ(λ∗).

This and (21) �nishes the proof.

Let us now obtain the lower bound for the sequence βk, k ≥ 0, which will give the rate
of convergence for Algorithm 1.

Lemma 4. Let the sequence {βk}, k ≥ 0 be generated by Algorithm 1. Then, for all k ≥ 1
it holds that

βk ≥
(k + 1)2

8L
, (23)

where L is the Lipschitz constant for the gradient of ϕ.

Proof. As we mentioned in the proof of Theorem 1,Mk ≤ 2L, k ≥ 0. For k = 1, since α0 = 0
and A1 = α0 + α1 = α1, we have from (5)

β1 = α1 =
1

M1

≥ 1

2L
.

Hence, (23) holds for k = 1.
Let us now assume that (23) holds for some k ≥ 1 and prove that it holds for k+1. From

(5) we have a quadratic equation for αk+1

Mkα
2
k+1 − αk+1 − βk = 0.

Since we need to take the largest root, we obtain,

αk+1 =
1 +

√
1 + 4Mkβk
2Mk

=
1

2Mk

+

√
1

4M2
k

+
βk
Mk

≥ 1

2Mk

+

√
βk
Mk

≥ 1

4L
+

1√
2L

k + 1

2
√

2L
=
k + 2

4L
,

where we used the induction assumption that (23) holds for k. Using the obtained inequality,
from (5) and (23) for k, we get

βk+1 = βk + αk+1 ≥
(k + 1)2

8L
+
k + 2

4L
≥ (k + 2)2

8L
.
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Corollary 3. Let the sequences {λk, ηk, ζk}, k ≥ 0 be generated by Algorithm 1. Then, for
all k ≥ 1, it holds that

ϕ(ηk)−min
λ∈Λ

ϕ(λ) ≤ 8LV [ζ0](λ∗)

(k + 1)2
, (24)

where λ∗ is the solution of minλ∈Λ ϕ(λ) s.t. V [ζ0](λ∗) is minimal among all the solutions.

2.4 Adaptive Primal-Dual Accelerated Gradient Descent for Con-
strained Convex Optimization

In this section, we return to the constrained convex optimization problem, which was con-
sidered in Section 3 of the main part of the paper. For the reader's convenience, we repeat
the problem statement and some details.

2.4.1 Preliminaries

We consider convex optimization problem of the following form

(P1) min
x∈Q⊆E

{f(x) : Ax = b} ,

where f(x) is a γ-strongly convex function on Q with respect to some chosen norm ‖ · ‖E on
E and A : E → H is a linear operator, b ∈ H.

The Lagrange dual problem to Problem (P1) is

(D1) max
λ∈Λ

{
−〈λ, b〉+ min

x∈Q

(
f(x) + 〈ATλ, x〉

)}
.

Here we denote Λ = H∗ the space of Lagrange multipliers. It is convenient to rewrite
Problem (D1) in the equivalent form of a minimization problem

(P2) min
λ∈Λ

{
〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)}
.

It is obvious that
Opt[D1] = −Opt[P2], (25)

where Opt[D1], Opt[P2] are the optimal function value in Problem (D1) and Problem (P2)
respectively. The following inequality follows from the weak duality

Opt[P1] ≥ Opt[D1]. (26)

We denote
ϕ(λ) = 〈λ, b〉+ max

x∈Q

(
−f(x)− 〈ATλ, x〉

)
. (27)

Since f is strongly convex, ϕ(λ) is a smooth function and its gradient is equal to (see e.g.
Nesterov [2005])

∇ϕ(λ) = b− Ax(λ), (28)
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where x(λ) is the unique solution of the strongly-convex problem

max
x∈Q

(
−f(x)− 〈ATλ, x〉

)
. (29)

Note that ∇ϕ(λ) is Lipschitz-continuous (see e.g. Nesterov [2005]) with constant

L ≤ ‖A‖
2
E→H
γ

.

We also assume that the dual problem (D1) has a solution λ∗ and there exists some R > 0
such that

‖λ∗‖2 ≤ R < +∞. (30)

2.4.2 Adaptive Primal-Dual Accelerated Gradient Descent

Now we are ready to apply Algorithm 1 to the problem (P2) and incorporate in the algorithm
a procedure, which allows to reconstruct also an approximate solution of the problem (P1).
We choose Euclidean proximal setup, which means that we introduce euclidean norm ‖ · ‖2

in the space of vectors λ and choose the prox-function d(λ) = 1
2
‖λ‖2

2. Then, we have
V [ζ](λ) = 1

2
‖λ − ζ‖2

2. We state here as Algorithm 2 a more detailed version of Algorithm
3 in the main part of the paper. The �rst di�erence is that here we do not introduce an
auxiliary sequence τk = αk+1/βk+1. The second di�erence is that here we use an equivalent
form

ζk+1 = arg min
λ∈Λ

{
1

2
‖λ− ζk‖2

2 + αk+1(ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉)
}

of the step
ζk+1 = ζk − αk+1∇ϕ(λk+1).

The third di�erence consists in the observation that, since, by de�nition, βk =
∑k

i=0 αk,

x̂k+1 =
αk+1x(λk+1) + βkx̂k

βk+1

=
1

βk+1

k+1∑
i=0

αix(λi).

Finally, here we use a stronger stopping rule

|f(x̂k+1) + ϕ(ηk+1)| ≤ εf

than in the main part of the paper. The reason is that, to obtain complexity result for
approximating OT distance, it is enough to satisfy

f(x̂k+1) + ϕ(ηk+1) ≤ ε

with a special choice of ε.
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Algorithm 2 Adaptive Primal-Dual Accelerated Gradient Descent (APDAGD)

Input: starting point λ0 = 0, initial guess L0 > 0, accuracy εf , εeq > 0.
1: Set k = 0, β0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: repeat

3: Set Mk = Lk/2.
4: repeat

5: Set Mk = 2Mk, �nd αk+1 as the largest root of the equation

βk+1 := βk + αk+1 = Mkα
2
k+1. (31)

6: Calculate

λk+1 =
αk+1ζk + βkηk

βk+1
. (32)

7: Calculate

ζk+1 = arg min
λ∈Λ

{
1

2
‖λ− ζk‖22 + αk+1(ϕ(λk+1) + 〈∇ϕ(λk+1), λ− λk+1〉)

}
. (33)

8: Calculate

ηk+1 =
αk+1ζk+1 + βkηk

βk+1
. (34)

9: until

ϕ(ηk+1) ≤ ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉+
Mk

2
‖ηk+1 − λk+1‖22. (35)

10: Set

x̂k+1 =
1

βk+1

k+1∑
i=0

αix(λi) =
αk+1x(λk+1) + βkx̂k

βk+1
.

11: Set Lk+1 = Mk/2, k = k + 1.
12: until |f(x̂k+1) + ϕ(ηk+1)| ≤ εf , ‖A1x̂k+1 − b1‖2 ≤ εeq.
Output: The points x̂k+1, ηk+1.

Theorem 2. Assume that the objective in the problem (P1) is γ-strongly convex and that
the dual solution λ∗ satis�es ‖λ∗‖2 ≤ R. Then, for k ≥ 1, the points x̂k, ηk in Algorithm 2
satisfy

−16LR2

k2
≤ f(x̂k)−Opt[P1] ≤ f(x̂k) + ϕ(ηk) ≤

16LR2

k2
, (36)

‖Ax̂k − b‖2 ≤
16LR

k2
, (37)

‖x̂k − x∗‖E ≤
8

k

√
LR2

γ
, (38)

where x∗ and Opt[P1] are respectively an optimal solution and the optimal value in the problem

(P1), and L ≤ ‖A‖2E→H

γ
. Moreover, the stopping criterion in step 11 is correctly de�ned and
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the number of inner cycle iterations after an iteration k ≥ 0 does not exceed

4k + 4 + 2 log2

(
L

L0

)
, (39)

where L ≤ ‖A‖2E→H

γ
is the Lipschitz constant for the gradient of ϕ.

Proof. From Theorem 1 with speci�c choice of the Bregman divergence, since ζ0 = 0, we
have, for all k ≥ 0,

βkϕ(ηk) ≤ min
λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
1

2
‖λ‖2

2

}
(40)

Let us introduce a set ΛR = {λ : ‖λ‖2 ≤ 2R} where R is given in (30). Then, from (40), we
obtain

βkϕ(ηk) ≤ min
λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
1

2
‖λ‖2

2

}

≤ min
λ∈ΛR

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
1

2
‖λ‖2

2

}

≤ min
λ∈ΛR

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
+ 2R2. (41)

On the other hand, from the de�nition (27) of ϕ(λ), we have

ϕ(λi) = 〈λi, b〉+ max
x∈Q

(
−f(x)− 〈ATλi, x〉

)
= 〈λi, b〉 − f(x(λi))− 〈ATλi, x(λi)〉.

Combining this equality with (28), we obtain

ϕ(λi)− 〈∇ϕ(λi), λi〉 = ϕ(λ)− 〈∇ϕ(λ), λi〉
= 〈λi, b〉 − f(x(λi))− 〈ATλi, x(λi)〉
− 〈b− Ax(λi), λi〉 = −f(x(λi)).

Summing these inequalities from i = 0 to i = k with the weights {αi}i=1,...k, we get, using
the convexity of f ,

k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

= −
k∑
i=0

αif(x(λi)) +
k∑
i=0

αi〈b− Ax(λi), λ〉

≤ −βkf(x̂k) + βk〈b− Ax̂k, λ〉.
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Substituting this inequality to (41), we obtain

βkϕ(ηk) ≤− βkf(x̂k) + βk min
λ∈ΛR

{〈b− Ax̂k, λ〉}+ 2R2.

Finally, since

max
λ∈ΛR

{〈−b+ A1x̂k, λ〉} = 2R‖Ax̂k − b‖2,

we obtain

ϕ(ηk) + f(x̂k) + 2R‖Ax̂k − b‖2 ≤
2R2

βk
. (42)

Since λ∗ is an optimal solution of Problem (D1), we have, for any x ∈ Q

Opt[P1] ≤ f(x) + 〈λ∗, Ax− b〉.

Using the assumption (30), we get

f(x̂k) ≥ Opt[P1]−R‖Ax̂k − b‖2. (43)

Hence,

ϕ(ηk) + f(x̂k) = ϕ(ηk)−Opt[P2] +Opt[P2] +Opt[P1]−Opt[P1] + f(x̂k)

(25)
= ϕ(ηk)−Opt[P2]−Opt[D1] +Opt[P1]−Opt[P1] + f(x̂k)

(26)

≥ −Opt[P1] + f(x̂k)
(43)

≥ −R‖Ax̂k − b‖2. (44)

This and (42) give

R‖Ax̂k − b‖2 ≤
2R2

βk
. (45)

Hence, we obtain

ϕ(ηk) + f(x̂k)
(44),(45)

≥ −2R2

βk
. (46)

On the other hand, we have

ϕ(ηk) + f(x̂k)
(42)

≤ 2R2

βk
. (47)

Combining (45), (46), (47), we conclude

‖Ax̂k − b‖2 ≤
2R

βk
,

|ϕ(ηk) + f(x̂k)| ≤
2R2

βk
. (48)
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At the same time,

ϕ(ηk) +Opt[P1] = ϕ(ηk)−Opt[P2] +Opt[P2] +Opt[P1]

(25)
= ϕ(ηk)−Opt[P2]−Opt[D1] +Opt[P1]

(26)

≥ 0.

Hence,
f(x̂k)−Opt[P1] ≤ f(x̂k) + ϕ(ηk). (49)

From (48), (49), by Lemma 4, stating that, for any k ≥ 0, βk ≥ (k+1)2

8L
, we obtain

inequalities (36) and (37) in the Theorem statements.
It remains to prove inequality (38). By the optimality condition for Problem (P1), we

have
〈∇f(x∗) + ATλ∗, x̂k − x∗〉 ≥ 0, Ax∗ = b,

where ∇f(x∗) ∈ ∂f(x∗). Then

〈∇f(x∗), x̂k − x∗〉 ≥ −〈ATλ∗, x̂k − x∗〉
≥ −〈λ∗(1), Ax̂k − b〉

≥ −R‖Ax̂k − b‖2

(45)

≥ −2R2

βk
, (50)

where we used the same reasoning as while deriving (43). Using this inequality and γ strong
convexity of f , we obtain

γ

2
‖x̂k − x∗‖2

E ≤ f(x̂k)−Opt[P1]− 〈∇f(x∗), x̂k − x∗〉
(48),(49)

≤ 4R2

βk
.

Since, by Lemma 4, for any k ≥ 0, βk ≥ (k+1)2

8L
, we obtain inequality (38).
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