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Abstract
We present a comprehensive understanding of
three important problems in PAC preference
learning: maximum selection (maxing), ranking,
and estimating all pairwise preference probabil-
ities, in the adaptive setting. With just Weak
Stochastic Transitivity, we show that maxing re-
quires Ω(n2) comparisons and with slightly more
restrictive Medium Stochastic Transitivity, we
present a linear complexity maxing algorithm.
With Strong Stochastic Transitivity and Stochas-
tic Triangle Inequality, we derive a ranking al-
gorithm with optimalO(n log n) complexity and
an optimal algorithm that estimates all pairwise
preference probabilities.

1. Introduction
1.1. Background and motivation

Maximum selection (maxing) and sorting (ranking) are
fundamental problems in Computer Science with numer-
ous important applications. Deterministic versions of these
problems are well studied.

In practical applications, comparisons are rarely determin-
istic. For example in soccer, when Real Madrid plays
Barcelona the outcome is not always the same. Similarly,
individual preferences in restaurants vary a lot. Other prac-
tical applications are in areas such as social choice (Caplin
& Nalebuff, 1991; Soufiani et al., 2013), web search and in-
formation retrieval (Radlinski & Joachims, 2007; Radlinski
et al., 2008), crowdsourcing (Chen et al., 2013; gif), recom-
mender systems (Baltrunas et al., 2010) and several others.

These practical applications and the intrinsic theoretical in-
terest, has led to significant work on the probabilistic ver-
sion of maxing and ranking. Yet the most general model for
which maxing can be done using near-linear comparisons is
not known. We consider the most general transitive model
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that guarantees the existence of maximum and show that
under this model any maxing algorithm requires quadratic
many comparisons. We also consider a slightly more re-
strictive transitive model and propose a linear complex-
ity maxing algorithm, making it the most general model
known for which linear complexity maxing is possible.
Also, for the most general known model with sub-quadratic
complexity for ranking, we improve the complexity, mak-
ing it orderwise optimal. We also propose an optimal algo-
rithm that can simulate all pairwise comparisons.

1.2. Notation and problem formulation

Without loss of generality, let [n]
def
= {1, 2, ..., n} be the

set of n elements. We consider probabilistic noisy compar-
isons i.e., whenever two elements i and j are compared, i
is returned with an unknown probability pi,j . There are no

“ties” i.e., pj,i = 1 − pi,j . Let p̃i,j
def
= pi,j − 1

2 be the
centered preference probability.

A maximal is an element i that is preferable to every other
element i.e., p̃i,j ≥ 0 ∀j. A ranking is a permutation
σ1, σ2, ..., σn of [n] such that p̃σi,σj ≥ 0 whenever i > j.

But sometimes maximal and ranking might not even ex-
ist. For example, consider the popular Rock-Paper-Scissor
game i.e., p1,2 = p2,3 = p3,1 = 1. Notice that under this
model there is neither a maximal nor a ranking. Hence we
need additional constraints on pairwise probabilities pi,j .

Notice that for ranking to exist, there must exist an order-
ing (�) among elements s.t. whenever i � j, p̃i,j ≥ 0.
The models that have such an ordering are said to satisfy
Weak Stochastic Transitivity (WST). Observe that WST is
sufficient for existence of both maximal and ranking.

More restrictive notions of transitivity are motivated and
used in different contexts. Strong Stochastic Transitivity
(SST) which assumes that whenever i � j � k, p̃i,k ≥
max(p̃i,j , p̃j,k), as its name suggests is a stronger notion of
transitivity that confines the model more than WST, hence
less general. Medium Stochastic Transitivity (MST) (Sko-
repa, 2010) sitting in between WST and SST, assumes that
whenever i � j � k, p̃i,k ≥ min(p̃i,j , p̃j,k). From WST to
MST to SST, the model becomes more restrictive.

Another model restriction used in some of the previous
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works Stochastic Triangle Inequality (STI), assumes that
whenever i � j � k, p̃i,k ≤ p̃i,j + p̃j,k. In this paper we
propose maxing and ranking algorithms for models under
various set of constraints.

There is also a concern with finding an exact maximal and
ranking. Consider the case of n = 2 and p̃1,2 ≈ 0. No-
tice that in this case where n is just 2, finding maximal and
ranking could take arbitrarily many comparisons. Easy fix
to alleviate this problem is to consider Probably Approxi-
mately Correct (PAC) formulation which we also adopt.

An element i is said to be ε-preferable to j if p̃i,j ≥ −ε.
For ε ∈ (0, 1/2), an ε-maximal is an element i that is ε-
preferable to all elements i.e., p̃i,j ≥ −ε ∀j. Given 0 <
ε < 1/2, 0 < δ ≤ 1/2, a PAC maxing algorithm must
output an ε-maximal with probability≥ 1−δ. Similarly, an
ε-ranking is a permutation σ1, σ2, ..., σn of [n] such that σi
is ε-preferable to σj whenever i > j. Given 0 < ε < 1/2,
0 < δ ≤ 1/2, a PAC ranking algorithm must output an
ε-ranking with probability ≥ 1− δ.

1.3. Related work

Researchers initially considered more restrictive mod-
els. (Feige et al., 1994) considered constant noise model
i.e., p̃i,j = α > 0 if i � j and presented a maxing algo-
rithm that usesO

(
n
α2 log 1

δ

)
comparisons and outputs max-

imal with probability ≥ 1 − δ. It also presented a ranking
algorithm that uses O

(
n logn
α2

)
comparisons and outputs

ranking with probability ≥ 1− 1/n.

Another set of widely-studied restrictive models are para-
metric ones. (Szörényi et al., 2015) considered one of the
most popular parametric models, Plackett-Luce (Plackett,
1975; Luce, 2005) and presented PAC maxing and rank-
ing algorithms that useO

(
n
ε2 log n

εδ

)
andO

(
n logn
ε2 log n

εδ

)
comparisons respectively.

Researchers also considered models that are more gen-
eral than parametric models, yet still more restrictive than
WST. (Yue & Joachims, 2011) considered models that sat-
isfy both SST and STI and derived a PAC maxing algo-
rithm that uses O

(
n
ε2 log n

εδ

)
comparisons. Later (Fala-

hatgar et al., 2017b) considered same model and proposed
an optimal PAC maxing algorithm that uses O

(
n
ε2 log 1

δ

)
comparisons. It also proposed a PAC ranking algorithm
that with probability ≥ 1 − 1/n, outputs an ε-ranking us-
ing O

(
n logn(log logn)3

ε2

)
comparisons, (log log n)3 times

the known lower bound. Until now, it was not known if the
additional (log log n)3 factor is necessary for PAC ranking.

(Falahatgar et al., 2017a) considered models that satisfy
only SST but not necessarily STI and proposed an opti-
mal PAC maxing algorithm that uses O

(
n
ε2 log 1

δ

)
compar-

isons. They also showed that there exists a model which
satisfies SST and yet no algorithm can find an ε-ranking for
this model using o(n2) comparisons, establishing a lower
bound of Ω(n2) comparisons once STI property is dropped.

Among other related works we can point out (Busa-
Fekete et al., 2014b; Lee et al., 2014; Dudı́k et al., 2015;
Hüllermeier et al., 2008), who considered models more
general than WST under different definitions of maximum
and ranking. More discussion about these models can be
found in Appendix G. (Busa-Fekete et al., 2014a; Mohajer
et al., 2017) considered the non-PAC version and (Rajku-
mar & Agarwal, 2014; Negahban et al., 2012; 2016; Jang
et al., 2016) considered the non-adaptive version of this
problem. Also (Acharya et al., 2016; Ajtai et al., 2015)
considered the deterministic adversarial version of maxing
and ranking. (Shah et al., 2016b; Chatterjee et al., 2015;
Shah et al., 2016a) studied the problem of estimating pair-
wise probabilities in non-adaptive setting.

2. New results and Outline
Maxing Linear-complexity maxing algorithm under SST
by (Falahatgar et al., 2017a) encourages the search for a
linear-complexity maxing algorithm for models with only
WST properties. Two questions then arise: 1a) Is a lin-
ear complexity PAC maxing algorithm possible for models
with only WST property? 1b) If not, does there exist a
model more general than SST and less general than WST
for which a linear complexity PAC maxing is possible?

We resolve both questions in this paper: 1a) No. Theo-
rem 1 in Section 3 shows that there are WST models for
which any PAC maxing algorithm requires Ω(n2) compar-
isons. 1b) Yes. In Theorem 8 in Section 4, we derive a PAC
maxing algorithm for MST model that uses O

(
n
ε2 log 1

δ

)
comparisons for δ ≥ min(1/n, e−n

1/4

).

Ranking Motivated by the previous results of ranking un-
der SST + STI, three questions arise: 2a) For models
with SST + STI, is the additional (log log n)3 factor nec-
essary for PAC ranking algorithms? 2b) Since the near-
linear complexity of ranking under SST + STI changes to
quadratic complexity by dropping STI (Falahatgar et al.,
2017a), is there a sub-quadratic algorithm for ranking un-
der MST + STI? 2c) For models with SST + STI, since
PAC ranking is possible with near linear complexity, is it
also possible to approximate all pairwise probabilities to
accuracy of ε using near linear number of comparisons?

We essentially resolve all three questions. 2a) No. In
Theorem 9 in Section 5, we improve the PAC ranking al-
gorithm for models with SST + STI removing additional
(log log n)3 factor and hence making it optimal. 2b) No.
Theorem 10 in Section 6 shows that there is a model with
MST+STI, for which any PAC ranking algorithm requires
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Model Maxing Ranking Finding pi,j
SST with STI Θ

(
n
ε2 log 1

δ

)
Θ
(
n logn
ε2

)∗
Θ
(
nmin(n,1/ε) logn

ε2

)∗
(Falahatgar et al., 2017b) Section 5 Section 7

SST Θ
(
n
ε2 log 1

δ

)
Ω(n2) Ω(n2)

(Falahatgar et al., 2017a) (Falahatgar et al., 2017a)
MST with STI Θ

(
n
ε2 log 1

δ

)∗∗
Ω(n2) Ω(n2)

and Section 4 Section 6
MST

WST with STI Ω(n2) Ω(n2) Ω(n2)
and Section 3 Section 6

WST

Table 1. Comprehensive results for maxing, ranking and finding pi,j

∗: for δ ≥ 1
n , ∗∗: for δ ≥ min(1/n, e−n

1/4

)

Ω(n2) comparisons. 2c) Yes. For models with SST + STI,
in Theorems 11 and 12 in Sections 7, we present an opti-
mal algorithm that uses O

(
nmin(n,1/ε) logn

ε2

)
comparisons

and approximates all pairwise probabilities to accuracy of
ε with probability ≥ 1− 1/n.

We present experiments over simulated data in Section 8
and end with our conclusions in Section 9.

Interpretation Table 1 summarizes all known results for
problems of maxing, ranking, and finding pairwise prob-
abilities under different transitive properties. Notice that
under the most general model WST, all these problems re-
quire quadratic many comparisons and under the most re-
strictive model SST + STI, all problems have optimal al-
gorithms with near-linear complexity. For MST and WST
models adding STI property does not influence complexity
for any problem. But for SST model adding STI property
facilitates near-linear complexity algorithms for PAC rank-
ing and approximating pairwise probabilities.

It is easy to see that once all pairwise probabilities are ap-
proximated to accuracy of ε/2, one can find an ε-maximum
and an ε-ranking. Hence approximating pairwise proba-
bilities is harder than PAC ranking and lower bound for
PAC ranking implies a lower bound for problem of ap-
proximating pairwise probabilities. Therefore in Table 1
lower bounds for finding pij follow from lower bounds for
ranking. Further in Appendix B.1, under WST model, we
present a trivial algorithm that with probability ≥ 1 − δ,
estimates all pairwise probabilities to accuracy of ε us-
ing O

(
n2

ε2 log n
δ

)
comparisons. Hence upper bound of

O
(
n2

ε2 log n
δ

)
follows for all problems.

3. PAC maxing for WST
We show the lower bound of Ω(n2) for maxing under WST
by presenting an example for which any algorithm requires

Ω(n2) comparisons to output a 1/4-maximum for δ ≤ 1/8.

To establish the lower bound, we reduce the problem of
finding a 1/4-maximum to finding the left most piece of
a linear jigsaw puzzle. We consider the following model
with n elements S = {a1, a2, . . . , an} : p̃ai,ai+1

= 1
2∀i <

n, and p̃ai,aj = µ(0 < µ < 1/n10),∀j > i + 1. This
model satisfies WST since there exists an underlying order
�, ai � aj if i < j (because p̃ai,aj > 0) and a1 is the only
1/4-maximum under this model.

Observe that ai is always preferred to ai+1, but for every
non consecutive pair, comparison output is almost a fair
coin flip. We make the problem simpler by giving the extra
information of whether two non consecutive elements are
being compared. Notice that this only makes the problem
easier, namely, complexity for modified problem is smaller
than that of original problem.

The modified problem is similar to a linear jigsaw puzzle
where if we compare two pieces we will know if pieces are
adjacent or not and if adjacent, which piece is on the left,
the goal is to find the left most piece. We show that w.h.p.,
any algorithm neither finds more than n/32 connections (a
set of neighbors) nor asks Ω(n) comparisons for the left
most piece. We use this to show the lower bound. The
proof is in Appendix A.

Theorem 1. There exists a model that satisfies WST for
which any algorithm requires Ω(n2) comparisons to find a
1/4-maximum with probability ≥ 7/8.

4. PAC maxing for MST
Outline In this section, we propose OPT-MAX, a linear
complexity maxing algorithm for MST. In the process, we
present two other suboptimal maxing algorithms SOFT-
SEQ-ELIM, NEAR-OPT-MAX and use them as build-
ing blocks in OPT-MAX. SOFT-SEQ-ELIM finds an ε-
maximum with quadratic complexity. Its performance de-
pends on the starting element (anchor). NEAR-OPT-MAX
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first finds a good anchor and then uses SOFT-SEQ-ELIM,
guaranteeing near linear comparison complexity. OPT-
MAX builds on NEAR-OPT-MAX and finds an ε-maximum
in linear-complexity for δ ≥ min(1/n, e−n

1/4

).

4.1. SOFT-SEQ-ELIM

Before presenting SOFT-SEQ-ELIM, we first present the
subroutine COMPARE we use to compare two elements.

COMPARE COMPARE takes 5 parameters : two elements
i, j that need to be compared, lower bias εl, upper bias
εu, confidence δ and deems if p̃i,j < εl or p̃i,j > εu. It
compares i and j for 8

(εu−εl)2 log 2
δ times. Let p̂i,j be the

fraction of times i won and ˆ̃pi,j = p̂i,j − 1/2. If ˆ̃pi,j <
3εl
4 + εu

4 , then COMPARE deems p̃i,j < εl (returns 1), if
ˆ̃pi,j >

εl
4 + 3εu

4 , then COMPARE deems p̃i,j > εu (returns
3) and for other ranges of ˆ̃pi,j , COMPARE not able to take
a decision, returns 2.

Lemma 2 bounds comparisons used by COMPARE and
proves its correctness. COMPARE and its analysis is pre-
sented in Appendix C.2.

Lemma 2. For εu > εl, COMPARE(i, j, εl, εu, δ) uses ≤
8

(εu−εl)2 log 2
δ comparisons and if p̃i,j < εl, then w.p.≥

1− δ, it returns 1, else if p̃i,j > εu, w.p.≥ 1− δ, it returns
3. Further if p̃i,j ≤ (εl + εu)/2, w.p.≥ 1 − δ, it does not
return 3 and if p̃i,j > (εl + εu)/2, w.p.≥ 1− δ, it does not
return 1.

SOFT-SEQ-ELIM SOFT-SEQ-ELIM takes 5 parameters:
input set S, starting anchor element r, lower bias εl, up-
per bias εu and confidence δ. SOFT-SEQ-ELIM happens
in rounds. In each round, it compares the current anchor
a with remaining elements one by one using COMPARE.
Due to probabilistic nature, we cannot exactly compare if
p̃e,a > εu vs p̃e,a ≤ εu. Hence we compare if p̃e,a > εu vs
p̃e,a < εl. For an element e, if COMPARE deems p̃e,a < εl,
then SOFT-SEQ-ELIM eliminates that element and if COM-
PARE deems p̃e,a > εu, then SOFT-SEQ-ELIM updates
current anchor element to e and eliminates a. This pro-
cess is continued until the current anchor element is not
updated after comparing with all remaining elements and
then SOFT-SEQ-ELIM outputs final anchor element.

If p̃e,a < εl or p̃e,a > εu, COMPARE deems correctly. If
εl ≤ p̃e,a ≤ εu, then COMPARE can sometimes fail to out-
put any decision and in that case, SOFT-SEQ-ELIM neither
eliminates that element nor updates the anchor element, it
just moves to next remaining element in S.

Theoretically, performance of SOFT-SEQ-ELIM strongly
depends on the starting anchor element r. To define a
good anchor element, similar to (Falahatgar et al., 2017a),
an element a is called an (ε,m)-good anchor if a is

Algorithm 1 SOFT-SEQ-ELIM

1: inputs
2: Set S, element r, lower bias εl, upper bias εu, confi-

dence δ
3: Q = S \ {r}
4: while Q 6= ∅ do
5: r′ = r, Q′ = ∅
6: for c ∈ Q do
7: k = COMPARE(c, r, εl, εu,

2δ
|S|2 )

8: if k == 1 then
9: Q′ = Q′

⋃
{c}.

10: else if k == 3 then
11: r ← c
12: Q′ = Q′

⋃
{c}

13: break
14: end if
15: end for
16: if r == r′ then
17: break
18: end if
19: Q = Q \Q′
20: end while
21: return r

not ε-preferable to at most m elements, i.e., |{e : e ∈
S and p̃e,a > ε}| ≤ m. We show that every element for
which initial anchor r is εl-preferable is deemed bad and
gets eliminated after its first comparison round and hence
comparisons spent on all such elements is O(|S|). Since
initial anchor r is an (εl,m)-good anchor element, there
are only m elements for which r is not εl-preferable. We
later show that only these elements can become anchors,
leading to at most m changes of anchors. Therefore each
such element gets compared in at mostm rounds and hence
we can bound total comparison rounds by O(|S| + m2).
Lemma 3 bounds comparisons used by SOFT-SEQ-ELIM
and proves its correctness. Proof is in Appendix C.3.

Lemma 3. If r is an (εl,m)-good anchor element,
w.p.≥ 1 − δ, SOFT-SEQ-ELIM(S, r, εl, εu, δ) uses

O
(
|S|+m2

(εu−εl)2 log |S|δ

)
comparisons and outputs r̂, an εu

maximum of S, such that either r̂ = r or p̃r̂,r > εl+εu
2 .

Corollary 4 bounds comparisons used by SOFT-SEQ-ELIM
for any starting anchor. Proof follows from Lemma 3

Corollary 4. For any r, w.p.≥ 1 − δ,
SOFT-SEQ-ELIM(S, r, εl, εu, δ) uses O

(
|S|2

(εu−εl)2 log |S|δ

)
comparisons and outputs r̂, an εu maximum of S, such that
either r̂ = r or p̃r̂,r > εl+εu

2 .

Now we build on SOFT-SEQ-ELIM and propose a near lin-
ear algorithm NEAR-OPT-MAX.
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4.2. NEAR-OPT-MAX

NEAR-OPT-MAX(S, ε, δ) w.p.≥ 1 − δ, uses

O
(
|S|
ε2

(
log |S|δ

)2)
comparisons and outputs an ε-

maximum of S.

Since complexity of SOFT-SEQ-ELIM depends on the ini-
tial anchor element, if we can pick a good initial anchor
element, then we can reduce the number of comparisons.
One way to pick a good initial anchor element is to find an
ε/2-maximum of a randomly picked subset.

Lemma 5 shows that an ε-maximum of a randomly picked
subset is a good anchor element. Proof in Appendix C.4.

Lemma 5. If r is an ε-maximum of a set Q, formed by
picking m elements randomly from S, then w.p.≥ 1 − δ, r
is an

(
ε, |S|m log |S|δ

)
-good anchor element of S.

NEAR-OPT-MAX(S, ε, δ) first picks a random subset Q of

size
√
|S| log 4|S|

δ and uses SOFT-SEQ-ELIM to find an
ε/2-maximum of Q.

By Lemma 5, w.p.≥ 1 − δ/4, an ε/2-maximum of Q will

be an (ε/2,
√
|S| log 4|S|

δ )-good anchor element. NEAR-
OPT-MAX then uses SOFT-SEQ-ELIM with ε/2-maximum
of Q as initial anchor to find an ε-maximum of S. Since
the initial anchor is provably good, we are able to bound
the comparisons.

Algorithm 2 NEAR-OPT-MAX

1: inputs
2: Set S, bias ε, confidence δ

3: Form a set Q by selecting
√
|S| log 4|S|

δ random ele-
ments from S without replacement.

4: a← random element from Q, Q = Q \ {a}
5: r ← SOFT-SEQ-ELIM

(
Q, a, 0, ε2 ,

δ
4

)
, S = S \ {r}

6: return SOFT-SEQ-ELIM(S, r, ε/2, ε, δ/2)

Lemma 6 bounds the comparisons used by
NEAR-OPT-MAX and proves its correctness.

Lemma 6. With probability ≥ 1 − δ,

NEAR-OPT-MAX(S, ε, δ) uses O
(
|S|
ε2

(
log |S|δ

)2)
comparisons and outputs an ε-maximum of S.

We build on NEAR-OPT-MAX and derive an optimal algo-
rithm for δ ≥ min(1/|S|, e−|S|1/4).

4.3. Optimal linear Algorithm

We first present an algorithm that is optimal for low ranges
of δ i.e., min(e−|S|

1/4

, 1/|S|) ≤ δ ≤ 1
|S|1/3 .

4.3.1. LOW RANGES OF δ

We first find a good anchor, this time using NEAR-OPT-
MAX and then use SOFT-SEQ-ELIM with NEAR-OPT-
MAX output as initial anchor.

OPT-MAX-LOW picks a random subset of size |S|3/4 and
finds an ε/2-maximum of this set using NEAR-OPT-MAX.
We later show that output is an (ε/2,O(

√
|S|))-good an-

chor element of S. OPT-MAX-LOW then uses SOFT-SEQ-
ELIM with the previous output as initial anchor to find an
ε-maximum of S. Since initial anchor is good, we are able
to bound comparisons used by OPT-MAX-LOW.

Observe that in OPT-MAX-LOW, we call SOFT-SEQ-ELIM
three times in total: two times during NEAR-OPT-MAX
and once to produce the final output. Each successive call
of SOFT-SEQ-ELIM acts on higher size, namely first we
find ε/4-maximum in a small set and using this element
as anchor, then we find ε/2-maximum in a larger set and
finally using this new element as anchor, we find an ε-
maximum of the whole set S.

Algorithm 3 OPT-MAX-LOW

1: inputs
2: Set S, bias ε, confidence δ
3: Form a set Q by selecting |S|3/4 random elements

from S without replacement
4: r ← NEAR-OPT-MAX(Q, ε2 ,

δ
3 )

5: return SOFT-SEQ-ELIM(S, r, ε2 , ε,
δ
3 )

Lemma 7 bounds comparisons used by OPT-MAX-LOW
and proves its correctness. Proof is in Appendix C.6.

Lemma 7. For 1
|S|1/3 ≥ δ ≥ min(1/|S|, e−|S|1/4), w.p.≥

1− δ, OPT-MAX-LOW(S, ε, δ) uses O( |S|ε2 log 1
δ ) compar-

isons and outputs r, an ε-maximum

4.3.2. HIGHER RANGES OF CONFIDENCE δ

For low ranges of confidence δ
(
δ ≤ 1

|S|1/3

)
, notice that

log 1
δ and log |S|δ are of same order and hence if we use

SOFT-SEQ-ELIM with a good anchor, we can guarantee
complexity of O

(
|S|
ε2 log |S|δ

)
= O

(
|S|
ε2 log 1

δ

)
.

However, for high values of δ, this is not the case. We
solve this problem by pruning S to a smaller set of size
|S|/ log |S| such that it contains all good elements and then
use SOFT-SEQ-ELIM. Due to space constraint, we present
PRUNE, the pruning algorithm, OPT-MAX-MEDIUM, and
OPT-MAX-HIGH, linear complexity maxing algorithms for
higher ranges of confidence in Appendix C.8.

4.4. Full Algorithm
In Theorem 8 we bound comparisons used by OPT-MAX
and prove its correctness. Proof follows from Lemmas 7
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Algorithm 4 OPT-MAX

inputs
Set S, bias ε, confidence δ

if δ ≤ 1
|S|1/3 then

return OPT-MAX-LOW(S, ε, δ)
end if
if δ ≤ 1

log |S| then
return OPT-MAX-MEDIUM(S, ε, δ)

end if
return OPT-MAX-HIGH(S, ε, δ)

and corresponding Lemmas 19 and 20 for OPT-MAX-
MEDIUM and OPT-MAX-HIGH given in Appendix C.8.

Theorem 8. For δ ≥ min(1/|S|, e−|S|1/4), w.p.≥ 1 −
δ, OPT-MAX(S, ε, δ) uses O

(
|S|
ε2 log 1

δ

)
comparisons and

outputs an ε-maximum of S.

5. Ranking for SST+STI
(Falahatgar et al., 2017b) provides a ranking algorithm that
w.p.≥ 1 − 1/|S|, uses O

(
|S|
ε2 log |S|(log log |S|)3

)
com-

parisons and outputs an ε-ranking of input set S.

We build on their algorithm BINARY-SEARCH-RANKING,
improving two components which lead to additional
(log log |S|)3 factor, thereby proposing an optimal ε-
ranking algorithm that uses O

(
|S|
ε2 log |S|

)
comparisons.

In Appendix 5, we outline the algorithm proposed in (Fala-
hatgar et al., 2017b), pointing out the two components
that lead to additional factor, and present ideas that im-
prove over these components. For detailed explanation of
BINARY-SEARCH-RANKING we refer readers to (Falahat-
gar et al., 2017b). Now we explain the high-level idea of
how we improve over these components.

The two components that we improve upon share the prop-
erty that each is being called for Ω(|S|/(log |S|)3) times
and at each time finds a correct output w.p.≥ 1− 1/|S|5.

Instead of finding a correct output w.p.≥ 1− 1/|S|5 in one
shot, and incurring high complexity, we propose the fol-
lowing. First use the component to find a correct output
w.p.≥ 1 − 1/ log |S|, then check if the output is correct or
not. If the output is deemed to be not correct, run the com-
ponent again, finding a correct output w.p.≥ 1− 1/|S|6.

Thus to show the potency of this idea, it suffices to show:
One, the second run is only invoked a few times and two,
the complexity of checking whether an output is correct is
not high. Our main contribution is RANK-CHECK algo-
rithm that checks if an ordered set is ε-ranked or not 3ε-
ranked. We present RANK-CHECK in Appendix D.3

Theorem 9. BINARY-SEARCH-RANKING(S, ε) (Falahat-
gar et al., 2017b) with new improved components presented
here, w.p.≥ 1−1/|S|, usesO

(
|S| log |S|

ε2

)
comparisons and

outputs an ε-ranking of S.

6. Lower bound for ranking for MST+STI
In this section we show that there exists a model with both
MST and STI properties under which any PAC ranking al-
gorithm requires quadratic many comparisons. Consider
the model S = {a1, a2, ..., an} s.t. a1 is preferable to
a2 i.e., p̃a1,a2 = 1/2 and comparison between any other
pair is almost a fair coin flip i.e., p̃ai,aj = µ ∀i < j and
{i, j} 6= {1, 2} for some µ < 1/n10. This model satisfies
both MST and STI. Any permutation which has a1 coming
after a2 is a 1/4-ranking. But since comparison between
any pair other than (a1, a2) is essentially a fair coin toss,
any strategy that does not compare a1 and a2 will not have
them in correct order in the output w.p.≈ 1/2 and hence
won’t be a 1/4-ranking. Therefore this problem is simi-
lar to finding a single biased coin among

(
n
2

)
coins which

needs Ω(n2) comparisons.

Theorem 10 bounds the complexity required for ε-ranking
of models with MST and STI. Proof is in Appendix E.

Theorem 10. There exists a model with MST and STI prop-
erties for which any algorithm requires Ω(n2) comparisons
to output a 1/4-ranking w.p.≥ 7/8.

7. Finding pairwise probabilities for SST+STI
Theorem 9 shows that for a model satisfying both SST and
STI, an ε-ranking can be found using O

(
|S| log |S|

ε2

)
com-

parisons. In this section we answer the question whether
under same model we can approximate all pairwise proba-
bilities to accuracy of ε using almost same complexity.

We first show a lower bound of Ω
(
|S|min(|S|,1/ε)

ε2 log |S|
)

utilizing a model for which Ω(|S|min(|S|, 1/ε)) pairwise
probabilities need to be approximated using comparisons.
Later we present APPROX-PROB that uses comparisons
only for O(|S|min(|S|, 1/ε)) pairs and hence obtain or-
derwise same upper bound as lower bound.

7.1. Lower Bound

We show that any algorithm requires
Ω
(
|S|min(|S|,1/ε) log |S|

ε2

)
comparisons to approximate

all pairwise probabilities to ε accuracy.

We prove the lower bound by using the model: (4k+4)ε ≤
p̃ai+k,ai ≤ (4k + 8)ε for 1 ≤ k ≤ min(n − i, b 1

16ε − 2c)
and p̃ai+k,ai = 1/4 for k > min(n− i, b 1

16ε − 2c).

It can be shown that this model satisfies both SST and STI.
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Under this model, the only way to approximate unfixed
pairwise probabilities is by comparing those pairs. Since
pairwise probabilities are not fixed for Ω(nmin(n, 1/ε))
pairs, any algorithm needs to approximate those many
probabilities to accuracy of ε, hence the lower bound.

Theorem 11 bounds the required complexity to approxi-
mate all pairwise probabilities. Proof is in Appendix F.1
Theorem 11. For ε < 1/48, there exists a model that sat-
isfies both SST and STI for which any algorithm requires
Ω
(
|S|min(|S|,1/ε)

ε2 log |S|
)

comparisons to approximate all

pairwise probabilities to ε accuracy w.p. ≥ 3/4.

7.2. Upper Bound

Here we propose an algorithm to approximate all pairwise
probabilities to an accuracy of ε.

The proposed algorithm, first finds an ε/8-ranking of the
input set S and then approximates pairwise probabilities.
By Theorem 9, w.p.≥ 1− 1

|S|2 we can find an ε/8-ranking

of the input set S using O
(
|S| log |S|

ε2

)
comparisons. We

present APPROX-PROB that given an ε/8-ranked set, ap-
proximates all pairwise probabilities to an accuracy of ε.

APPROX-PROB APPROX-PROB takes an ε/8-ranked or-
dered set S i.e., p̃S(i),S(j) ≤ ε/8 ∀i < j and bias ε and
approximates all pairwise probabilities to an accuracy of ε.

Note that it is enough to approximate p̃S(j),S(i) for j ≥ i
since p̃S(i),S(j) = −p̃S(j),S(i). For all i > 1, APPROX-

PROB compares S(i) and S(1), 16 log |S|4
ε2 times and ap-

proximates p̃S(i),S(1) by ˆ̃pS(i),S(1), the fraction of times
S(i) won rounded off to the nearest multiple of ε. Since
for perfectly ranked ordered set p̃S(i+1),S(1) ≥ p̃S(i),S(1),
if ˆ̃pS(i+1),S(1) < ˆ̃pS(i),S(1), then APPROX-PROB corrects
ˆ̃pS(i+1),S(1), setting it equal to ˆ̃pS(i),S(1). It can be shown
that p̃S(i),S(1) is approximated to an accuracy of 7ε

8 .

APPROX-PROB continues this process by approximating
p̃S(i),S(2) for i ≥ 2 by increasing i one at a time.
For a perfectly ranked set, p̃S(i−1),S(2) ≤ p̃S(i),S(2) ≤
p̃S(i),S(1) and hence if ˆ̃pS(i−1),S(2) = p̃S(i),S(1), APPROX-
PROB does not use comparisons to approximate p̃S(i),S(2),
instead assigns ˆ̃pS(i),S(2) = ˆ̃pS(i−1),S(2). Whenever
ˆ̃pS(i−1),S(2) 6= p̃S(i),S(1), APPROX-PROB approximates
p̃S(i),S(2) by comparing S(i) and S(2). It can be shown
that p̃S(i),S(2) is approximated to accuracy of ε.

APPROX-PROB continues this process for S(3), then S(4)
and so on until S(n). Notice that whenever ˆ̃pS(i−1),S(j) =
ˆ̃pS(i),S(j−1), APPROX-PROB does not use comparisons to
approximate p̃S(i),S(j) but simply assigns ˆ̃pS(i),S(j) =
ˆ̃pS(i−1),S(j). We show this in fact happens at many places

and only O(|S|min(|S|, 1/ε)) pairwise probabilities are
approximated using comparisons. This enables obtaining
orderwise same upper bound as the lower bound.

Algorithm 5 APPROX-PROB

1: inputs
2: Ordered Set S, bias ε
3: ˆ̃pS(1),S(1) = 0
4: for i from 2 to |S| do
5: Compare S(1) and S(i) for 16

ε2 log |S|4 times

6: ˆ̃pS(i),S(1) =
[

fraction of times S(i) won
ε − 1

2

]
ε

7: if ˆ̃pS(i),S(1) < ˆ̃pS(i−1),S(1) then
8: ˆ̃pS(i),S(1) = ˆ̃pS(i−1),S(1)
9: end if

10: end for
11: for j from 2 to |S| do
12: ˆ̃pS(j),S(j) = 0
13: for k from j + 1 to |S| do
14: if ˆ̃pS(k−1),S(j) = ˆ̃pS(k),S(j−1) then
15: ˆ̃pS(k),S(j) = ˆ̃pS(k−1),S(j)
16: else
17: Compare S(j) and S(k) for 16

ε2 log |S|4 times

18: ˆ̃pS(k),S(j) =
[

fraction of times S(k) won
ε − 1

2

]
ε

19: end if
20: end for
21: end for

Theorem 12 shows the correctness of APPROX-PROB and
bounds its comparisons. Proof is in Appendix F.3

Theorem 12. Given an ε/8-ranked ordered set S i.e.,
p̃S(i),S(j) ≤ ε/8 ∀i < j, APPROX-PROB(S, ε) uses
O( |S|min(|S|,1/ε)

ε2 log |S|) comparisons and w.p.≥ 1− 1
|S|2

approximates all pairwise probabilities to accuracy of ε.

8. Experiments
In this section, we compare the performance of our max-
ing algorithms with previous work on synthetic data. All
results presented here are averaged over 1000 runs.

We compare our maxing algorithms SOFT-SEQ-
ELIM, NEAR-OPT-MAX, and OPT-MAX with SEQ-
ELIMINATE (Falahatgar et al., 2017a), KNOCK-
OUT (Falahatgar et al., 2017b), MallowsMPI (Busa-
Fekete et al., 2014a), AR (Heckel et al., 2016) and
BTM-PAC (Yue & Joachims, 2011). KNOCKOUT and
BTM-PAC are PAC maxing algorithms for models with
both SST and STI properties. SEQ-ELIMINATE is a
PAC maxing algorithm for SST model. MallowsMPI,
originally designed for Mallows model, finds a condorcet
winner which exists under WST. AR is a maxing algorithm
that finds Borda winner that is same as condorcet winner
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Figure 1. Maxing Algorithms for model with SST and STI

under WST. In all experiments, we use maxing algorithms
to find a 0.05-maximum with δ = 0.1.

We first consider the model pi,j = 0.6 ∀i < j same as
in (Yue & Joachims, 2011; Falahatgar et al., 2017b;a) that
satisfies both SST and STI properties. Note that i = 1
is the only 0.05-maximum under this model. Figure 1
presents number of comparisons used by each maxing algo-
rithm. Observe that compared to other algorithms, BTM-
PAC uses too many comparisons even for n = 15. The
reason might be BTM-PAC is mainly intended for reduc-
ing regret in the conventional bandits setting. The bar for
BTM-PAC complexity for n = 100 is not fully shown in
the figure to better scale the other complexity bars. Com-
parison complexity of AR is high for n = 100 mainly be-
cause AR eliminates elements based on Borda scores and
Borda scores are very close to each other for large n. We
drop BTM-PAC and AR henceforth.

Now we consider a model that satisfies MST but not SST,
i.e., p5i+l,5i+k = 0.6 ∀i < n/5 − 1, 1 ≤ l < k ≤ 5 and
p5i+l,5j+k = 0.52 ∀i < j < n/5 − 1, 0 < l, k ≤ 5. No-
tice that under this model elements are divided into groups
of five where within each group |p̃i,j | = 0.1 and for ele-
ments in two different groups |p̃i,j | = 0.02, hence there is a
0.05-maximum in each group. Figure 2 demonstrates com-
parison complexity of algorithms under this model. SEQ-
ELIMINATE uses fewer comparisons, but it fails to out-
put a 0.05-maximum with probability 0.21 for n = 25 and
0.19 for n = 100. Hence SEQ-ELIMINATE fails once
SST is not satisfied. This is because when you compare a
0.05-maximum of a group with an element in other group,
0.05-maximum can get eliminated with probability ≈ 0.5.
Hence with lots of groups SEQ-ELIMINATE fails. Other
algorithms find a 0.05-maximum in all runs. We drop SEQ-
ELIMINATE henceforth.

Now we consider a model that does not satisfy STI but sat-
isfies MST i.e., n = 10 and p1,j = 1/2 + q̃ ∀j ≤ n/2,
p1,j = 1 ∀j > n/2 and pi,j = 1/2 + q̃ ∀1 < i < j,
q̃ < 0.05. Under this model any i ≤ 5 is a 0.05-maximum.
Figure 3 shows the average comparison complexity of al-
gorithms under this model. KNOCKOUT uses fewer com-
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Figure 2. Maxing Algorithms for model with MST but not SST
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Figure 3. Maxing algorithms for model without STI

parisons, but fails to output a 0.05-maximum with probabil-
ity 0.12 for q̃ = 0.001 and 0.25 for q̃ = 0.0001, hence fails
to meet the confidence requirement once STI is dropped.
Other algorithms find a 0.05-maximum in all runs.

It is interesting to note that MallowsMPI uses more com-
parisons as q̃ decreases, whereas the complexity of other
algorithms remains almost same. This is because Mal-
lowsMPI tries to find absolute maximum which is not al-
ways practical. Further note that the performance of SOFT-
SEQ-ELIM is better than NEAR-OPT-MAX, and NEAR-
OPT-MAX is better than OPT-MAX. This is because the
bias gap for SOFT-SEQ-ELIM, NEAR-OPT-MAX and OPT-
MAX is ε, ε/2 and ε/4 respectively, resulting in higher con-
stants for NEAR-OPT-MAX and OPT-MAX. While the the-
oretical order complexity is higher for SOFT-SEQ-ELIM,
in practice it can find a good anchor quickly and seems to
have near-linear order complexity.

9. Conclusion
We studied the problem of maxing, ranking, and estimating
comparison probabilities under different stochastic transi-
tivity constraints. We showed that under WST, maxing
needs quadratic comparisons. We also presented a linear-
complexity algorithm for maxing under MST. We also pro-
posed an optimal ranking algorithm for SST models with
Stochastic Triangle Inequality, closing (log log n)3 gap.
For the same model, we proposed an optimal algorithm for
estimating the comparison probabilities.
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Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K.
Label ranking by learning pairwise preferences. Artifi-
cial Intelligence, 172(16-17):1897–1916, 2008.

Jang, M., Kim, S., Suh, C., and Oh, S. Top-k ranking from
pairwise comparisons: When spectral ranking is optimal.
arXiv preprint arXiv:1603.04153, 2016.

Lee, D. T., Goel, A., Aitamurto, T., and Landemore, H.
Crowdsourcing for participatory democracies: Efficient
elicitation of social choice functions. In Second AAAI
Conference on Human Computation and Crowdsourc-
ing, 2014.

Luce, R. D. Individual choice behavior: A theoretical anal-
ysis. Courier Corporation, 2005.

Mohajer, S., Suh, C., and Elmahdy, A. Active learning for
top-k rank aggregation from noisy comparisons. In In-
ternational Conference on Machine Learning, pp. 2488–
2497, 2017.

Negahban, S., Oh, S., and Shah, D. Iterative ranking from
pair-wise comparisons. In NIPS, pp. 2474–2482, 2012.

Negahban, S., Oh, S., and Shah, D. Rank centrality: Rank-
ing from pairwise comparisons. Operations Research,
2016.

Plackett, R. L. The analysis of permutations. Applied
Statistics, pp. 193–202, 1975.

Radlinski, F. and Joachims, T. Active exploration for learn-
ing rankings from clickthrough data. In Proceedings of
the 13th ACM SIGKDD, pp. 570–579. ACM, 2007.

Radlinski, F., Kurup, M., and Joachims, T. How does click-
through data reflect retrieval quality? In Proceedings of
the 17th ACM conference on Information and knowledge
management, pp. 43–52. ACM, 2008.

Rajkumar, A. and Agarwal, S. A statistical convergence
perspective of algorithms for rank aggregation from pair-
wise data. In Proc. of the ICML, pp. 118–126, 2014.

Shah, N., Balakrishnan, S., Guntuboyina, A., and Wain-
wright, M. Stochastically transitive models for pairwise
comparisons: Statistical and computational issues. In
International Conference on Machine Learning, pp. 11–
20, 2016a.

http://www.gif.gf/


The Limits of Maxing, Ranking, and Preference Learning

Shah, N. B., Balakrishnan, S., and Wainwright, M. J.
Feeling the bern: Adaptive estimators for bernoulli
probabilities of pairwise comparisons. arXiv preprint
arXiv:1603.06881, 2016b.

Skorepa, M. Decision making: a behavioral economic ap-
proach. Palgrave Macmillan, 2010.

Soufiani, H. A., Chen, W., Parkes, D. C., and Xia, L. Gen-
eralized method-of-moments for rank aggregation. In
Advances in Neural Information Processing Systems, pp.
2706–2714, 2013.
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A. Lower bound for WST
Outline: We first present a model that satisfies WST

and relate it to a linear jigsaw puzzle such that lower
bound on jigsaw puzzle implies lower bound for finding
an 1/4-maximum under the model.

Consider the following model with n elements S =
{1, 2, . . . , n} : p̃i,i+1 = 1

2∀i < n, and p̃i,j = µ(0 <
µ < 1/n10),∀j > i + 1. This model satisfies WST since
there exists an underlying order �, i � j if i < j (because
p̃i,j > 0). Observe that 1 is the only 1/4-maximum under
this model.

We prove the Lemma by reducing the above model to the
model where µ is replaced by 0.

Note that µ is so small that if we consider a model where
we replace µ with 0, the comparisons behave essentially
similarly. More formally, let Mµ be the model considered
above and M0 be the model when µ is replaced with 0.
Let C denote a sequence of comparisons where each ele-
ment of the sequence includes the elements compared and
its outcome. Further, for each sequence C, let Pµ(C) and
P0(C) denote the probability of sequence C under models
Mµ and M0 respectively. Now consider a sequence C of
comparisons of length ≤ n2/20. Then

P0(C)

Pµ(C)
≥
(

1/2

1/2 + µ

)n2/20

≥ e−n
2/(10n10) ≥ 6

7

Thus the probability of any sequence of length ≤ n2

20 is
approximately same under both models. Hence if there is
an algorithm that uses ≤ n2

20 comparisons and w.p.≥ 7/8
produces the 1/4-maximum under Mµ model then apply-
ing same algorithm over M0 model produces the 1/4-
maximum w.p.≥ 7

8 ·
6
7 = 3

4 . Hence, lower bound of Ω(n2)
over M0 model implies a lower bound of Ω(n2) over Mµ

model.

We now show that underM0 model, any algorithm requires
Ω(n2) comparisons to find the 1/4-maximum w.p.≥ 3

4 ,
thus proving the Lemma. From now, we only consider
model M0.

Notice that underM0, whenever two non adjacent elements
are compared i.e., i and j with |i− j| > 1, the comparison
output is a fair coin toss. We make the problem simpler by
revealing the extra information of whether elements that are
being compared are adjacent or not. Notice that this only
makes the problem easier, namely, complexity for modified
problem is smaller than that of original problem.

The modified problem is similar to a linear jigsaw puzzle
where if we ask a question about two pieces we will know if
pieces are adjacent or not and if adjacent, which piece is on
the left and the goal is to find the left most piece. To make
the proof simpler, we change the question model slightly.

In the new model, when we question about ordered pair
(e, f), we get to know if e is left neighbor of f . Notice that
we can simulate one question in previous model by asking
two questions (e, f) and (f, e) in new model.

Now we present proof to show that for linear jigsaw puz-
zle, any algorithm requires Ω(n2) comparisons to find the
left most piece with probability ≥ 3/4. This implies the
Lemma.

A.1. Lower bound for Jigsaw Puzzle

Outline: We first describe the main idea briefly. No-
tice that we start with n unconnected components where
each piece refers to an unconnected component. Each
new connection (two pieces are connected if they are
neighbours) revealed between the pieces reduces the
number of unconnected components by 1. We first show
that for some small constant c, even after asking c2n2/2
questions, w.h.p., < 20cn connections are revealed. For
this, we divide pieces into two groups based on num-
ber of questions asked about them. Group 1: pieces for
which ≤ cn questions are asked and Group 2: pieces
for which > cn questions are asked. Then we bound
the probability that a question between two pieces from
Group 1 results in finding a new connection by 8/n.
Therefore, by asking c2n2/2 questions w.h.p., we will
find ≤ 16cn such connections. Since total number
of questions asked is c2n2/2, number of pieces about
which we have asked > cn questions is < cn. Hence
w.h.p. total number of connections found using c2n2/2
comparisons is < 16cn+ 2 · cn < 20cn.

Since total connections found is < 20cn there are >
(1 − 20c)n unconnected components. We show that all
unconnected components’ leftmost pieces for which we
asked less than ≤ cn questions are all almost equally
likely to be the leftmost piece of the entire puzzle. Hence
returning such a piece as the leftmost piece of puzzle
will give accuracy of onlyO(1/n). Further we show that
the probability that out of c2n2/2 total questions, we
have asked > cn questions about the left most piece, is
bounded by 2c. This results in an upper bound of 3/4
on probability of success in finding the left most piece.

Setup: We have n elements from 1 to n. Let P denotes
the set of all possible permutations of elements in [n]. Note
|P| = n!. Adversary chooses a permutation from P ran-
domly uniformly. And we want to know the top element in
the permutation chosen by adversary.

Let q(i,j) corresponds to the question whether i is left
neighbour of j and ξ be the set of all questions i.e., ξ =
{q(i,j) : i 6= j and i, j ∈ [n]}.

Let A(q(i,j)) denotes the answer of question q(i,j) which
takes the value 1, if the answer is ”yes” (i is left neighbor
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of j) and 0 if it is ”no”. Note that |ξ| = n(n − 1), and for
any chosen permutation, exactly n − 1 of these have yes
answers.

At each time step we ask a question qt = q(lt,rt) ∈ ξ and
get answer At = A(qt). An algorithm is an strategy to
decide which question is to be asked next based on the re-
sponse of questions asked in past.

Formally any algorithm A consists of a sequence of func-
tions ft, such that qt = ft(q

t−1
1 ×At−11 ) ∈ ξ, we allow fts

to be random functions. For any reasonable algorithm we
can assume qt 6= qk for k ∈ [t− 1], i.e. it will not ask same
question twice.

We denote set of all the questions asked till time t by Qt ,
{qk ∀ k ∈ [t]}. Let Y (t) = {qj : A(qj) = 1, j ∈ [t]},
denotes the collection of questions asked till time t, which
resulted in “yes” answers (or new connections).

Let Pt be the set of all valid permutations at time t.
At start, P0 = P . When we ask qt = q(lt,rt), if At = 1,
then to get Pt from Pt−1, we remove all such permutations
from Pt−1 in which lt is not the left neighbour of rt,
and if At = 0 we do the opposite i.e. remove all such
permutations from Pt−1 in which lt is left neighbour of
rt to get Pt. After asking t questions all permutations in
Pt have equal chances of being the correct permutation
(Since posterior distribution will have equal probability for
all the valid permutations, because prior distribution was
uniform).

We divide the elements into two groups based on num-
ber of questions asked about the element. For that, let
ni(t) , |{k ∈ [t] : i = lk or i = rk}|, denotes the number
of questions asked, which involves element i.

Let T = c2n2/2, with c = 1/1000. From now on
we assume t ≤ T . Let χ(t) , {i : |ni(t)| > cn}, which
is collection of all the elements about which we asked
more than cn questions till time t. Then from pigeonhole
principle we have:

|χ(t)| ≤ cn.

Define indicator random variable I(t) which takes values 1,
if A(q(t)) = 1 and lt /∈ χ(t− 1) and rt /∈ χ(t− 1). Then,
we can bound the total number of yes answers |Y (t)| by
the sum of I(k) upto time t and size of χ(t).

|Y (t)| ≤
∑
k∈[t]

I(k) + 2|χ(t)| ≤
∑
k∈[t]

I(k) + 2cn,

where first inequality follows from: each element in χ(t)
can increase the count of yes answers by 2 at most.

Now we bound the total number of yes answers by 20cn.

Lemma 13. For any algorithm A, T = c2n2/2,
Pr[|Y (T )| > 20cn] < 1/4.

Proof. To show that |Y (T )| ≤ 20cn, it is enough to show
that

∑
k∈[T ] I(k) ≤ 18cn.

Let us count the time steps t for which I(t) = 1 as
success. Then we show that probability of success in a
time step is upper bounded by 8/n until first 18cn suc-
cesses. Then number of steps taken for kth success for
k < 18cn can be thought as geometric distribution with
mean > n/8. Therefore to get 18cn successes we need
more than ∼ 18cn× n/8 > 2cn2 steps, and probability of
getting as many successes is c2n2/2, with c small enough
is< 1/4 (follows from properties of negative binomial dis-
tribution, which is sum of geometric distributions).
We complete the proof by showing that

Pr[I(t) = 1 |
∑

k∈[t−1]

I(k) < 18cn] < 8/n (1)

Lets assume
∑

k∈[t−1]
I(k) < 18cn.

Then we prove that for any pair α, β ∈ [n] such that α, β /∈
χ(t − 1) and q(α,β) /∈ Qt−1, the fraction of permutations
in Pt−1, in which α is left neighbour of β is ≤ 8/n.
Let B1 be the collection of all the permutations in Pt−1
in which α is left neighbour of β and α is ranked in top
n/2 elements. Similarly, let B2 be the collection of all the
permutations in Pt−1 in which α is left neighbour of β and
α is ranked in bottom n/2 elements. We first show that
|Pt−1| ≥ |B1|n/4.

For each permutation in B1, we show a set of permutations
of size > n/4 such that all sets are disjoint and no permu-
tation has α as left neighbour of β. We consider following
permutation, which is a member of B1.

by, by−1, ....b2, b1, α, β, a1, a2, a3, ...., ax−1, ax

Here x+ y + 2 = n and x > n/2− 2.

Let u be the minimum index such that algorithm has asked
less than cn questions about au−1 and questions (α, au),
(au−1, au) are not asked before time t i.e.,
u = min{i > 1 : ai−1 /∈ χ(t − 1) and q(α,ai) /∈
Qt−1 & q(ai−1,ai) /∈ Qt−1}.

Note that u ≤ 1 + |{i : ai−1 ∈ χ(t− 1)}|+
|{i : q(α,ai) ∈ Qt−1}|+ |{i : q(ai−1,ai) ∈ Qt−1}|.

Observe that:

|{i : ai−1 ∈ χ(t− 1)}| ≤ |χ(t− 1)| ≤ cn (2)

and

|{i : q(α,ai) ∈ Qt−1}| ≤ nα(t− 1) ≤ cn. (3)
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If ai−1 is right neighbour of ai in a valid permutation in
Pt−1, then if q(ai−1,ai) has been asked then it would have
resulted in answer “yes” because if answer was “no” then
they can’t be neighbours in a valid permutation. Hence
|{i : q(ai−1,ai) ∈ Qt−1}| is upper bounded by |Y (t −
1)|. Combining these and with our assumption above that∑
k∈[t−1]

I(k) ≤ 18cn, we get,

u ≤ 1+cn+cn+2cn+
∑

k∈[t−1]

I(k) ≤ 1+22cn ≤ n/32.

(4)
Let Λ be the set of indices i > u + 1 such that questions
q(α,ai), q(au−1,ai), q(ai−1,ai) and q(ai−1,β) are not asked be-
fore time t− 1 i.e.,
Λ = {i > u + 1 : q(α,ai) /∈ Qt−1 & q(a(u−1),ai) /∈
Qt−1 & q(ai−1,ai) /∈ Qt−1 & q(ai−1,β) /∈ Qt−1}.

Notice that

|Λ| ≥ x− u− 1− |{i : q(α,ai) ∈ Qt−1}|
− |{i : q(a(u−1),ai) ∈ Qt−1}| − |{i : q(ai−1,ai) ∈ Qt−1}|
− |{i : q(ai−1,β) ∈ Qt−1}|.

Observing x > n/2− 2, then following the steps similar to
the proof of equation (4) we get:

|Λ| ≥ n/2− 2− n/32− 1− nα(t− 1)

− na(u−1)
(t− 1)− |Y (t− 1)| − nβ(t− 1)

≥n/2− 2− n/32− 1− cn− cn− 20cn− cn
≥15n/32− 3− 23cn

≥n/4.

For any v ∈ Λ, we claim that following permutation will
also be part of Pt−1:

{by, by−1, ...., b2, b1, α}, {au, au+1, ..., av−1},
{β, a1, a2, ..., au−1}, {av, av+1, ....ax}.

In above permutation we have put curly parentheses to
highlight the changes made from original permutation. To
show that the permutation above is valid, i.e., lies in Pt−1,
we need to show that (α, au), (av−1, β) and (au−1, av) are
valid connections,which is easy to do from the definition of
u and Λ. We skip the details here.

The original permutation can be uniquely recovered by
finding the link (au−1, av), which can be found using the
fact that (au−1, av) is the first set of consecutive elements
(i, j) which are ranked after β such that q(i,j) /∈ Qt−1,
q(α,j) /∈ Qt−1 and i /∈ χ(t − 1) (this again can be
verified from the definition of u and Λ). Therefore, to
each permutation in B1, we can map a disjoint set of n/4
permutations, which are part of Pt−1 and in which α is not

the right neighbour of β.
Hence |Pt−1| ≥ |Λ| × |B1| ≥ |B1|n/4. Similarly, it can
be shown that |Pt−1| ≥ |B2|n/4. Therefore,

Pr[A(q(α,β)) = 1|
∑

k∈[t−1]

I(k) < 18cn]

=
|B1|+ |B2|
|Pt−1|

≤ 8/n.

Thus we get:

Pr[I(t) = 1|
∑

k∈[t−1]

I(k) < 18cn] ≤ 8/n.

Next, we prove that if β /∈ χ(t−1) and |Y (t−1)| ≤ 20cn,
then Pr[β is top element in permutation] ≤ 2/n ∀ t ≤
c2n2/2. We use the same idea as earlier in the proof, to
each permutation in Pt−1 with β as top element, we can
map a disjoint set of n/2 permutations which are also part
of Pt−1, and don’t have β at the top.
Consider the following permutation of Pt−1, in which β is
a top element.

β, a1, a2, a3, ..., an−2, an−1

Let û be the minimum index such that question q(aû−1,aû)

is not asked before and algorithm didn’t ask more than cn
questions about aû−1 i.e.,
û = min{i > 1 : ai−1 /∈ χ(t− 1) and q(ai−1,ai) /∈ Qt−1}.
Note that
û ≤ 1+ |{i : ai−1 ∈ χ(t−1)}|+ |{i : q(ai−1,ai) ∈ Qt−1}|.

As before

û ≤ 1 + cn+ |Y (t− 1)| < 1 + cn+ 20cn < n/16.

Let Λ̂ be the set of all indices i > û+ 1 such that questions
q(a(û−1),ai), q(ai−1,ai), q(ai−1,β) are not asked before i.e.,

Λ̂ = {i > û + 1 : q(a(û−1),ai) /∈ Qt−1 & q(ai−1,ai) /∈
Qt−1 & q(ai−1,β) /∈ Qt−1}. Then observe that

|Λ̂| ≥ n− 2− û− |{i : q(au−1,ai) ∈ Qt−1}|
− |{i : q(ai−1,ai) ∈ Qt−1}| − |{i : q(ai−1,β) ∈ Qt−1}|
≥ n− 2− n/16− cn− |Y (t− 1)| − cn > n/2

As before, for any v̂ ∈ Λ̂, we claim that following permu-
tation will also be part of Pt−1:

{aû, aû+1, ..., av̂−1}, {β, a1, a2, ..., aû−2, aû−1},
{av̂, av̂+1, ....an−1}
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And it is easy to verify that from this we can get the original
permutation back uniquely. Hence, we have showed that if
|Y (t − 1)| ≤ 20cn, then for any β /∈ χ(t − 1), less than
2/n fraction of all the permutation Pt−1 contains β as the
top element. Therefore, at the end if algorithm returns an
element β /∈ χ(T ) as top element, probability of it being
correct is upper bounded by 2/n. And if we predict the top
element β such that β ∈ χ(T ), then success probability
is upper bounded by the probability that χ(T ) contains the
top element. At t = 0, χ(0) is empty. New elements are
added in χ(.) as we ask new questions. When we asked
cn + 1’th question about that element, from the previous
discussion at that point probability of that element being
top element is upper bounded by 2/n. And we have at
most cn elements in χ(T ), therefore:

Pr
[
χ(T ) contains top element

∣∣∣|Y (t− 1)| ≤ 20cn
]

≤ cn× 2/n = 2c.

Therefore, probability that our prediction of top element is
correct:

Pr[Algorithm returns correct top element]
≤Pr[|Y (T )| > 20cn]

+ Pr[χ(T ) contains top element||Y (t− 1) ≤ 20cn]

+ Pr [Algorithm returns β /∈ χ(T )

and is correct|Y (t− 1)| ≤ 20cn]

≤ 1/4 + 2c+ 2/n < 3/4.

B. Estimating pairwise probabilities for WST
B.1. BRUTE-FORCE

For WST model, (Falahatgar et al., 2017a) presented a
PAC-ranking algorithm that uses O

(
n2

ε2 log n
δ

)
compar-

isons. In the process, they present a trivial algorithm to
estimate all pairwise probabilities to accuracy of ε using
O
(
n2 logn
ε2

)
comparisons. We present their algorithm here

for completeness.

B.1.1. EST-PROB

EST-PROB(i, j, ε, δ) compares i and j for 1
2ε2 log 2

δ times
and returns the fraction of times i won. With probability
≥ 1 − δ, this fraction approximates pi,j to an accuracy of
ε.

Algorithm 6 EST-PROB

1: inputs
2: element i, element j, bias ε, confidence δ.
3: Compare i and j for 1

2ε2 log 2
δ times.

4: return Fraction of times i won

Lemma 14. EST-PROB(i, j, ε, δ) uses 1
2ε2 log 2

δ compar-
isons and w.p.≥ 1 − δ approximates pi,j to an additive
error of ε.

Proof. Proof follows from Hoeffding’s inequality.

B.1.2. BRUTE-FORCE

BRUTE-FORCE(S, ε, δ) approximates all pairwise proba-
bilities pi,j using EST-PROB(i, j, ε, 2δ

|S|(|S|−1) ). Observe
that w.p.≥ 1− 2δ

|S|(|S|−1) , EST-PROB(i, j, ε, 2δ
|S|(|S|−1) ) ap-

proximates p̃i,j to an accuracy of ε. Hence by union bound,
w.p.≥ 1−δ, BRUTE-FORCE(S, ε, δ) approximates all pair-
wise probabilities to an accuracy of ε.

Algorithm 7 BRUTE-FORCE

1: inputs
2: Set S, bias ε, confidence δ
3: for every pair {i, j} such that i, j ∈ S do
4: p̂(i, j)← EST-PROB(i, j, ε2 ,

2δ
n(n−1) )

5: p̂(j, i)← 1− p(i, j)
6: end for

In the below Lemma, we bound complexity of BRUTE-
FORCE and prove its correctness.

Lemma 15. BRUTE-FORCE(S, ε, δ) uses O(n
2

ε2 log n
δ )

comparisons and w.p.≥ 1 − δ approximates all pairwise
probabilities to accuracy of ε.

Notice that under WST, once we all pairwise probabili-
ties are approximated to accuracy of ε/2, one can find ε-
maximum and ε-ranking.

C. PAC maxing for MST
C.1. Property of MST

We first prove a property of MST that helps us in bounding
comparisons for MST.

Lemma 16. Under MST, if ε > 0, p̃i,j ≤ ε, p̃k,j > ε then
p̃i,k ≤ ε.

Proof. We assume that p̃i,k > ε and prove Lemma by con-
tradiction.

Since p̃i,k > ε and p̃k,j > ε, then i � k � j and hence by
MST,

p̃i,j ≥ min(p̃i,k, p̃k,j) > ε

which contradicts the Lemma statement.

Hence p̃i,k ≤ ε.



The Limits of Maxing, Ranking, and Preference Learning

C.2. COMPARE

For better performance in practice COMPARE stops earlier
if p̃i,j � εl or p̃i,j � εu. This step does not affect our
bounds.

Algorithm 8 COMPARE

1: inputs
2: element i, element j, lower bias εl ≥ 0, upper bias

εu > εl, confidence δ
3: initialize
4: εm = εl+εu

2 , ˆ̃pi,j ← 0, ĉ← 1
2 , t← 0, w ← 0

5: while | ˆ̃pi,j − εm| ≤ ĉ + (εu − εl)/4 and t ≤
8

(εu−εl)2 log 2
δ do

6: Compare i and j
7: if i wins then
8: w ← w + 1
9: end if

10: t← t+ 1

11: ˆ̃pi,j ← w
t −

1
2 , ĉ←

√
1
2t log 4t2

δ

12: end while
13: if ˆ̃pi,j < (εl + εm)/2 then
14: return 1
15: end if
16: if ˆ̃pi,j > (εm + εu)/2 then
17: return 3
18: end if
19: return 2

C.2.1. PROOF FOR LEMMA 2

Proof. We first bound the number of comparisons.

Notice that COMPARE(i, j, εl, εu, δ) compares elements i
and j for at most m = 8

(εu−εl)2 log 2
δ times and hence

bound on comparisons follows.

We first show correctness for case of p̃i,j ≤ εl.

Let p̂ti,j and ĉt denote p̂i,j and ĉ respectively after t com-
parisons between i and j during COMPARE(i, j, εl, εu, δ).
COMPARE(i, j, εl, εu, δ) does not output 1 only if p̂ti,j ≥
1
2 + εl+3εu

4 + ĉt for any t < m = 8
(εl−εu)2 log 2

δ or if
p̂mi,j > 1

2 + 3εl+εu
4 . We bound the probability of either

of these events by δ
2 and the result follows from the union

bound.

By Hoeffding’s inequality,

Pr

(
p̂ti,j >

1

2
+
εl + 3εu

4
+ ĉt

)
≤ Pr

(
p̂ti,j >

1

2
+ εl + ĉt

)
≤ e−2t(ĉ

t)2

= e−log
4t2

δ

=
δ

4t2
.

By the union bound, Pr
(
∃t s.t. p̂ti,j >

1
2 + εl+3εu

4 + ĉt
)
≤∑

t
δ

4t2 ≤
δ
2 .

Similarly, by Hoeffding’s inequality,

Pr

(
p̂mi,j >

1

2
+

3εl + εu
4

)
≤ e−2m((εu−εl)/4)2

= e− log 2
δ

=
δ

2
.

Hence if p̃i,j < εl, w.p.≥ 1 − δ, COMPARE outputs 1.
We can prove similarly for cases p̃i,j > εu, εl ≤ p̃i,j ≤
(εl + εu)/2 and (εu + εl)/2 < p̃i,j ≤ εu.

C.3. Proof for Lemma 3

Proof. Observe that COMPARE is called for at most
|S|(|S| − 1)/2 times. Since when calling COMPARE,
we use confidence parameter of 2δ

|S|2 , the probability that
COMPARE gives expected answer always is ≥ 1− δ. From
now, we assume that COMPARE(i, j, εl, εu, 2δ/|S|2) al-
ways returns 1 if p̃i,j ≤ εl, 1 or 2 if εl < p̃i,j ≤ (εl+εu)/2,
2 or 3 if (εl + εu)/2 < p̃i,j ≤ εu and 3 if p̃i,j > εu.

Let r1 be the value of anchor r in the beginning and rt be
the value of r after t− 1 changes of r.

We first show that p̃rt,rl > (εl + εu)/2 for all l < t. Since
rt+1 = e only if COMPARE(e, rt, εl, εu,

2δ
|S|2 ) returns 3,

p̃rt+1,rt > (εl+εu)/2. Hence by MST, p̃rt,rl > (εl+εu)/2
for all l < t.

We now bound the number of comparisons. We first
bound the number of COMPARE calls during SOFT-SEQ-
ELIM. Let T be the set of elements for which r1 is εl-
preferable i.e., T def

= {e : p̃e,r1 ≤ εl}. Since r1 is
an (εl,m)-good anchor element, |T | ≥ |S| − m. No-
tice that for e ∈ T , p̃e,r1 ≤ εl and since p̃rt,r1 >
(εu + εl)/2 > εl by MST and Lemma 16, p̃e,rt ≤ εl
∀t. Hence COMPARE(e, rt, εl, εu, 2δ/|S|2) returns 1 for all
t and therefore, number of COMPARE calls spent on e is
1. Thus number of COMPARE calls spent on set T is |T |.
Since elements in T will not become anchors, there are at-
most |S|−|T | ≤ m rounds and hence number of COMPARE
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calls spent on an element in S \ T is ≤ m. Therefore total
number of COMPARE calls is

≤ |T |+m|S \ T | ≤ |S|+m2.

Since each call of COMPARE(i, j, εl, εu, 2δ/|S|2) uses
O
(

1
(εu−εl)2 log |S|δ

)
comparisons, bound on comparisons

follows.

We now show that output is an εu-maximum. Let ro be the
output. We show that if p̃e,ro > (εl + εu)/2, then e is not
eliminated before last round. Since p̃e,ro > (εl + εu)/2, by
MST p̃e,rt > (εl+εu)/2 and hence not omitted by rt (since
COMPARE(e, rt, εl, εu, 2δ/|S|2) does not return 1). Hence
all elements for which ro is not (εl + εu)/2-preferable are
present in the last round. Since anchor element is not up-
dated in last round, COMPARE(e, ro, εl, εu, 2δ/|S|2) didn’t
return 3 for any remaining element and hence p̃e,r0 ≤ εu
for all elements in the last round and ro is an εu-maximum
of S.

Further notice that either ro = r or p̃ro,r > (εl+εu)/2.

C.4. Proof for Lemma 5

Proof. Let m′ = |S|
m log |S|δ . We now show that w.p.≥

1 − δ, r is an (ε,m′)-good anchor element. We prove this
by showing that for every element e in S which is not an
(ε,m′)-good anchor element,Qwill contain an element for
which e is not ε-preferable. Let e ∈ S be not an (ε,m′)-
good anchor element, then there are more thanm′ elements
for which e is not ε-preferable. The probability that Q does
not contain any element for which e is not ε-preferable is

≤
(

1− m′

|S|

)m
=

(
1− log(|S|/δ)

m

)m
≤ δ

|S|
.

Let T be the set of all elements in S which are not (ε,m′)-
good anchor elements. Hence by union bound, w.p.≥ 1−δ,
for every element e ∈ T , Q has an element for which e is
not ε-preferable.

If r ∈ T , then Q has an element for which r is not ε-
preferable. But this contradicts our assumption that r is an
ε-maximum of Q hence r /∈ T . Therefore r is an (ε,m′)-
good anchor element.

C.5. Proof for Lemma 6

Proof. Since |Q| =
√
|S| log(4|S|/δ), by Corollary 4,

SOFT-SEQ-ELIM(Q, a, 0, ε/2, δ/4) uses

O
(
|S| log(4|S|/δ)

ε2
log
|S| log(4|S|/δ)

δ

)
= O

(
|S|
ε2

(
log
|S|
δ

)2
)

comparisons and w.p. ≥ 1 − δ/4, outputs r, an ε/2-
maximum of Q.

By Lemma 5, w.p.≥ 1− δ/4, r, an ε/2- maximum of Q is
an (ε/2,

√
|S| log(4|S|/δ))-good anchor element of S.

Since r is an (ε/2,
√
|S| log(4|S|/δ))-good an-

chor element, by Lemma 3, w.p.≥ 1 − δ/2,
SOFT-SEQ-ELIM(S, r, ε/2, ε, δ/2) uses

O

(
|S|+ (

√
|S| log(4|S|/δ))2

ε2
log
|S|
δ

)

= O

(
|S|
ε2

(
log
|S|
δ

)2
)

comparisons and outputs an ε-maximum of S.

Proof follows from union bound.

C.6. Proof of Lemma 7

Proof. Since Q contains |S|3/4 elements, by Lemma 6,
w.p.≥ 1 − δ/3, NEAR-OPT-MAX(Q, ε2 ,

δ
3 ) outputs an ε

2 -
maximum of Q and uses

O

(
|S|3/4

ε2

(
log
|S|
δ

)2
)

(a)
= O

(
|S|3/4

ε2
log
|S|
δ
|S|1/4

)
(b)
= O

(
|S|
ε2

log
1

δ

)
comparisons where (a) is because δ ≥
min(1/|S|, e−|S|1/4) and (b) is because δ ≤ 1

|S|1/3 .

By Lemma 5, w.p.≥ 1 − δ/3, an ε/2-maximum of Q is
an
(
ε
2 ,

|S|
|S|3/4 log 3|S|

δ

)
-good anchor element and hence r

is an
(
ε/2, |S|1/4 log 3|S|

δ

)
-good anchor element of S.

If r is an
(
ε/2, |S|1/4 log 3|S|

δ

)
-good anchor el-

ement of S, by Lemma 3, w.p.≥ 1 − δ/3,
SOFT-SEQ-ELIM(S, r, ε2 , ε,

δ
4 ) outputs an ε-maximum

of S and uses

O
(
|S|+ (|S|1/4 log(3|S|/δ))2

ε2
log
|S|
δ

)
(a)
= O

(
|S|
ε2

log
|S|
δ

)
(b)
= O

(
|S|
ε2

log
1

δ

)
comparisons where (a) is because δ ≥
min(1/|S|, e−|S|1/4) and (b) is because δ ≤ 1

n1/3 .

Result follows by union bound.
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Algorithm 9 COMPARE2

1: inputs
2: element i, element j, lower bias εl ≥ 0, upper bias

εu > εl, confidence δ
3: εm ← (εl + εu)/2, ˆ̃pi,j ← 0, ĉ← 1

2 , t← 0, w ← 0

4: while | ˆ̃pi,j − εm| ≤ ĉ and t ≤ 2
(εu−εl)2 log 2

δ do
5: Compare i and j
6: if i wins then
7: w ← w + 1
8: end if
9: t← t+ 1

10: ˆ̃pi,j ← w
t −

1
2 , ĉ←

√
1
2t log 4t2

δ

11: end while
12: if ˆ̃pi,j ≤ εm then
13: return 1
14: end if
15: return 2

C.7. COMPARE2

Lemma 17. For εu > εl, COMPARE2(i, j, εl, εu, δ) uses
≤ 2

(εu−εl)2 log 2
δ comparisons and if p̃i,j ≤ εl, then w.p.≥

1− δ, it returns 1, else if p̃i,j ≥ εu, w.p.≥ 1− δ, it returns
2.

C.8. High Ranges of Confidence

Notice that number of comparisons used by NEAR-OPT-
MAX on a set of size |S|/(log |S|)2 is

O

(
|S|/(log |S|)2

ε2

(
log
|S|
δ

)2
)

= O
(
|S|
ε2

)
where last equality is because of δ ≤ 1

|S|1/3 . So we can find
an ε/2-maximum over a random set of size |S|/(log |S|)2
and use this element to prune the original set S and use
SOFT-SEQ-ELIM over the pruned set. But it turns out we
need multiple rounds of pruning and SOFT-SEQ-ELIM be-
fore we increase set size from |S|/(log |S|)2 to |S|. In each
round we increase set size by a factor of 1/δ until we reach
the set size of |S|. We first present PRUNE that we use for
pruning a set with an anchor element.

C.8.1. PRUNE

We do pruning similar to that in (Falahatgar et al., 2017a)
but here we want to ensure that all better elements are still
surviving not just the absolute maximum element. Hence
we use similar pruning technique with small tweaks and
derive different guarantees.

PRUNE takes five parameters: input set S, anchor element
a, lower bias εl, upper bias εu and confidence δ. Goal of
PRUNE is to output a set of size ≤ 4 log(2|S|/δ)

δ (we later

show that for our purpose this quantity is O(|S|/ log |S|))
such that it contains all elements for which a is not εu-
preferable. If a is an (εl, n1)-good anchor element, with
n1 ≤ 2 log(2|S|/δ)

δ , w.p.≥ 1 − n1δ, PRUNE(S, a, εl, εu, δ)

achieves this goal using O
(

|S|
(εu−εl)2 log 1

δ

)
comparisons.

PRUNE prunes input set in rounds. At each round, it com-
pares the remaining elements with the anchor element (suf-
ficient number of times) and if it deems the element to be
bad it eliminates the element. This ensures that number of
bad elements decrease approximately by a factor of δ after
each round. Notice that since number of elements decrease
after each round, PRUNE can afford to compare elements
for more times in latter rounds for better accuracy. This
process is continued until number of remaining elements is
less than required target 4 log(2|S|/δ)

δ .

For an anchor a, we call an element e as bad if p̃e,a ≤ εl and
good if p̃e,a ≥ εu. We want to ensure that number of bad el-
ements decrease after each round and good elements never
get eliminated. We can use COMPARE for this compari-
son. But we would like to mention that since requirement
of comparison subroutine is less stringent than that required
in SOFT-SEQ-ELIM, comparison subroutine COMPARE2 in
(Falahatgar et al., 2017a) suffices here which in some cases
can save a factor of 4 but has same orderwise complexity.

For completeness, we represent subroutine COMPARE2 in
Appendix C.7.

Algorithm 10 PRUNE

1: inputs
2: Set S, element a, lower bias εl, upper bias εu, confi-

dence δ.
3: t← 1
4: S1 ← S

5: while |St| > 4
log

2|S|
δ

δ and t < log2 n do
6: Initialize: Qt ← ∅
7: for e in St do
8: if COMPARE2(e, a, εl, εu, δ/2

t+1) = 1 then
9: Qt ← Qt

⋃
{e}

10: end if
11: end for
12: St+1 ← St \Qt
13: t← t+ 1
14: end while
15: return St.

We now bound the number of comparisons used by PRUNE
and prove its correctness.

Lemma 18. If a is an (εl, n1)-good anchor element with
n1 ≤ 2 log(2|S|/δ)

δ then w.p.≥ 1− δ
2 , PRUNE(S, a, εl, εu, δ)

uses O
(

|S|
(εu−εl)2 log 1

δ

)
comparisons and outputs a set of
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size less than 4 log(2|S|/δ)
δ . Further if a is not an εu-

maximum of S then w.p.≥ 1− n1δ
2 , the output set contains

all elements for which a is not εu- preferable.

Proof. Proof is similar to proof of Lemma 5 in (Falahat-
gar et al., 2017a). We present the proof for reader’s conve-
nience.

We first show that any element e ∈ S for which a is not
εu-preferable is part of output set w.p.≥ 1 − δ/2. e gets
eliminated in round t if COMPARE2(e, a, εl, εu, δ/2

t+1)
returns 1 but since p̃e,a > εu, w.p.≥ 1 − δ/2t+1,
COMPARE2(e, a, εl, εu, δ/2

t+1) returns 2. Hence e gets
eliminated in round t w.p.≤ δ/2t+1. Therefore by union
bound, probability that e gets eliminated in any one of the
rounds is ≤

∑
t δ/2

t+1 ≤ δ/2.

Since a is an (εl, n1)-good anchor element number of el-
ements for which a is not εu-preferable is ≤ n1. Hence
invoking union bound once again, probability that any such
element gets eliminated is ≤ n1δ/2.

Now we bound output set size and number of comparisons
used.

Notice that any element e for which a is εl-preferable if
present in round t then gets eliminated in that round w.p.≥
1−δ/2t+1, since COMPARE2(e, a, εl, εu, δ/2

t+1) returns 1
with that probability. Hence if at the beginning of a round,
the number of such elements (for which a is εl-preferable)
is more than 2 log(2|S|/δ)

δ , the probability that number of
these elements surviving after round does not reduce by at
least a factor of δ is

≤ e−
2 log(2|S|/δ)

δ D(δ||δ/2t+1) ≤ e−
2 log(2|S|/δ)

δ D(δ||δ/4)

≤ e−
2 log(2|S|/δ)

δ δ/2

= e− log(2|S|/δ)

=
δ

2|S|
.

If number of elements for which a is εl-preferable decrease
by a factor of δ after each round, then number of such el-
ements fall below 2 log(2|S|/δ)

δ in ≤ log1/δ
|S|
n1

(since n1 ≤
2 log(2|S|/δ)

δ ). Hence by union bound, w.p.≥ 1− δ/2, num-
ber of such elements fall below 2 log(2|S|/δ)

δ in log1/δ
|S|
n1

rounds. Henceforth we assume this and bound the number
of comparisons.

Notice that number of elements for which a is not
εl-preferable in round t is ≤ |S|δt−1. Since
COMPARE2(e, a, εl, εu, δ

′) uses 2
(εu−εl)2 log 1

δ′ compar-
isons, total number of comparisons used on elements for

which a is not εl-preferable is

≤
log1/δ

|S|
n1∑

t=1

2|S|δt−1

(εu − εl)2
log

2t+1

δ

≤ 2|S|
(εu − εl)2

∞∑
t=1

(
δt−1 log

1

δ
+ (t+ 1)δt−1 log 2

)
= O

(
|S|

(εu − εl)2
log

1

δ

)
where last equality follows since

∑∞
i=1 x

i and
∑∞
i (i +

1)xi−1 are bounded for x ≤ 1/2.

We now bound the comparisons on elements for which a is
not εl-preferable using number of rounds for which PRUNE
runs. Number of comparisons used on elements for which
a is not εl-preferable is

≤
log1/δ

|S|
n1∑

t=1

2n1
(εu − εl)2

log
2t+1

δ

≤ 2n1
(εu − εl)2

log1/δ
|S|
n1∑

t=1

(
log

1

δ
+ (t+ 1) log 2

)

≤ 2n1
(εu − εl)2

((
log1/δ

|S|
n1

)
log

1

δ
+

(
2 log1/δ

|S|
n1

)2
)

= O
(

|S|
(εu − εl)2

log
1

δ

)
.

Hence the Lemma follows.

For better understanding, we further divide high confi-
dence values into two ranges: 1) medium ( 1

log |S| ≥
δ ≥ 1/|S|1/3) where one sequence of NEAR-OPT-MAX,
PRUNE, SOFT-SEQ-ELIM is enough to produce output and
2) high (δ ≥ 1

log |S| ) where NEAR-OPT-MAX and multiple
sequences of PRUNE, SOFT-SEQ-ELIM are used to produce
the final output.

C.8.2. OPT-MAX-MEDIUM

OPT-MAX-MEDIUM takes 3 parameters: input set S, bias
ε and confidence δ such that 1

log |S| ≥ δ ≥ 1/|S|1/3. W.p.≥

1 − δ, OPT-MAX-MEDIUM(S, ε, δ) uses O
(
|S|
ε2 log 1

δ

)
comparisons and outputs an ε-maximum of S..

OPT-MAX-MEDIUM picks a good anchor element and
prunes the input set using this anchor element and use
SOFT-SEQ-ELIM with the anchor on pruned set to output
ε-maximum.

To pick the good anchor element it calls NEAR-OPT-
MAX to find an ε/3-maximum of a random set of
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size |S|/(log |S|)2. We later show that this anchor is(
ε/3, (log |S|)2 log 4|S|

δ

)
-good anchor element. Notice

that elements for which anchor is not ε/3-preferable is
O(1/δ3). Hence using PRUNE with this anchor, we
manage to prune set S to much smaller set Q′. Hence
SOFT-SEQ-ELIM with this anchor on pruned set takes very
few comparisons.

Algorithm 11 OPT-MAX-MEDIUM

1: inputs
2: Set S, bias ε, confidence δ
3: Form a set Q by selecting |S|/(log |S|)2 random ele-

ments in S
4: a← NEAR-OPT-MAX(Q, ε/3, δ/4)

5: Q′ ← PRUNE
(
Q, a, ε3 ,

2ε
3 ,

δ
4(log |S|)2 log(4|S|/δ)

)
6: return SOFT-SEQ-ELIM(Q′, a, ε/3, ε, δ/4)

In the below Lemma, we bound comparisons used by OPT-
MAX-MEDIUM and prove its correctness.

Lemma 19. For 1
log |S| ≥ δ ≥ 1

|S|1/3 , w.p.≥ 1 − δ,

OPT-MAX-MEDIUM(S, ε, δ) uses O
(
|S|
ε2 log 1

δ

)
compar-

isons and outputs an ε-maximum of S.

Proof. Since Q has |S|/(log |S|)2 elements, by Lemma 6,
NEAR-OPT-MAX(Q, ε/3, δ/4) uses

O

(
|Q|
ε2

(
log
|Q|
δ

)2
)

= O

(
|S|

ε2(log |S|)2

(
log
|S|
δ

)2
)

= O
(
|S|
ε2

)
comparisons (where last equality is because δ ≥ 1

|S|1/3 )
and w.p.≥ 1− δ/3 outputs a, an ε/3-maximum of Q.

By Lemma 5, w.p.≥ 1− δ/4, an ε/3-maximum of Q is an(
ε
3 ,
|S|
|Q| log 4|S|

δ

)
-good anchor element and hence a is an(

ε
3 , (log |S|)2 log 4|S|

δ

)
-good anchor element.

Let δ′ = δ
4(log |S|)2 log(4|S|/δ) . Notice that δ′ ≥ δ

16(log |S|)3 .

Since (log |S|)2 log 4|S|
δ ≤ 2

δ′ < 2 log(2|S|/δ′)
δ′ , by

Lemma 18, w.p.≥ 1 − δ/4, PRUNE(S, a, ε/3, 2ε/3, δ′/4)
uses

O
(
|S|
ε2

log
1

δ′

)
= O

(
|S|
ε2

log
log |S|
δ

)
= O

(
|S|
ε2

log
1

δ

)
comparisons (where last equality is because δ ≤ 1

log |S| )
and outputs a set Q′ of size

≤ 4
log 2|S|

δ′

δ′
= O

(
(log |S|)4

δ

)

(where equality is because δ′ ≥ δ
16(log |S|)3 and δ ≥ 1

|S|1/3 )
s.t. Q′ contains all elements in S for which a is not 2ε/3-
preferable i.e., p̃e,a ≤ 2ε/3 ∀e ∈ S \Q′.

W.p.≥ 1− δ/4, SOFT-SEQ-ELIM(Q′, a, 2ε/3, ε, δ/4) uses

O
(
|Q′|2

ε2
log
|Q′|
δ

)
= O

(
(log |S|)8

δ2ε2
log

log |S|
δ

)
= O

(
|S|
ε2

log
1

δ

)
comparisons (where last equality is because 1

log |S| ≥ δ ≥
1

|S|1/3 ) and outputs ro, an ε-maximum ofQ′ s.t., either ro =

a or p̃ro,a ≥ 2ε
3 . Since p̃e,a ≤ 2ε

3 ∀e ∈ S \ Q
′, by MST

and Lemma 16, p̃e,ro ≤ 2ε
3 ∀e ∈ S \ Q

′. Hence ro is an
ε-maximum of S.

Lemma follows by union bound and noting that compar-
isons used for each step is O

(
|S|
ε2 log 1

δ

)
.

As mentioned before for high ranges of confidence
δ ≥ 1/ log |S|, our algorithm OPT-MAX-HIGH first uses
NEAR-OPT-MAX over a set of size |S|/(log |S|)2 and then
uses multiple rounds of PRUNE and SOFT-SEQ-ELIM be-
fore increasing size to |S|. After each round of PRUNE and
SOFT-SEQ-ELIM, OPT-MAX-HIGH increases set size by a
fraction of 1/δ.

C.8.3. OPT-MAX-HIGH

OPT-MAX-HIGH takes 3 parameters: input set S, bias ε
and confidence δ such that δ ≥ 1

log |S| . W.p.≥ 1 − δ,

OPT-MAX-HIGH(S, ε, δ) uses O
(
|S|
ε2 log 1

δ

)
comparisons

and outputs an ε-maximum of S.

Similar to OPT-MAX-MEDIUM, to pick the initial anchor
OPT-MAX-HIGH finds an ε/3-maximum of a random set
of |S|/(log |S|)2 elements. We later show that this anchor
is an (ε/3, (log |S|)2 log(4|S|/δ))- good anchor element.

Notice that number of elements for which anchor is not
ε/3-preferable could be much higher than 1/δi for con-
stant δ and any constant i. Hence a single round of pruning
might not ensure that all such elements will survive. Hence
we prune in stages improving anchor element in each stage
using SOFT-SEQ-ELIM over pruned set in previous stage.
After each stage, we improve anchor element and make
sure that number of elements for which current anchor is
not ε-preferable decreases.

In each stage we increase set size by a fraction of 1/δ
and prune the set using current anchor and use SOFT-SEQ-
ELIM over pruned set with current anchor to find next an-
chor. Notice that initially set size is small and hence we can
afford to repeat comparisons more times and thereby incur
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less bias error and confidence error in initial rounds. This
makes sure that total bias and confidence error are less than
required.

Algorithm 12 OPT-MAX-HIGH

1: inputs
2: Set S, bias ε, confidence δ
3: Form a set Q by selecting |S|/(log |S|)2 random ele-

ments in S without replacement
4: a1 ← NEAR-OPT-MAX(Q, ε/3, δ/4)
5: m = d2 log1/δ log |S|e
6: for i from 1 to m do
7: n′i ← max(|S|/(log |S|)2, |S|δm−i)
8: ε′i ← ε/3 + 2ε/3

2(m−i)/3

9: ε′′i ← ε/3 + 2ε/3
2(m−i+1)/3

10: δ′i ← δm−i+4

11: Form a set Qi by selecting n′i random elements in S
without replacement

12: Q′i ← PRUNE(Qi, ai, ε
′′
i , (ε

′′
i + ε′i)/2, δ

′5
i /3)

13: ai+1 ← SOFT-SEQ-ELIM(Q′i, ai, ε
′′
i , ε
′
i, δ
′
i/3)

14: end for
15: return am+1

In the below Lemma, we bound comparisons used by OPT-
MAX-HIGH and prove its correctness.

Lemma 20. For δ ≥ 1
log |S| , w.p.≥ 1 − δ,

OPT-MAX-HIGH(S, ε, δ) uses O
(
|S|
ε2 log 1

δ

)
comparisons

and outputs an ε-maximum of S.

Proof. We first bound the comparisons used
and confidence error accrued in base step 4
NEAR-OPT-MAX(Q, ε/3, δ/4). By Lemma 6,
NEAR-OPT-MAX(Q, ε/3, δ/4) uses

O

(
|Q|
ε2

(
log
|Q|
δ

)2
)

= O

(
|S|

ε2(log |S|)2

(
log
|S|
δ

)2
)

= O
(
|S|
ε2

)
comparisons (where last equality is because δ ≥ 1

|S|1/3 )
and w.p.≥ 1 − δ/4 outputs a1, an ε/3-maximum of
Q. Further by Lemma 5, w.p.≥ 1 − δ/4, , a1 is an(
ε/3, (log |S|)2 log 4|S|

δ

)
-good anchor element of S.

Hence by union bound, step 4 uses O
(
|S|
ε2

)
comparisons

and w.p.≥ 1 − δ/2, outputs an
(
ε/3, (log |S|)2 log 4|S|

δ

)
-

good anchor element of S.

From now we bound the comparisons used and confidence
error incurred by steps 12, 13 in m recursions. We bound

these quantities for a single recursion step i assuming that
it got a correct answer from recursion step i− 1.

Notice that at recursion step i, n′i =

max(|S|/(log |S|)2, |S|δm−i), ε′i = ε/3 + 2ε/3
2(m−i)/3

,
ε′′i = ε/3 + 2ε/3

2(m−i+1)/3 and δ′i = δm−i+4.

Assume that anchor element ai at the start of recur-
sion i is an (ε′′i , 1/δ

′4
i )-good anchor element of S. No-

tice that assumption for recursion step 1 is true with
probability 1 − δ/2, since with same probability, a1

is an
(
ε/3, (log |S|)2 log 4|S|

δ

)
-good anchor element of

S. It is easy to check that ε′′1 > ε/3 and 1/δ′41 ≥
(log |S|)2 log 4|S|

δ . Hence a1 is also an (ε1, 1/δ
′4
1 )-good

anchor element.

Now we will show that w.p.≥ 1 − δ′i, recursion i

uses O
(

n′i
(ε′i−ε′′i )2

log 1
δ′i

)
comparisons and outputs an

(ε′′i+1, 1/δ
′4
i+1)-good anchor element of S which will serve

as an assumption for next recursion and that output is an
ε′i-maximum of set Qi picked in step 11 which will show
that at end of mth recursion we have an ε-maximum of S.

Let Ti be the set of all elements in S for which ai is not ε′′i -
preferable. Further add anchor element ai to Ti i.e., Ti =
Ti
⋃
{ai}.

We now show that for any element e in Ti which is not
(ε′i, 1/δ

′4
i+1)-good anchor element, an element which is not

ε′i-preferable is present in Qi and thereby later show that
such an element won’t be an output of ith recursion.

Notice that by assumption, |Ti| ≤ 1/δ′4i + 1. Further let T ′i
be the set of all elements in Ti which are not (ε′i, 1/δ

′4
i+1)-

good anchor elements. Observe that |T ′i | ≤ |Ti| ≤ 1/δ4i +
1.

Since in recursion i we pick set Qi by picking n′i elements
randomly from S, each element in S is part of Qi with
probability n′i/|S|.

For an element e in T ′i , probability thatQi does not contain
an element for which e is not ε′i-preferable is

≤
(

1−
1/δ′4i+1

|S|

)n′i
≤
(

1− (δ/δ′i)
4

|S|

)|S|δ′i/δ4
≤ e
− 1

δ′3
i

Hence by union bound, probability that for any element e
in T ′i , Qi does not contain an element for which e is not
ε′i-preferable is

≤ |T ′i |e
− 1

δ′3
i ≤

(
1

δ′4i
+ 1

)
e
− 1

δ′3
i ≤ δ′i/3.

Now we bound comparisons used and confidence error in-
curred in step 12 during ith recursion.
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Since ai is an (ε′′i , 1/δ
′4
i )-good anchor element and

1/δ′4i < 3/δ′5i < 2
2 log(6|Qi|/δ′5i )

δ5i /3
, by Lemma 18,

PRUNE(Qi, ai, ε
′′
i , (ε

′′
i + ε′i)/2, δ

′5
i /3) uses

O
(

|Q|
(ε′i − ε′′i )2

log
1

δ′i

)
= O

(
n′i

(ε′i − ε′′i )2
log

1

δ′i

)

comparisons and outputs a set Q′i of size 12 log(6|Qi|/δ′5i )

δ′5i
=

O
( √

|Qi|
log |Qi|

)
(since 1/δ′i = O((log |Qi|)5)) and contains

all elements in Qi for which ai is not an (ε′i + ε′′i )/2-
preferable i.e., p̃e,ai ≤ (ε′′i + ε′i)/2 ∀e ∈ Qi \Q′i.

Now we bound comparisons used and confidence error in-
curred during step 13.

By Corollary 4, w.p.≥ 1 − δ′i/3,
SOFT-SEQ-ELIM(Q′i, ai, ε

′′
i , ε
′
i, δ
′
i/3) uses

O
(
|Q′i|2

(ε′′i − ε′i)2
log
|Q′i|
δ′i

)
= O

(
|Qi|/ log |Qi|

(ε′i − ε′′i )2
log
|Qi|
δ′i

)
= O

(
n′i

(ε′i − ε′′i )2
log

1

δ′i

)

comparisons and outputs ai+1, an ε′i-maximum of Q′i s.t.,
either ai+1 = ai or p̃ai+1,ai >

ε′′i +ε
′
i

2 . Since p̃e,ai ≤ (ε′′i +
ε′i)/2 ∀e ∈ Qi \ Q′i, by MST and Lemma 16,p̃e,ai+1

≤
(ε′′i + ε′i)/2 ∀e ∈ Qi \ Q′i. Hence ai+1 is an ε′i-maximum
of Qi.

Further notice that since either ai+1 = ai or p̃ai+1,ai >
(ε′i + ε′′i )/2 > ε′′i , ai+1 ∈ Ti. Since for every e ∈ T ′i ,
Qi contains an element for which e is not ε′i-preferable, if
ai+1 ∈ T ′i , it violates that ai+1 is an ε′i-maximum of Qi.
Hence ai+1 /∈ T ′i and hence ai+1 is also an (ε′i, (δ/δ

′
i)

4)-
good anchor element of S which is assumption for next
recursion i+ 1.

Hence by union bound, w.p.≥ 1 − δi, recursion i

uses O
(

n′i
(ε′i−ε′′i )2

log 1
δ′

)
comparisons and outputs an

(ε′i, 1/δ
′4
i+1)-good anchor element of S, which is also an

ε′i-maximum of Qi.

Hence by union bound, total error incurred over all recur-
sion steps and base case is

≤ δ

4
+

m∑
i=1

δ′i ≤
δ

4
+

m∑
i=1

δm−i+4 ≤ δ

4
+
δ

2
< δ.

Hence w.p.≥ 1 − δ, after m recursions, am+1 is an ε-
maximum of S.

Total number of comparisons used over all recursion steps

and base case is

= O
(
|S|
ε2

)
+

m∑
i=1

O
(

n′i
(ε′i − ε′′i )2

log
1

δ′i

)

=

m∑
i=1

O
(
n′i2

2(m−i)/3

ε2
log

1

δ′i

)

=

m∑
i=1

O
(
|S|δm−i22(m−i)/3

ε2
log

1

δ′i

)
(a)
=

m∑
i=1

O
(

|S|
2(m−i)/3ε2

log
1

δ′i

)

=

m∑
i=1

O
(

|S|
2(m−i)/3ε2

log
1

δm−i+4

)

= O
(
|S|
ε2

log
1

δ

) m∑
i=1

m− i+ 4

2(m−i)/3

= O
(
|S|
ε2

log
1

δ

)
where (a) is because δ ≤ 1/2 and last equality because
xi(i + 4) series is convergent for x ≤ 1/21/3. Hence
proved.

D. Ranking
D.1. Outline of BINARY-SEARCH-RANKING and how

to improve

(Falahatgar et al., 2017b) first proposes a ranking algorithm
MERGE-RANK that uses O

(
|S|(log |S|)3

ε2 log |S|δ

)
compar-

isons and w.p.≥ 1 − δ outputs an ε-ranking of S. They
use this algorithm as a building block for the final algo-
rithm BINARY-SEARCH-RANKING. We outline BINARY-
SEARCH-RANKING algorithm and mention components
that lead to additional (log log n)3 factor. We also propose
modified components that remove additional (log log n)3

factor.

BINARY-SEARCH-RANKING first selects |S|
(log |S|)3 random

elements in S as anchors and ranks them using MERGE-
RANK. Notice that this step uses O

(
|S| log |S|

ε2

)
compar-

isons.

Then BINARY-SEARCH-RANKING forms bins between
two consecutively ranked anchors. For each element e
BINARY-SEARCH-RANKING finds which bin it belongs to
using INTERVAL-BINARY-SEARCH. INTERVAL-BINARY-
SEARCH does a noisy random walk over the bins to de-
termine which bin element e belongs to. Noisy random
walk is run for O(log |S|) steps where in each step O( 1

ε2 )
comparisons are used. Notice that this random walk step
uses O( log |S|

ε2 ) comparisons for each element e and hence
O( |S| log |S|ε2 ) comparisons over all elements. This noisy
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random walk can sometimes fail if element e visits a close
anchor a, i.e., |p̃e,a| ≤ kε for some constant k < 1.

Then INTERVAL-BINARY-SEARCH uses BINARY-
SEARCH over visited anchors to find closeby anchor.
Notice that number of visited anchors during noisy random
walk is O(log |S|). BINARY-SEARCH does a binary
search over ranked set of visited anchors and hence runs
for O(log log |S|) steps. It uses O

(
log |S|
ε2

)
comparisons

over each step to ensure that error probability during is
1/|S|9 for each element. Hence BINARY-SEARCH uses
O( log |S|(log log |S|)

ε2 ) comparisons for each element and
therefore uses O( |S| log |S|(log log |S|)

ε2 ) comparisons over all
elements incurring an overhead factor of log log |S|.

We fix this step BINARY-SEARCH by not using O(log |S|)
comparisons over each step but insteadO(log log |S|) com-
parisons over each steps. Notice that this increases er-
ror probability to 1/ log |S| for each element in place of
1/|S|9. Hence we check if in fact BINARY-SEARCH found
a closeby anchor by comparing with the output anchor ele-
ment forO(log |S|) times which will give a wrong decision
only w.p. ≤ 1/|S|10. If we find that output anchor element
is indeed closeby anchor then we output it or else this time
we do one more round of binary search repeating each com-
parison O(log |S|) times thereby ensuring that final output
is correct w.p.≥ 1− 1

|S|9 .

Notice that even though worst case complexity for each el-
ement is same as before, most of the elements use much
fewer comparisons. Since first round of binary search is
correct w.p.≥ 1 − 1/ log |S|, much fewer than 10/ log |S|
fraction of elements fail to find closeby anchor during first
round. Hence less than 10/ log |S| fraction of total ele-
ments use second round and hence total comparisons are
O( |S| log |S|ε2 ) comparisons.

Later for each bin, BINARY-SEARCH-RANKING finds if
elements are close to bin’s boundary anchor elements by
repeating comparisons O(log |S|) times and if an element
is close to boundary anchor it ranks that element close to
boundary anchor. Notice that this step usesO( log |S|

ε2 ) com-
parisons for each element and hence O( |S| log |S|ε2 ) compar-
isons over all elements. Therefore this step is not a prob-
lem.

It can be shown that after removing elements which are
close to bin boundaries each bin has O((log |S|)4) ele-
ments.

Then BINARY-SEARCH-RANKING uses MARGE-RANK
to rank each bin with error probability 1/|S|3 for
each bin. Hence it uses O( |Bi|(log |Bi|)

3

ε2 log |Bi|
1/|S|3 ) =

O( |Bi|(log |Bi|)
3

ε2 log |S|) = O( |Bi|(log log |S|)3
ε2 log |S|)

comparisons (since |Bi| = O((log n)4)) for each bin

Bi. When we sum over all bins Bi, total comparisons is
O( |S| log |S|(log log |S|)3

ε2 ) which has an overhead factor of
(log log |S|)3.

We improve this step by not using error probability of
1/|S|3 but using 1/ log |S| for error probability. This en-
sures that comparisons are bounded but overall error prob-
ability is high. So we check if each bin is ranked correctly.
Our main contribution is an algorithm to find an ordered
set is ε-ranked. Using this algorithm we find if each bin is
correctly ranked by making sure that we know right answer
w.p.≥ 1− 1

|S|5 . Checking over all bins with this algorithm

uses only O( |S| log |S|ε2 ) comparisons. If a bin is not cor-
rectly ranked, then we rank that bin again this time with
error probability of 1/|S|4.

Observe that in worst case, ranking a bin uses same com-
parisons as previously but only few bins need these many
comparisons since most of the bins are ranked correctly in
first round. Notice that since first round of ranking bin is
correct with probability ≥ 1 − 1

log |S| , < 10/ log |S| frac-
tion of bins need second round of ranking which helps us
in bounding comparisons.

We first present new BINARY-SEARCH that has low over-
all sample complexity than the one in (Falahatgar et al.,
2017b). We prove Lemmas similar to those in (Falahatgar
et al., 2017b) with lower complexities.

D.2. BINARY-SEARCH

BINARY-SEARCH uses a subroutine BUD-BINARY-
SEARCH that takes a confidence parameter δ and outputs
desired result w.p.≥ 1− δ.

D.2.1. BUD-BINARY-SEARCH

As outlined previously, BUD-BINARY-SEARCH does a
simple binary search using O

(
1
ε2 log log |Q|

δ

)
comparisons

(where Q is a set over which binary search is performed)
for each step.
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Algorithm 13 BUD-BINARY-SEARCH

1: inputs
2: Ordered array S, ordered array Q, search item e,

bias ε, confidence δ
3: l← 1, h← |Q|.
4: while h− l > 0 do
5: Compare e and S(Q(

⌈
l+h
2

⌉
)) for 4

ε2 log 10 log |Q|
δ

times.
6: t← fraction of times e won.
7: if t ∈

[
1
2 − 3ε, 12 + 3ε

]
then

8: return Q(
⌈
l+h
2

⌉
).

9: else if t < 1
2 − 3ε then

10: h =
⌈
l+h
2

⌉
11: else
12: l =

⌈
l+h
2

⌉
13: end if
14: end while
15: return Q(h).

Lemma 21. For ε′′ > ε′, consider ordered sets S, Q s.t.
p̃S(Q(i)),S(Q(j)) ≤ ε′∀i < j. For an element e s.t., ∃g :
|p̃S(Q(g)),a| < 2ε′′, BINARY-SEARCH(S,Q, a, ε′′, δ) uses
O( log |Q|

ε′′2 log log |Q|
δ ) comparisons and w.p.≥ 1− δ returns

y s.t. |p̃S(Q(y)),a| < 4ε′′.

Proof. This proof is similar to Lemma 23 in (Falahatgar
et al., 2017b)

Notice that this is a binary search over ordered set Q us-
ingO( 1

ε′′2 log log |Q|
δ ) comparisons for each step and hence

bound on comparisons follow.

At any stage of BUD-BINARY-SEARCH, there are three
possibilities that can happen . Consider the case when we
are comparing e with S(Q(i)).

1. |p̃S(Q(i)),e| < 2ε′′. Probability that the fraction of wins
for e is not between 1

2 − 3ε′′ and 1
2 + 3ε′′ is less than

e−
log(4|Q|/δ)

ε′′2
ε′′2 ≤ δ

4 log |Q| . Hence BUD-BINARY-SEARCH

outputs Q(i).

2. p̃S(Q(i)),e > 2ε′′. Probability that the fraction of wins

for e is more than 1
2 is less than e−

log(4|Q|/δ)
ε′′2

ε′′2 ≤ δ
4 log |Q| .

So BUD-BINARY-SEARCH will not move right. Also no-
tice that p̃S(Q(j)),e > 2ε′′ − ε′ > ε′′ ∀j > i.

3. p̃S(Q(i)),e > 4ε′′. Probability that the fraction of wins

for e is more than 1
2 − 3ε′′ is less than e−

log(4|Q|/δ)
ε′′2

ε′′2 ≤
δ

4 log |Q| . Hence BUD-BINARY-SEARCH will move left.
Also notice that p̃S(Q(j)),e > 4ε′′ − ε′ > ε′′ ∀j > i.

We can show similar results for p̃S(Q(i)),e < −2ε′′

and p̃S(Q(i)),e < −4ε′′. Hence if |p̃S(Q(i)),e)| < 2ε′′

then BUD-BINARY-SEARCH outputs Q(i), and if 2ε′′ <

|p̃S(Q(i)),e| < 4ε′′ then either BUD-BINARY-SEARCH
outputs Q(i) or moves in the correct direction and if
|p̃S(Q(i)),e| > 4ε′′, then BUD-BINARY-SEARCH moves in
the correct direction.

Proof follows by noting that that binary search visits
log |Q| indices and using union bound.

D.2.2. BINARY-SEARCH

BINARY-SEARCH initially calls BUD-BINARY-SEARCH
with confidence parameter of 1/(4 log |S|) and then it
checks if BUD-BINARY-SEARCH gave a required result by
comparing with output for O( log |S|

ε2 ) times. If it deems
that output is not good then it calls BUD-BINARY-SEARCH
this time with confidence parameter 1/|S|10. Notice that if
BINARY-SEARCH is called |S| independent times then less
than 10/ log |S| fraction of times second BUD-BINARY-
SEARCH is called since first BUD-BINARY-SEARCH gives
required answer w.p.≥ 1− 1/(4 log |S|).

Algorithm 14 BINARY-SEARCH

1: inputs
2: Ordered Set S, ordered array Q, search item e, bias

ε
3: l← BUD-BINARY-SEARCH(S,Q, e, ε, 1/4 log |S|)
4: Compare e and S(l) for 20 log |S|

ε2 times. t ← fraction
of times e won

5: if t ∈ [1/2− 5ε, 1/2 + 5ε] then
6: return l
7: else
8: return BUD-BINARY-SEARCH(S,Q, e, ε, 1/|S|10)
9: end if

Lemma 22. For ε′′ > ε′, consider ordered sets S,
Q s.t. p̃S(Q(i)),S(Q(j)) ≤ ε′∀i < j and |Q| ≤
90 log |S|. For an element e s.t., ∃g : |p̃S(Q(g)),a| <
2ε′′, BINARY-SEARCH(S,Q, a, ε′′, δ) w.p. ≥ 1 − 1/|S|9
returns y s.t. |p̃S(Q(y)),a| < 6ε′′ and w.p. ≥ 1 −
1/(3 log |S|) uses O

(
log |S|
ε2

)
comparisons and always

uses O
(

(log |S|)(log log |S|)
ε2

)
comparisons. If repeated for

|S| independent copies of Q and e, w.p.≥ 1 − 1/|S|9,

BINARY-SEARCH uses O
(
|S| log |S|

ε2

)
comparisons.

Proof. BUD-BINARY-SEARCH(S,Q, e, ε, 1/(4 log |S|))
uses O( log log |S|

ε2 log log |S|) comparisons and
w.p.≥ 1− 1/(4 log |S|) outputs y s.t. |p̃S(Q(y)),a| < 4ε′′.

If |p̃S(Q(y)),e| < 4ε′′, probability that the fraction of wins
for e is not between 1/2 − 5ε′′ and 1/2 + 5ε′′ is less than

e−
20 log |S|
ε′′2

ε′′2 ≤ 1
|S|20 .
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If first BUD-BINARY-SEARCH fails that is if |p̃S(Q(y)),e| >
6ε′′, probability that the fraction of wins for e is between
1/2− 5ε′′ and 1/2 + 5ε′′ is less than e−

20 log |S|
ε′′2

ε′′2 ≤ 1
|S|20

and hence second BUD-BINARY-SEARCH is invoked.

BUD-BINARY-SEARCH(S,Q, e, ε, 1/|S|10) uses
O( log log |S|

ε2 log |S|) comparisons and w.p.≥ 1 − 1
|S|10

outputs y s.t. |p̃S(Q(y)),a| < 4ε′′.

So by union bound, w.p.≥ 1 − 1/|S|9, BINARY-
SEARCH outputs required answer and w.p.≥ 1 −

1
3 log |S| uses O( |S| log |S|ε2 ) comparisons and always uses

O( (log |S|)(log log |S|)
ε′′2 ) comparisons.

If we repeat this for |S| independent copies, then proba-
bility that second BUD-BINARY-SEARCH used for more
than 20/| log |S| is less than e−|S|D( 10

log |S| ||
1

3 log |S| ) ≤
e−10|S|/ log |S| ≤ 1/|S|9. Hence the bound on comparisons
follows.

We now present RANK-CHECK that checks if an ordered
set is ε-ranked or not 3ε-ranked.

D.3. RANK-CHECK

RANK-CHECK takes three parameters: ordered set S, bias
ε and confidence δ. RANK-CHECK deems if S is ε-ranked
i.e., p̃S(i),S(j) ≤ ε ∀i < j or if S is not 3ε-ranked i.e., there
exists i < j s.t. p̃S(i),S(j) > 3ε. RANK-CHECK(S, ε, δ)

usesO
(
|S|
ε2 log |S|δ

)
comparisons and w.p.≥ 1− δ, outputs

a correct decision.

RANK-CHECK first sets anchor a as S(1) and iterates
over the set S checking if p̃S(i),a > ε vs p̃S(i),a < 0
using COMPARE2. If COMPARE2 deems p̃S(i),a > ε,
then RANK-CHECK updates current anchor to S(i). If
COMPARE2 deems p̃S(i),a < 0, then RANK-CHECK
checks if p̃a,S(i) < ε vs p̃a,S(i) > 2ε again using COM-
PARE2. If COMPARE2 deems p̃a,S(i) > 2ε, then S(i) is
much worse than a which is to the left of S(i) in S and
hence S is not ε-ranked and RANK-CHECK returns FALSE.

Due to probabilistic nature if S is neither ε-ranked nor not
3ε-ranked then it can either of the two outputs.

Algorithm 15 RANK-CHECK

1: inputs
2: Ordered Set S, bias ε, confidence δ
3: a← S(1)
4: for i from 2 to |S| do
5: if COMPARE2(S(i), a, 0, ε, δ

2|S|) ) = 2 then
6: a← S(i)
7: else if COMPARE2(a, S(i), ε, 2ε, δ

2|S| ) = 2 then
8: return FALSE
9: end if

10: end for
11: return TRUE

In the below Lemma, we bound comparisons used by
RANK-CHECK and prove its correctness.

Lemma 23. For an ordered set S, RANK-CHECK(S, ε, δ)

uses O
(
|S|
ε2 log |S|δ

)
comparisons. If S is an ε-ranked

set i.e., p̃S(i),S(j) ≤ ε ∀i < j, w.p.≥ 1 − δ,
RANK-CHECK(S, ε, δ) outputs TRUE. If S is not a 3ε-
ranked set i.e., ∃i < j s.t. p̃S(i),S(j) > 3ε then w.p.≥ 1−δ,
RANK-CHECK(S, ε, δ) outputs FALSE.

Proof. We first bound the comparisons.

Since both COMPARE2(e, f, 0, ε, δ/(2|S|)) and
COMPARE2(e, f, ε, 2ε, δ/(2|S|)) use O( 1

ε2 log |S|δ )
comparisons and each one is called for at most |S| times,
total number of comparisons used is O

(
|S|
ε2 log |S|δ

)
.

Since each COMPARE2 is called with confidence pa-
rameter of δ/(2|S|) and total number of COMPARE2
calls are less than 2|S|, by union bound, w.p.≥
1 − δ, all COMPARE2 calls give desired result i.e.,
COMPARE2(e, f, εl, εu, δ/(2|S|)) outputs 1 if p̃e,f ≤ εl
and 2 if p̃e,f ≥ εu.

Let aj be the anchor element a that is compared with S(j).
Notice that a2 = S(1).

We first consider the case of ε-ranked set S. Notice
that since anchor element is always left to competing el-
ement in the set S i.e., aj = S(i) for some i < j.
Since p̃S(i),S(j) ≤ ε, ∀i < j, p̃aj ,S(j) ≤ ε and hence
COMPARE2(aj , S(j), ε, 2ε, δ/(2|S|)) outputs 1 for all j.
Therefore FALSE is never returned.

Now we consider the second case: S is not an 3ε-ranked
set. Notice that there exists i < j s.t. p̃S(i),S(j) > 3ε. If
RANK-CHECK reaches S(j), then we show that p̃aj ,S(j) >
2ε thereby proving the required result.

We first show that anchor element only keeps get-
ting better i.e., p̃al,ak ≥ 0 ∀l ≥ k. Since
COMPARE2(S(k), ak, 0, ε, δ/(2|S|)) does not output 2 if
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p̃S(k),ak < 0, ak+1 = S(k) only if p̃S(k),ak ≥ 0. Hence
p̃ak+1,ak ≥ 0. Therefore by SST, p̃al,ak ≥ 0 ∀l ≥ k.

We now show that p̃S(k),ak+1
< ε. Notice that ak+1 = ak if

COMPARE2(S(k), ak, 0, ε, δ/(2|S|)) outputs 1 and hence
p̃S(k),ak < ε. Hence either ak+1 = S(k) or ak+1 = ak
and p̃S(k),ak+1

< ε. Therefore p̃S(k),ak+1
< ε.

Since p̃S(i),ai+1
< ε and p̃S(i),S(j) > 3ε, by SST and

STI, p̃ai+1,S(j) > 2ε. Because of p̃aj ,ai+1 ≥ 0, by SST,
p̃aj ,S(j) > 2ε. Hence COMPARE2(S(j), aj , 0, ε, δ/(2|S|))
outputs 1 and COMPARE2(a, S(i), ε, 2ε, δ/2|S|) outputs 2
thereby resulting in FALSE output.

We now briefly talk about how to use RANK-CHECK to
improve sample complexity of ranking bins

D.4. Ranking Bins

Similar to modified BINARY-SEARCH, we first rank each
bin using MERGE-RANK with bias parameter of ε/3 and
confidence parameter of 1/(4 log |S|) and check if bin is
correctly ranked using RANK-CHECK with confidence pa-
rameter of 1/|S|10. Notice that RANK-CHECK uses only
O( |Bi|ε2 log |S|) comparisons for each bin Bi. If RANK-
CHECK deems that bin is not correctly ranked then we use
a second round of MERGE-RANK with bias parameter of ε
and confidence parameter of 1/|S|10.

Notice that since we rank |S|/(log |S|)3 bins, less
than 20/ log |S| fraction of them use second round of
MERGE-RANK and hence total number of comparisons is∑
iO( |Bi|ε2 log |S|) = O( |S| log |S|ε2 ). Proof is similar to that

of Lemma 22.

D.5. Final Ranking Algorithm

Use BINARY-SEARCH-RANKING presented in (Falahat-
gar et al., 2017b) with new BINARY-SEARCH subroutine
in place of the one presented there. Also replace 5(b) step
there which ranks each bin in one go with a round of rank-
ing followed by checking with RANK-CHECK if ranking is
done correctly and repeating ranking if not done correctly.

Hence we improved both components that were incur-
ring additional log log |S| factors and thereby removed
(log log |S|)3 factor.

E. Proof for Theorem 10
Proof. This proof is similar to proof of Theorem 7 in (Fala-
hatgar et al., 2017a).

Consider the model where p̃a1,a2 = 1/2, p̃ai,aj = (0 <
)µ(� 1/n10), when i < j and (i, j) 6= (1, 2). This model
has an order: a1 � a2 � · · · � an−1 � an i.e., p̃ai,aj > 0
∀i < j. Further this model satisfies MST since p̃ai,ak ≥

min(p̃ai,aj , p̃aj ,ak) ∀i < j < k. This model also satisfies
STI since p̃ai,ak ≤ p̃ai,aj + p̃aj ,ak ∀i < j < k.

We prove the Lemma by reducing the above model to the
model where µ is replaced by 0.

Note that µ is so small that if we consider a model where we
replace µ with 0, the comparisons behave essentially simi-
larly. More formally, let model Mµ be the model we con-
sider and M0 be the model when µ is replaced with 0. Let
C denote a sequence of comparisons where each element of
the sequence includes the elements compared and its out-
come. Further, for each sequence C, let Pµ(C) and P0(C)
denote the probability of sequenceC under modelsMµ and
M0 respectively. Now consider a sequence C of compar-
isons of length ≤ n2/20 (chosen to make proof simpler.
One can also prove for constants higher than 1/20). Then

P0(C)

Pµ(C)
≥
(

1/2

1/2 + µ

)n2/20

≥ e−n
2/(10n10) ≥ 6

7

Thus the probability of any sequence of length ≤ n2

20 is
approximately same under both models. Hence if there is
an algorithm that uses ≤ n2

20 comparisons and w.p.≥ 7/8
produces an 1/4-ranking under Mµ model then applying
same algorithm over M0 model produces an 1/4-ranking
w.p.≥ 7

8 ·
6
7 = 3

4 .

We now show that there exists no algorithm that uses ≤ n2

20
comparisons and w.p.≥ 3

4 generates a 1/4-ranking under
M0, thus proving the Lemma. It is easy to see that any or-
dering outputted without querying the comparison between
a1 and a2 is a 1/4-ranking w.p. exactly 1/2 since no or-
der between a1 and a2 can be deduced. Since the pair
(a1, a2) is one random pair among

(
n
2

)
pairs, the proba-

bility that the algorithm asks a comparison between this
pair with n2/20 comparisons is < 1

2 . So the probability
that the output order contains a1 and a2 in the right order
is < 1

2 + 1
2 ·

1
2 = 3

4 .

F. Approximating Pairwise Probabilties
F.1. Proof for Theorem 11

Proof. Consider the model {a1, a2, ..., an} where (4 +
4k)ε ≤ p̃ai+k,ai ≤ (8 + 4k)ε for 1 ≤ k ≤ min(n −
i, b 1

16ε − 2c) and p̃ai+k,ai = 1/4 for k > min(n −
i, b 1

16ε − 2c).

Notice that this model satisfies SST since there exists an
ordering � i.e., aj � ai if j > i (since p̃aj ,ai > 0) and
p̃ak,ai ≥ min(p̃ak,aj , p̃aj ,ai) ∀k > j > i.

Further observe that this model also satisfies STI since
p̃ak,ai ≤ p̃ak,aj + p̃aj ,ai ∀k > j > i.

Notice that even after knowing every other pairwise prob-
ability other than for pair {ak, ai} exactly, SST and STI
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do not impose any additional constraints on p̃ak,ai than
those already given by the model definition. Hence we can
only infer p̃ak,ai from model definition and comparisons
between ak and ai.

Model does not fix pairwise probability for

≥
n∑
i=1

min

(
n− i, 1

16ε
− 2

)
= Ω(nmin(n, 1/ε))

pairs and for each such pair {ai, aj}, p̃ai,aj is known only
upto an accuracy of 2ε.

So any algorithm has to approximate Ω(nmin(n, 1/ε))
probabilities between 1/2 and 3/4 to an accuracy of ε. Us-
ing Information Theoretic arguments, it follows that any
algorithm needs Ω

(
nmin(n,1/ε)

ε2 log n
)

comparisons for er-
ror accuracy of ≤ 1/4.

F.2. Properties of ε-ranked ordered Set

We first prove some properties of ε-ranked ordered set that
we use in proving correctness of APPROX-PROB.

Lemma 24. If S is an ε-ranked ordered set i.e.,
p̃S(i),S(j) ≤ ε ∀i < j, then p̃S(k),S(j) ≤ p̃S(k),S(i) + ε
∀k ≥ j ≥ i and p̃S(k),S(i) ≥ p̃S(j),S(i) − ε ∀k ≥ j ≥ i.

Proof. Notice that if S(j) � S(i), then by SST
p̃S(k),S(j) ≤ p̃S(k),S(i). If S(i) � S(j), then since S
is ε-ranked, p̃S(i),S(j) ≤ ε, and hence by SST and STI,
p̃S(k),S(j) ≤ p̃S(k),S(i) + p̃S(i),S(j) ≤ p̃S(k),S(i) + ε.

Similarly it can be shown that p̃S(k),S(i) ≥ p̃S(j),S(i) − ε
∀k ≥ j ≥ i .

F.3. Proof for Theorem 12

Proof. We first prove the correctness. Let ε′ = ε/8. No-
tice that S is ε′-ranked. Let ˆ̃pS(i),S(j) be the approximated
output of p̃S(i),S(j).

Observe that whenever p̃S(i),S(j) is approximated using
comparisons between S(i) and S(j), by Hoeffding’s in-
equality, w.p.≥ 1 − 1/|S|4, | ˆ̃pS(i),S(j) − p̃S(i),S(j)| < 3ε

4 ,
(since S(i) and S(j) are compared for 16

ε2 log |S|4 times
and p̃S(i),S(j) is approximated to the nearest multiple of
ε). Since at most |S|2 pairs are compared, by union bound
w.p.≥ 1 − 1

|S|2 , all pair probabilities approximated using
comparisons are correct to an accuracy of 3ε/4.

Now we show that even when ˆ̃pS(k),S(i) is given the same
value as ˆ̃pS(k−1),S(i) without using comparisons, p̃S(k),S(i)
is approximated to an accuracy of 3ε/4 + 2ε′.

Notice that for S(1), when approximating pairwise prob-
ability p̃S(k),S(1) using comparisons if ˆ̃pS(k),S(1) <
ˆ̃pS(k−1),S(1), then ˆ̃pS(k),S(1) is given same value as

ˆ̃pS(k−1),S(1). We first show that this process approximates
p̃S(k),S(1) to an accuracy of 3ε/4 + ε′. Consider largest
l < k s.t. ˆ̃pS(l),S(1) = ˆ̃pS(k),S(1). Notice that p̃S(l),S(1)
is approximated using comparisons (because ˆ̃pS(l),S(1) 6=
ˆ̃pS(l−1),S(1)) and hence | ˆ̃pS(l),S(1) − p̃S(l),S(1)| ≤ 3ε/4.
Since by Lemma 24, p̃S(k),S(1) ≥ p̃S(l),S(1) − ε′ ∀l < k, it
follows that

ˆ̃pS(k),S(1) = ˆ̃pS(l),S(1)

≤ p̃S(l),S(1) + 3ε/4

≤ p̃S(k),S(1) + 3ε/4 + ε′.

Notice that since initially ˆ̃pS(k),S(1) was assigned a value
smaller than ˆ̃pS(k−1),S(1) using comparisons, p̃S(k),S(1) <
ˆ̃pS(k−1),S(1) + 3ε/4 (since approximation using com-
parisons is correct to 3ε/4). Therefore p̃S(k),S(1) <
ˆ̃pS(k),S(1)+3ε/4. Hence | ˆ̃pS(k),S(1)−p̃S(k),S(1)| ≤ 3ε/4+
ε′.

Therefore if comparisons are invoked (even when approx-
imated probability is not due to comparisons), pairwise
probability is approximated to an accuracy of 3ε/4 + ε′.

Now we consider the pairs for which no comparisons are
invoked and show that even those pairwise probabilities are
approximated to an accuracy of 3ε/4 + 2ε′.

Suppose ˆ̃pS(k),S(i) is copied same as ˆ̃pS(k−1),S(i). Let j be
the largest number < k such that ˆ̃pS(j),S(i) 6= ˆ̃pS(j−1),S(i).
Notice that ˆ̃pS(j),S(i) = ˆ̃pS(k),S(i) and comparisons
are used between S(j) and S(i) (since ˆ̃pS(j),S(i) 6=
ˆ̃pS(j−1),S(i)). Therefore |p̃S(j),S(i) − ˆ̃pS(j),S(i)| ≤ 3ε/4 +
ε′. Further by Lemma 24, p̃S(j),S(i) ≤ p̃S(k),S(i) + ε′ and
hence it follows that

ˆ̃pS(k),S(i) = ˆ̃pS(j),S(i)

≤ p̃S(j),S(i) + 3ε/4 + ε′

≤ p̃S(k),S(j) + 3ε/4 + 2ε′.

Similarly, it can be shown that ˆ̃pS(k),S(i) ≥ p̃S(k),S(j) −
3ε/4 − 2ε′. Therefore | ˆ̃pS(k),S(i) − p̃S(k),S(i)| ≤ 3ε/4 +
2ε′ = ε.

Hence w.p.≥ 1− 1
|S|2 , all pairwise probabilities are approx-

imated to an accuracy of ε.

We now bound the number of comparisons.

We first show that 0 ≤ ˆ̃pS(k),S(l) ≤ ˆ̃pS(k+1),S(l) ≤
ˆ̃pS(k+1),S(l−1) ∀k ≥ l . We prove this statement using
induction. Notice that it is true for l = 1. We assume that
it is true for l and prove correctness for l + 1.

Notice that 0 = ˆ̃pS(l+1),S(l+1) ≤ ˆ̃pS(l+2),S(l). Now
we further assume that 0 ≤ ˆ̃pS(k),S(l+1) ≤ ˆ̃pS(k+1),S(l)
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and show that 0 ≤ ˆ̃pS(k+1),S(l+1) ≤ ˆ̃pS(k+2),S(l). No-
tice that if ˆ̃pS(k),S(l+1) = ˆ̃pS(k+1),S(l), ˆ̃pS(k+1),S(l+1) =
ˆ̃pS(k+1),S(l) ≤ ˆ̃pS(k+2),S(l). And if ˆ̃pS(k),S(l+1) <
ˆ̃pS(k+1),S(l), then p̃S(k+1),S(l+1) is approximated using
comparisons and hence approximation accurate to 3ε/4.
Notice that ˆ̃pS(k+1),S(l+1) can’t be more than ˆ̃pS(k+1),S(l)

since if it happens, ˆ̃pS(k+1),S(l+1) ≥ ˆ̃pS(k+1),S(l) + ε ≥
ˆ̃pS(k),S(l+1) + 2ε but ˆ̃pS(k+1),S(l+1) ≤ p̃S(k+1),S(l+1) +

3ε/4 ≤ p̃S(k),S(l+1) + 3ε/4 + ε′ ≤ ˆ̃pS(k),S(l+1) +

3ε/2 + 3ε′ < ˆ̃pS(k),S(l+1) + 2ε (contradiction). So
ˆ̃pS(k+1),S(l+1) ≤ ˆ̃pS(k+1),S(l) ≤ ˆ̃pS(k+2),S(l). Similarly
it can be shown that ˆ̃pS(k+1),S(l+1) ≤ ˆ̃pS(k),S(l+1).

Consider the pairs ({S(1), S(i)}, {S(2), S(i −
1)}, {(S(3), S(i − 2)}, ..., {S(i/2), S(i/2 + 1)}).
Since 1/2 ≥ ˆ̃pS(i),S(1) ≥ ˆ̃pS(i−1),S(2) ≥ ˆ̃pS(i−2),S(3)... ≥
ˆ̃pS(i/2+1),S(i/2) ≥ 0 and all values are multiples of ε,
ˆ̃pS(k),S(j) 6= ˆ̃pS(k−1),S(j+1) only for O(min(|S|, 1/ε))
pairs {k, j} such that k + j = i + 1. Hence only for
O(min(|S|, 1/ε)) pairs {S(l), S(m)} s.t. l + m = i + 2,
comparisons are used to approximate pairwise proba-
bilities. This statement is true for all sum of indices
and hence only for O(|S|min(|S|, 1/ε)) pairs, com-
parisons are used and hence total comparisons used is
O
(
|S|min(|S|,1/ε)

ε2 log |S|
)

.

G. Other Relevant Models
Researchers also considered models other than WST. For
these models, one can still define maximum and ranking
based on Borda scores, Copeland scores, or Von Neumann
winner.

One such interesting model is considered in (Hüllermeier
et al., 2008): there is a probability distribution P over set
R of all possible rankings and pairwise preferences can be
defined based on this probability distribution,

pi,j =
∑
r∈R

P (r)1i�j in r.

This model does not necessarily satisfy WST, however
(Hüllermeier et al., 2008) shows that this model still sat-
isfies some relation among pairwise probabilities

pi,j ≥ pi,k + pk,j − 1. (5)

It is natural to ask if a combination of WST and (5) guaran-
tee a sub-quadratic complexity maxing algorithm. We give
a negative answer to this question.

Recall that the model used in Section 3 to show lower
bound of Ω(n2) for WST is pi,i+1 = 1 and pi,j ≈ 0.5

for |i − j| 6= 1. This model satisfies WST but not Equa-
tion (5). Yet we can slightly change the model to satisfy this
new relation and derive the lower bound of Ω(n2). The new
model that results in lower bound of Ω(n2) under WST and
Equation (5) is pi,i+1 = 0.75 and pi,j = 0.5 for |i−j| 6= 1.
It is easy to check that this new model requires more com-
parisons than the model in Section 3 to find 1

8 -maximum.
Hence lower bound of Ω(n2) also holds under the combi-
nation of WST and Equation 5.


