
Supplementary Material

A. Analysis of V-trace
A.1. V-trace operator

Define the V-trace operatorR:

RV (x)
def
= V (x) + Eµ

[∑
t≥0

γt
(
c0 . . . ct−1

)
ρt
(
rt + γV (xt+1)− V (xt)

)∣∣x0 = x, µ
]
, (1)

where the expectation Eµ is with respect to the policy µ which has generated the trajectory (xt)t≥0, i.e., x0 = x,
xt+1 ∼ p(·|xt, at), at ∼ µ(·|xt). Here we consider the infinite-horizon operator but very similar results hold for the n-step
truncated operator.

Theorem 1. Let ρt = min
(
ρ̄, π(at|xt)

µ(at|xt)
)

and ct = min
(
c̄, π(at|xt)
µ(at|xt)

)
be truncated importance sampling weights, with ρ̄ ≥ c̄.

Assume that there exists β ∈ (0, 1] such that Eµρ0 ≥ β. Then the operatorR defined by (1) has a unique fixed point V πρ̄ ,
which is the value function of the policy πρ̄ defined by

πρ̄(a|x)
def
=

min
(
ρ̄µ(a|x), π(a|x)

)∑
b∈A min

(
ρ̄µ(b|x), π(b|x)

) , (2)

Furthermore,R is a η-contraction mapping in sup-norm, with

η
def
= γ−1 − (γ−1 − 1)Eµ

[∑
t≥0

γt
(t−2∏
i=0

ci
)
ρt−1

]
≤ 1− (1− γ)β < 1.

Remark 1. The truncation levels c̄ and ρ̄ play different roles in this operator:

• ρ̄ impacts the fixed-point of the operator, thus the policy πρ̄ which is evaluated. For ρ̄ =∞ (untruncated ρt) we get the
value function of the target policy V π, whereas for finite ρ̄, we evaluate a policy which is in between µ and π (and
when ρ is close to 0, then we evaluate V µ). So the larger ρ̄ the smaller the bias in off-policy learning. The variance
naturally grows with ρ̄. However notice that we do not take the product of those ρt coefficients (in contrast to the cs
coefficients) so the variance does not explode with the time horizon.

• c̄ impacts the contraction modulus η ofR (thus the speed at which an online-algorithm like V-trace will converge to its
fixed point V πρ̄). In terms of variance reduction, here is it really important to truncate the importance sampling ratios
in ct because we take the product of those. Fortunately, our result says that for any level of truncation c̄, the fixed point
(the value function V πρ̄ we converge to) is the same: it does not depend on c̄ but on ρ̄ only.

Proof. First notice that we can rewriteR as

RV (x) = (1− Eµρ0)V (x) + Eµ

∑
t≥0

γt
(t−1∏
s=0

cs

)(
ρtrt + γ[ρt − ctρt+1]V (xt+1)

) .
Thus

RV1(x)−RV2(x) = (1− Eµρ0)
[
V1(x)− V2(x)

]
+ Eµ

∑
t≥0

γt+1
(t−1∏
s=0

cs

)
[ρt − ctρt+1]

[
V1(xt+1)− V2(xt+1)

] .
= Eµ

∑
t≥0

γt
(t−2∏
s=0

cs

)
[ρt−1 − ct−1ρt︸ ︷︷ ︸

αt

]
[
V1(xt)− V2(xt)

] ,

IMPALA: Importance Weighted Actor-Learner Architectures

with the notation that c−1 = ρ−1 = 1 and
∏t−2
s=0 cs = 1 for t = 0 and 1. Now the coefficients (αt)t≥0 are non-negative in

expectation. Indeed, since ρ̄ ≥ c̄, we have

Eµαt = E
[
ρt−1 − ct−1ρt

]
≥ Eµ

[
ct−1(1− ρt)

]
≥ 0,

since Eµρt ≤ Eµ
[π(at|xt)
µ(at|xt)

]
= 1. Thus V1(x)−V2(x) is a linear combination of the values V1−V2 at other states, weighted

by non-negative coefficients whose sum is∑
t≥0

γtEµ

[(t−2∏
s=0

cs

)
[ρt−1 − ct−1ρt]

]

=
∑
t≥0

γtEµ

[(t−2∏
s=0

cs

)
ρt−1

]
−
∑
t≥0

γtEµ

[(t−1∏
s=0

cs

)
ρt

]

=
∑
t≥0

γtEµ

[(t−2∏
s=0

cs

)
ρt−1

]
− γ−1

∑
t≥0

γtEµ

[(t−2∏
s=0

cs

)
ρt−1

]
− 1

= γ−1 − (γ−1 − 1)

∑
t≥0

γtEµ

[(t−2∏
s=0

cs

)
ρt−1

]
︸ ︷︷ ︸

≥1+γEµρ0

≤ 1− (1− γ)Eµρ0

≤ 1− (1− γ)β

< 1.

We deduce that ‖RV1(x) − RV2(x)‖ ≤ η‖V1 − V2‖∞, with η = γ−1 − (γ−1 − 1)
∑
t≥0 γ

tEµ
[(∏t−2

s=0 cs

)
ρt−1

]
≤

1− (1− γ)β < 1, soR is a contraction mapping. ThusR possesses a unique fixed point. Let us now prove that this fixed
point is V πρ̄ . We have:

Eµ
[
ρt
(
rt + γV πρ̄(xt+1)− V πρ̄(xt)

)∣∣xt]
=

∑
a

µ(a|xt) min
(
ρ̄,
π(a|xt)
µ(a|xt)

)[
r(xt, a) + γ

∑
y

p(y|xt, a)V πρ̄(y)− V πρ̄(xt)
]

=
∑
a

πρ̄(a|xt)
[
r(xt, a) + γ

∑
y

p(y|xt, a)V πρ̄(y)− V πρ̄(xt)
]

︸ ︷︷ ︸
=0

∑
b

min
(
ρ̄µ(b|xt), π(b|xt)

)

= 0,

since this is the Bellman equation for V πρ̄ . We deduce thatRV πρ̄ = V πρ̄ , thus V πρ̄ is the unique fixed point ofR.

A.2. Online learning

Theorem 2. Assume a tabular representation, i.e. the state and action spaces are finite. Consider a set of trajectories, with
the kth trajectory x0, a0, r0, x1, a1, r1, . . . generated by following µ: at ∼ µ(·|xt). For each state xs along this trajectory,
update

Vk+1(xs) = Vk(xs) + αk(xs)
∑
t≥s

γt−s
(
cs . . . ct−1

)
ρt
(
rt + γVk(xt+1)− Vk(xt)

)
, (3)

with ci = min
(
c̄, π(ai|xi)
µ(ai|xi)

)
, ρi = min

(
ρ̄, π(ai|xi)

µ(ai|xi)
)
, ρ̄ ≥ c̄. Assume that (1) all states are visited infinitely often, and (2) the

stepsizes obey the usual Robbins-Munro conditions: for each state x,
∑
k αk(x) =∞,

∑
k α

2
k(x) <∞. Then Vk → V πρ̄

almost surely.

The proof is a straightforward application of the convergence result for stochastic approximation algorithms to the fixed
point of a contraction operator, see e.g. Dayan & Sejnowski (1994); Bertsekas & Tsitsiklis (1996); Kushner & Yin (2003).

IMPALA: Importance Weighted Actor-Learner Architectures

A.3. On the choice of qs in policy gradient

The policy gradient update rule (4) makes use of the coefficient qs = rs+γvs+1 as an estimate ofQπρ̄(xs, as) built from the
V-trace estimate vs+1 at the next state xs+1. The reason why we use qs instead of vs as target for our Q-value Qπρ̄(xs, as)
is to make sure our estimate of the Q-value is as unbiased as possible, and the first requirement is that it is entirely unbiased
in the case of perfect representation of the V-values. Indeed, assuming our value function is correctly estimated at all states,
i.e. V = V πρ̄ , then we have E[qs|xs, as] = Qπρ̄(xs, as) (whereas we do not have this property for vt). Indeed,

E[qs|xs, as] = rs + γE
[
V πρ̄(xs+1) + δs+1V

πρ̄ + γcs+1δs+2V
πρ̄ + . . .

]
= rs + γE

[
V πρ̄(xs+1)

]
= Qπρ̄(xs, as)

whereas

E[vs|xs, as] = V πρ̄(xs) + ρs
(
rs + γE

[
V πρ̄(xs+1)

]
− V πρ̄(xs)

)
+ γcsδs+1V

πρ̄ + . . .

= V πρ̄(xs) + ρs
(
rs + γE

[
V πρ̄(xs+1)

]
− V πρ̄(xs)

)
= V πρ̄(xs)(1− ρs) + ρsQ

πρ̄(xs, as),

which is different from Qπρ̄(xs, as) when V πρ̄(xs) 6= Qπρ̄(xs, as).

IMPALA: Importance Weighted Actor-Learner Architectures

B. Reference Scores

Task t Human h Random r Experts IMPALA

rooms collect good objects test 10.0 0.1 9.0 5.8
rooms exploit deferred effects test 85.7 8.5 15.6 11.0
rooms select nonmatching object 65.9 0.3 7.3 26.1
rooms watermaze 54.0 4.1 26.9 31.1
rooms keys doors puzzle 53.8 4.1 28.0 24.3
language select described object 389.5 -0.1 324.6 593.1
language select located object 280.7 1.9 189.0 301.7
language execute random task 254.1 -5.9 -49.9 66.8
language answer quantitative question 184.5 -0.3 219.4 264.0
lasertag one opponent large 12.7 -0.2 -0.2 0.3
lasertag three oponents large 18.6 -0.2 -0.1 4.1
lasertag one opponent small 18.6 -0.1 -0.1 2.5
lasertag three opponents small 31.5 -0.1 19.1 11.3
natlab fixed large map 36.9 2.2 34.7 12.2
natlab varying map regrowth 24.4 3.0 20.7 15.9
natlab varying map randomized 42.4 7.3 36.1 29.0
skymaze irreversible path hard 100.0 0.1 13.6 30.0
skymaze irreversible path varied 100.0 14.4 45.1 53.6
pyschlab arbitrary visuomotor mapping 58.8 0.2 16.4 14.3
pyschlab continuous recognition 58.3 0.2 29.9 29.9
pyschlab sequential comparison 39.5 0.1 0.0 0.0
pyschlab visual search 78.5 0.1 0.0 0.0
explore object locations small 74.5 3.6 57.8 62.6
explore object locations large 65.7 4.7 37.0 51.1
explore obstructed goals small 206.0 6.8 135.2 188.8
explore obstructed goals large 119.5 2.6 39.5 71.0
explore goal locations small 267.5 7.7 209.4 252.5
explore goal locations large 194.5 3.1 83.1 125.3
explore object rewards few 77.7 2.1 39.8 43.2
explore object rewards many 106.7 2.4 58.7 62.6

Mean Capped Normalised Score: (
∑
t min [1, (st − rt)/(ht − rt)]) /N 100% 0% 44.5% 49.4%

Table B.1. DMLab-30 test scores.

IMPALA: Importance Weighted Actor-Learner Architectures

B.1. Final training scores on DMLab-30

0 20 40 60 80 100 120 140 160
Human Normalised Score

pyschlab_sequential_comparison

pyschlab_visual_search

lasertag_one_opponent_large

lasertag_one_opponent_small

language_execute_random_task

lasertag_three_oponents_large

rooms_exploit_deferred_effects_train

pyschlab_arbitrary_visuomotor_mapping

skymaze_irreversible_path_hard

natlab_fixed_large_map

rooms_keys_doors_puzzle

skymaze_irreversible_path_varied

lasertag_three_opponents_small

pyschlab_continuous_recognition

explore_object_rewards_few

rooms_select_nonmatching_object

rooms_watermaze

explore_object_rewards_many

explore_obstructed_goals_large

explore_goal_locations_large

natlab_varying_map_regrowth

natlab_varying_map_randomized

explore_object_locations_large

explore_object_locations_small

explore_obstructed_goals_small

rooms_collect_good_objects_train

explore_goal_locations_small

language_select_located_object

language_answer_quantitative_question

language_select_described_object

A3C, deep IMPALA-Experts, deep IMPALA, deep, PBT

Figure B.1. Human normalised scores across all DMLab-30 tasks.

IMPALA: Importance Weighted Actor-Learner Architectures

C. Atari Scores
ACKTR The Reactor IMPALA (deep, multi-task) IMPALA (shallow) IMPALA (deep)

alien 3197.10 6482.10 2344.60 1536.05 15962.10
amidar 1059.40 833 136.82 497.62 1554.79
assault 10777.70 11013.50 2116.32 12086.86 19148.47
asterix 31583.00 36238.50 2609.00 29692.50 300732.00
asteroids 34171.60 2780.40 2011.05 3508.10 108590.05
atlantis 3433182.00 308258 460430.50 773355.50 849967.50
bank heist 1289.70 988.70 55.15 1200.35 1223.15
battle zone 8910.00 61220 7705.00 13015.00 20885.00
beam rider 13581.40 8566.50 698.36 8219.92 32463.47
berzerk 927.20 1641.40 647.80 888.30 1852.70
bowling 24.30 75.40 31.06 35.73 59.92
boxing 1.45 99.40 96.63 96.30 99.96
breakout 735.70 518.40 35.67 640.43 787.34
centipede 7125.28 3402.80 4916.84 5528.13 11049.75
chopper command N/A 37568 5036.00 5012.00 28255.00
crazy climber 150444.00 194347 115384.00 136211.50 136950.00
defender N/A 113128 16667.50 58718.25 185203.00
demon attack 274176.70 100189 10095.20 107264.73 132826.98
double dunk -0.54 11.40 -1.92 -0.35 -0.33
enduro 0.00 2230.10 971.28 0.00 0.00
fishing derby 33.73 23.20 35.27 32.08 44.85
freeway 0.00 31.40 21.41 0.00 0.00
frostbite N/A 8042.10 2744.15 269.65 317.75
gopher 47730.80 69135.10 913.50 1002.40 66782.30
gravitar N/A 1073.80 282.50 211.50 359.50
hero N/A 35542.20 18818.90 33853.15 33730.55
ice hockey -4.20 3.40 -13.55 -5.25 3.48
jamesbond 490.00 7869.20 284.00 440.00 601.50
kangaroo 3150.00 10484.50 8240.50 47.00 1632.00
krull 9686.90 9930.80 10807.80 9247.60 8147.40
kung fu master 34954.00 59799.50 41905.00 42259.00 43375.50
montezuma revenge N/A 2643.50 0.00 0.00 0.00
ms pacman N/A 2724.30 3415.05 6501.71 7342.32
name this game N/A 9907.20 5719.30 6049.55 21537.20
phoenix 133433.70 40092.20 7486.50 33068.15 210996.45
pitfall -1.10 -3.50 -1.22 -11.14 -1.66
pong 20.90 20.70 8.58 20.40 20.98
private eye N/A 15177.10 0.00 92.42 98.50
qbert 23151.50 22956.50 10717.38 18901.25 351200.12
riverraid 17762.80 16608.30 2850.15 17401.90 29608.05
road runner 53446.00 71168 24435.50 37505.00 57121.00
robotank 16.50 68.50 9.94 2.30 12.96
seaquest 1776.00 8425.80 844.60 1716.90 1753.20
skiing N/A -10753.40 -8988.00 -29975.00 -10180.38
solaris 2368.60 2760 1160.40 2368.40 2365.00
space invaders 19723.00 2448.60 199.65 1726.28 43595.78
star gunner 82920.00 70038 1855.50 69139.00 200625.00
surround N/A 6.70 -8.51 -8.13 7.56
tennis N/A 23.30 -8.12 -1.89 0.55
time pilot 22286.00 19401 3747.50 6617.50 48481.50
tutankham 314.30 272.60 105.22 267.82 292.11
up n down 436665.80 64354.20 82155.30 273058.10 332546.75
venture N/A 1597.50 1.00 0.00 0.00
video pinball 100496.60 469366 20125.14 228642.52 572898.27
wizard of wor 702.00 13170.50 2106.00 4203.00 9157.50
yars revenge 125169.00 102760 14739.41 80530.13 84231.14
zaxxon 17448.00 25215.50 6497.00 1148.50 32935.50

Table C.1. Atari scores after 200M steps environment steps of training. Up to 30 no-ops at the beginning of each episode.

IMPALA: Importance Weighted Actor-Learner Architectures

D. Parameters
In this section, the specific parameter settings that are used throughout our experiments are given in detail.

Hyperparameter Range Distribution

Entropy regularisation [5e-5, 1e-2] Log uniform
Learning rate [5e-6, 5e-3] Log uniform
RMSProp epsilon (ε) regularisation parameter [1e-1, 1e-3, 1e-5, 1e-7] Categorical

Table D.1. The ranges used in sampling hyperparameters across all experiments that used a sweep and for the initial hyperparameters for
PBT. Sweep size and population size are 24. Note, the loss is summed across the batch and time dimensions.

Action Native DeepMind Lab Action

Forward [0, 0, 0, 1, 0, 0, 0]
Backward [0, 0, 0, -1, 0, 0, 0]
Strafe Left [0, 0, -1, 0, 0, 0, 0]
Strafe Right [0, 0, 1, 0, 0, 0, 0]
Look Left [-20, 0, 0, 0, 0, 0, 0]
Look Right [20, 0, 0, 0, 0, 0, 0]
Forward + Look Left [-20, 0, 0, 1, 0, 0, 0]
Forward + Look Right [20, 0, 0, 1, 0, 0, 0]
Fire [0, 0, 0, 0, 1, 0, 0]

Table D.2. Action set used in all tasks from the DeepMind Lab environment, including the DMLab-30 experiments.

D.1. Fixed Model Hyperparameters
In this section, we list all the hyperparameters that were kept fixed across all experiments in the paper which are mostly
concerned with observations specifications and optimisation. We first show below the reward pre-processing function that is
used across all experiments using DeepMind Lab, followed by all fixed numerical values.

−10 −5 0 5 10
Reward

−1

0

1

2

3

4

5

C
lip

p
e
d
 R

e
w

a
rd

Figure D.1. Optimistic Asymmetric Clipping - 0.3 ·min(tanh(reward), 0) + 5.0 ·max(tanh(reward), 0)

IMPALA: Importance Weighted Actor-Learner Architectures

Parameter Value

Image Width 96
Image Height 72
Action Repetitions 4
Unroll Length (n) 100
Reward Clipping

- Single tasks [-1, 1]
- DMLab-30, including experts See Figure D.1

Discount (γ) 0.99
Baseline loss scaling 0.5
RMSProp momentum 0.0
Experience Replay (in Section 5.2.2)

- Capacity 10,000 trajectories
- Sampling Uniform
- Removal First-in-first-out

Table D.3. Fixed model hyperparameters across all DeepMind Lab experiments.

IMPALA: Importance Weighted Actor-Learner Architectures

E. V-trace Analysis
E.1. Controlled Updates
Here we show how different algorithms (On-Policy, No-correction, ε-correction, V-trace) behave under varying levels of
policy-lag between the actors and the learner.

0.2 0.4 0.6 0.8
Environment Frames 1e9

0

10

20

30

40

50

60

R
e
tu

rn

0
1

10
100
500

ε-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
1

10

100
500

No-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
1
10
100
500

V-trace

rooms_watermaze

0.2 0.4 0.6 0.8
Environment Frames 1e9

0

5

10

15

20

25

30

R
e
tu

rn

0
1
10

100

500

ε-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
1
10

100

500

No-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

1
0
10
100
500

V-trace

rooms_keys_doors_puzzle

0.2 0.4 0.6 0.8
Environment Frames 1e9

5

0

5

10

15

20

25

30

35

R
e
tu

rn

0

1

10
100
500

ε-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0

1

10
100
500

No-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

10
1
100
0

500

V-trace

lasertag_three_opponents_small

0.2 0.4 0.6 0.8
Environment Frames 1e9

0

50

100

150

200

250

R
e
tu

rn

0

1

100
10
500

ε-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0

1

10
100
500

No-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

10
1
0
100
500

V-trace

explore_goal_locations_small

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
5

10
15
20
25
30
35
40
45

R
e
tu

rn

0
1
10

100
500

ε-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
1

10

100
500

No-correction

0.2 0.4 0.6 0.8
Environment Frames 1e9

0
1
10
100
500

V-trace

seekavoid_arena_01

Figure E.1. As the policy-lag (the number of update steps the actor policy is behind learner policy) increases, learning with V-trace is
more robust compared to ε-correction and pure on-policy learning.

IMPALA: Importance Weighted Actor-Learner Architectures

E.2. V-trace Stability Analysis

1 5 9 13 17 21 24
Hyperparameter Combination

0

10

20

30

40

50

60

F
in

a
l
R

e
tu

rn

rooms_watermaze

1 5 9 13 17 21 24
Hyperparameter Combination

0
5

10
15
20
25
30
35
40

rooms_keys_doors_puzzle

1 5 9 13 17 21 24
Hyperparameter Combination

−5
0
5

10
15
20
25
30
35

lasertag_three_opponents_small

1 5 9 13 17 21 24
Hyperparameter Combination

0

50

100

150

200

250

300

explore_goal_locations_small

1 5 9 13 17 21 24
Hyperparameter Combination

0

10

20

30

40

50

seekavoid_arena_01

V−trace − min(ρ, 1) 1 Step Importance Sampling − min(ρ, 1) ε−correction No-correction

Figure E.2. Stability across hyper parameter combinations for different off-policy correction variants using replay. V-trace is much more
stable across a wide range of parameter combinations compared to ε-correction and pure on-policy learning.

E.3. Estimating the State Action Value for Policy Gradient
We investigated different ways of estimating the state action value function used to estimate advantages for the policy
gradient calculation. The variant presented in the main section of the paper uses the V-trace corrected value function vs+1 to
estimate qs = rs + γvs+1. Another possibility is to use the actor-critic baseline V (xs+1) to estimate qs = rs + γV (xs+1).
Note that the latter variant does not use any information from the current policy rollout to estimate the policy gradient and
relies on an accurate estimate of the value function. We found the latter variant to perform worse both when comparing the
top 3 runs and an average over all runs of the hyperparameter sweep as can be see in figures E.3 and E.4.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

5
10
15
20
25
30
35
40
45
50

R
e
tu

rn

rooms_watermaze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

5

10

15

20

25

30

rooms_keys_doors_puzzle

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

−5
0
5

10
15
20
25
30
35

lasertag_three_opponents_small

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

0

50

100

150

200

250

explore_goal_locations_small

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

5
10
15
20
25
30
35
40
45

seekavoid_arena_01

qs = rs + γ ⋅ vs + 1 qs = rs + γ ⋅ V(xs + 1)

Figure E.3. Variants for estimation of state action value function - average over top 3 runs.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

5

10

15

20

25

30

35

R
e
tu

rn

rooms_watermaze

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

4
6
8

10
12
14
16
18
20
22

rooms_keys_doors_puzzle

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

−2

0

2

4

6

8

10

12

lasertag_three_opponents_small

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

0
20
40
60
80

100
120
140
160

explore_goal_locations_small

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e9

0

5

10

15

20

25

30

35

seekavoid_arena_01

qs = rs + γ ⋅ vs + 1 qs = rs + γ ⋅ V(xs + 1)

Figure E.4. Variants for estimation of state action value function - average over all runs.

F. Population Based Training
For Population Based Training we used a “burn-in” period of 20 million frames where no evolution is done. This is to
stabilise the process and to avoid very rapid initial adaptation which hinders diversity. After collecting 5,000 episode rewards
in total, the mean capped human normalised score is calculated and a random instance in the population is selected. If the
score of the selected instance is more than an absolute 5% higher, then the selected instance weights and parameters are
copied.
No matter if a copy happened or not, each parameter (RMSProp epsilon, learning rate and entropy cost) is permuted
with 33% probability by multiplying with either 1.2 or 1/1.2. This is different from Jaderberg et al. (2017) in that our
multiplication is unbiased where they use a multiplication of 1.2 or .8. We found that diversity is increased when the
parameters are permuted even if no copy happened.
We reconstruct the learning curves of the PBT runs in Figure 5 by backtracking through the ancestry of copied checkpoints
for selected instances.

IMPALA: Importance Weighted Actor-Learner Architectures

0.0 0.2 0.4 0.6 0.8 1.0
Environment Frames 1e10

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Learning Rate

IMPALA - PBT - 8 GPUs IMPALA - PBT - 1 GPU

Figure F.1. Learning rate schedule that is discovered by the PBT Jaderberg et al. (2017) method compared against the linear annealing
schedule of the best run from the parameter sweep (red line).

G. Atari Experiments
All agents trained on Atari are equipped only with a feed forward network and pre-process frames in the same way as
described in Mnih et al. (2016). When training experts agents, we use the same hyperparameters for each game for
both IMPALA and A3C. These hyperparameters are the result of tuning A3C with a shallow network on the following
games: breakout, pong, space invaders, seaquest, beam rider, qbert. Following related work, experts
use game-specific action sets.
The multi-task agent was equipped with a feed forward residual network (see Figure 3). The learning rate, entropy
regularisation, RMSProp ε and gradient clipping threshold were adapted through population based training. To be able to
use the same policy layer on all Atari games in the multi-task setting we train the multi-task agent on the full Atari action set
consisting of 18 actions.
Agents were trained using the following set of hyperparameters:

IMPALA: Importance Weighted Actor-Learner Architectures

Parameter Value

Image Width 84
Image Height 84
Grayscaling Yes
Action Repetitions 4
Max-pool over last N action repeat frames 2
Frame Stacking 4
End of episode when life lost Yes
Reward Clipping [-1, 1]
Unroll Length (n) 20
Batch size 32
Discount (γ) 0.99
Baseline loss scaling 0.5
Entropy Regularizer 0.01
RMSProp momentum 0.0
RMSProp ε 0.01
Learning rate 0.0006
Clip global gradient norm 40.0
Learning rate schedule Anneal linearly to 0

From beginning to end of training.
Population based training (only multi-task agent)

- Population size 24
- Start parameters Same as DMLab-30 sweep
- Fitness Mean capped human normalised scores

(
∑
l min [1, (st − rt)/(ht − rt)]) /N

- Adapted parameters Gradient clipping threshold
Entropy regularisation
Learning rate
RMSProp ε

Table G.1. Hyperparameters for Atari experiments.

References
Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Programming. Athena Scientific, 1996.

Dayan, P. and Sejnowski, T. J. TD(λ) converges with probability 1. Machine Learning, 14(1):295–301, 1994. doi:
10.1023/A:1022657612745.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I.,
Simonyan, K., Fernando, C., and Kavukcuoglu, K. Population based training of neural networks. CoRR, abs/1711.09846,
2017.

Kushner, H. and Yin, G. Stochastic Approximation and Recursive Algorithms and Applications. Stochastic Modelling and
Applied Probability. Springer New York, 2003. ISBN 9780387008943.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. ICML, 2016.

