
Practical Contextual Bandits with Regression Oracles

Algorithm 4 BINSEARCH.UNBOUNDED.HIGH

1: Input: context-action pair (x, a), history H , radius � > 0, and precision ↵ > 0
2: Let R(f) ∶= ∑(x′,a′,r′)∈H(f(x′, a′) − r′)2.
3: Let R̃(f,w) ∶= R(f) + w

2

(f(x, a) − 2)2
4: wL ← 0, wH ← ��↵

// Invoke oracle twice

5: fL ← argminf∈F R̃(f,wL), zL ← fL(x, a)
6: fH ← argminf∈F R̃(f,wH), zH ← fH(x, a)
7: Rmin ← R(fL)
8: if zL ≥ 1 or R(fL) = R(fH) then return 1

9: �← ↵��(2 − zL)3
10: while �zH − zL� > ↵ and �wH −wL� >� do
11: w ← (wH +wL)�2

// Invoke oracle.

12: f ← argmin

˜f∈F R̃( ˜f,w), z ← f(x, a)
13: if R(f) ≥ Rmin + � then
14: wH ← w, zH ← z
15: else
16: wL ← w, zL ← z
17: end if
18: end while
19: return min{zH,1}.

A. Proofs
A.1. Proofs from Section 3.1

We prove the statement of Theorem 1 for BINSEARCH.UNBOUNDED.HIGH (Algorithm 4), which does not require the
predictors in F to be bounded in [0,1]. Note however that the actual rewards are still always bounded in [0,1], so that
f�(x, a) is always bounded by the realizability assumption. Compared with Algorithm 3, the algorithm includes some
handling of special cases, which are automatically excluded in Algorithm 3 by the assumption about boundedness. The
performance guarantee for BINSEARCH.UNBOUNDED.LOW (Algorithm 5) is analogous and therefore is omitted.

Lemma 1. Let F be convex and closed under pointwise convergence. Consider a run of Algorithm 4. Let R(f) and Rmin
be defined as in Algorithm 4 and let

z� ∶=max

�f(x, a) ∶ f ∈ F such that R(f) ≤ Rmin + �� .

Then Algorithm 4 returns z such that �z −min{z�,1}� ≤ ↵ after at most O�log(1�↵) + log(max{2 − z
0

,1})� iterations,
where z

0

= fmin(x, a) and fmin = argminf R(f).
Corollary 1. If f(x, a) ∈ [0,1] for all f ∈ F , x ∈ X and a ∈ A, then Algorithm 4 returns z such that �z − z�� ≤ ↵ after at
most O(log(1�↵)) iterations.

Proof. The proof works by analyzing a univariate auxiliary function � ∶ R→ R ∪ {∞}, which maps z ∈ R to the smallest
empirical error R(f) among all functions that predict f(x, a) = z,

�(z) ∶= �������
∞ if f(x, a) < z for all f ∈ F
min

�R(f) ∶ f ∈ F and f(x, a) = z� otherwise.
(2)

note that we do not need to worry about the case when f(x, a) might take values both larger and smaller than z but not
z exactly due to the assumed convexity of F . We first show that this function is well-defined (i.e., the minimum in the
definition is attained), convex and lower semicontinuous. We begin by embedding the least-squares optimization in a
finite dimensional space. Let H = {(xi, ai, ri)}ni=1 and define xn+1 ∶= x and an+1 ∶= a. We associate each f with a vector



Practical Contextual Bandits with Regression Oracles

Algorithm 5 BINSEARCH.UNBOUNDED.LOW

1: Input: context-action pair (x, a), history H , radius � > 0, and precision ↵ > 0
2: Let R(f) ∶= ∑(x′,a′,r′)∈H(f(x′, a′) − r′)2.
3: Let R̃(f,w) ∶= R(f) + w

2

(f(x, a) + 1)2
4: wL ← 0, wH ← ��↵

// Invoke oracle twice

5: fL ← argminf∈F R̃(f,wL), zL ← fL(x, a)
6: fH ← argminf∈F R̃(f,wH), zH ← fH(x, a)
7: Rmin ← R(fL)
8: if zL ≤ 0 or R(fL) = R(fH) then return 0

9: �← ↵��(1 + zL)3
10: while �zH − zL� > ↵ and �wH −wL� >� do
11: w ← (wH +wL)�2

// Invoke oracle.

12: f ← argmin

˜f∈F R̃( ˜f,w), z ← f(x, a)
13: if R(f) ≥ Rmin + � then
14: wH ← w, zH ← z
15: else
16: wL ← w, zL ← z
17: end if
18: end while
19: return max{zH,0}.

vf ∈ Rn+1 with entries vfi = f(xi, ai). Let V ∶= {vf ∶ f ∈ F}. Since F is closed under pointwise convergence and convex,
the set V must also be closed and convex.

For v ∈ Rn+1, let

⇢(v) ∶= n�
i=1
(vi − ri)2 ,

where ri are the rewards from H . Thus,

R(f) = n�
i=1
(f(xi, ai) − ri)2 = ⇢(vf) ,

and therefore
�(z) =min

�R(f) ∶ f ∈ F and f(x) = z� =min

�⇢(v) ∶ v ∈ V and vn+1 = z� ,

where we use the convention that the minimum of an empty set equals∞. The attainment of the minimum now follows by
convexity and continuity of ⇢ along the affine space {vn+1 = z}. The convexity and lower semicontinuity of � follows by
Theorem 9.2 of Rockafellar (1970).

The upper confidence value z� is then the largest z for which �(z) ≤ Rmin + �:

z� =max{z ∶ �(z) ≤ Rmin + �} .

Furthermore, for any w ≥ 0, define

zw ∶= argmin

z∈R ��(z) + w

2

(2 − z)2� .

Thus, zw = f(x, a) where f = argmin

˜f∈F R̃( ˜f,w) with R̃ as defined in the algorithm. The algorithm maintains the
identities zL = zwL and zH = zwH , so it can be rewritten as follows:

1: if z
0

≥ 1 or �(z
0

) = �(z��↵) then return 1

2: wL ← 0, wH ← ��↵, �← ↵��(2 − z
0

)3
3: while �zwH − zwL � > ↵ and �wH −wL� >� do



Practical Contextual Bandits with Regression Oracles

4: w ← (wH +wL)�2
5: if �(zw) > �(z0) + � then
6: wH ← w
7: else
8: wL ← w
9: end if

10: end while
11: return min{zwH ,1}.
Note that z

0

= fmin(x, a) where fmin is the minimizer of R, and therefore � attains its minimum at z
0

. If z
0

≥ 1, then the
algorithm terminates and returns 1. Since z� ≥ z

0

≥ 1, in this case the lemma holds.

Also, note that if z� = z
0

< 1 then the algorithm immediately terminates with zwL = zwH = z0. This is because of the fact that
z� = z

0

, given � > 0, implies by lower semicontinuity that �(z) =∞ for all z > z
0

and thus zw = z0 for all w > 0.

The final special case to consider is when �(2) = �(z
0

), i.e., there exist a minimizer ˜f
min

of R, which satisfies ˜f
min

(x, a) = 2
and thus for any w, it also minimizes ˜R(f,w). This is exactly the case when R(fL) = R(fH) in Algorithm 4 and in this
case the algorithm returns 1 and the lemma holds.

In the remainder of the proof we assume that �(2) > �(z
0

), z
0

< 1 and z
0

< z�. By convexity of �, we know that � is
non-decreasing on [z

0

,∞), and we will argue that by performing the binary search over w, the algorithm is also performing
a binary search over zw to find the point z�.
We begin by characterizing zw and showing that zw < 2 for all w. For any w > 0, by first-order optimality,

�′(zw) −w(2 − zw) = 0 (3)

for some �′(zw) ∈ @�(zw), where @� denotes the subdifferential. First, note that zw ≥ z
0

, because at any z < z
0

≤ 1,
we have w(2 − z) > 0 while also �′(z) ≤ 0, because � is convex and minimized at z

0

. Therefore, at z < z
0

, we have
�′(z) −w(2 − z) < 0, so Eq. (3) can only be satisfied by zw ≥ z0. Rearranging, we obtain

w = �′(zw)
2 − zw . (4)

Since zw ≥ z0, the convexity of � implies that �′(zw) ≥ 0. Since w > 0, we therefore must in fact have �′(zw) > 0 and

zw < 2 for all w > 0. (5)

Eq. (4) now implies that zw is non-decreasing as a function of w.

Let w� be such that zw� = z� (this can be obtained by Eq. 4). The remainder of the proof proceeds in two steps. The
first step establishes that our initial setting wH = ��↵ is large enough to guarantee that the initial interval [zwL , zwH + ↵] =�z

0

, z��↵ + ↵� contains the solution min{z�,1}. The execution of the algorithm then continues to maintain this condition, i.e.,
min{z�,1} ∈ [zwL , zwH +↵], which we refer to as the invariant, while halving �wH−wL�. That the invariant holds can be seen
as follows: First, if z

0

≤ z� ≤ z��↵, then the update rule guarantees that zwL ≤ z� ≤ zwH for every iteration. On the other hand,
if z� > z��↵, then zwH = z��↵ for every iteration, and so Step 1 below guarantees that z� ∈ �z��↵, z��↵ + ↵� ⊇ [zwL , zwH + ↵].
The algorithm terminates after at most

log

2

���↵
�

� = log
2

�(2 − z0)3
↵2

� = O�log(1�↵) + log(2 − z
0

)�
iterations. If the reason for termination is that �zH − zL� ≤ ↵ then the lemma follows, thanks to the invariant. Otherwise,
we must have �wH −wL� ≤ �, so our invariant together with the monotonicity of zw in w implies that wH ≤ w� +�. Our
second step below establishes that in this case we must also have zH ≤ z� + ↵. Our invariant separately also implies that
min{z�,1} ≤ zH +↵, so altogether we have min{zH,1}−↵ ≤min{z�,1} ≤min{zH,1}+↵, proving the lemma. It remains
to prove the two steps.



Practical Contextual Bandits with Regression Oracles

Step 1: z
0

≤ min{z�,1} ≤ z��↵ + ↵. The first inequality is immediate from the definition of z� and the fact that z
0

< 1.
The second inequality holds if z��↵ ≥ 1, so it remains to consider z��↵ ≤ 1. Let w = ��↵. Then by Eq. (4),

�

↵
= w = �′(zw)

2 − zw ≤ �′(zw) ,

where the last step follows because zw ≤ 1. Now by convexity of �, for any ↵̃ > ↵
�(zw + ↵̃) ≥ �(zw) + ↵̃�′(zw) ≥ �(zw) + ↵̃ ⋅ �

↵
> �(z

0

) + � ,

where the last step follows because �(zw) ≥ �(z0) and ↵̃ > ↵. This shows that z� ≤ zw + ↵ and completes Step 1.

Step 2: zw�+� ≤ z� + ↵. Let w = w� +�. Then by convexity

�(z
0

) ≥ �(z�) + (z
0

− z�)�′(z�) ,

and since z� > z
0

, we can rearrange this inequality to give

�′(z�) ≥ �(z�) − �(z0)
z� − z

0

= �

z� − z
0

≥ �

2 − z
0

,

where the last inequality follows by Eq. (5). By Eq. (4), we also have

w� = �′(z�)
2 − z� ≥

�′(z�)
2 − z

0

because z� > z
0

. Combining the two bounds yields

w� ≥ �

(2 − z
0

)2 . (6)

Applying now Eq. (4) twice, and also using the monotonicity of �′, we obtain

w = �′(zw)
2 − zw ≥

�′(z�)
2 − zw = w� ⋅

2 − z�
2 − zw .

Therefore,

2 − zw ≥ w�
w
⋅ (2 − z�)

z� − zw ≥ w�
w
⋅ (2 − z�) − (2 − z�) .

Rearranging,

zw − z� ≤ w −w�
w

⋅ (2 − z�) = �

w
⋅ (2 − z�) ≤ �

w� ⋅ (2 − z0) ,

where the final inequality uses the fact that w ≥ w� and z� ≥ z
0

. Finally, applying the bound (6) and the definition of �, we
complete Step 2:

zw − z� ≤ �(2 − z
0

)3
�

= ↵ .

A.2. Proof of Proposition 1

Proof of Proposition 1. Consider the following contextual bandit instance:

• Two actions ag and ab, so K = 2.

• rt(ag) = 1 − ✏ and rt(ab) = 0, regardless of context (there is no noise).



Practical Contextual Bandits with Regression Oracles

• N contexts x1, . . . , xN . The context distribution DX is uniform over these N contexts.

• Regressor class F contains the following N + 1 predictors:

– Ground truth regressor f� defined by f�(x, ag) = 1 − ✏, ∀x and f�(x, ab) = 0, ∀x.
– For each i ∈ [N], fi satisfying fi(xi, ag) = 0, fi(xi, ab) = 1, and fi(xj , ag) = 1 − ✏, fi(xj , ab) = 0 for all j ≠ i.

We can see that ⇡f� has population reward 1 − ✏ and each ⇡fi has population reward (1 − 1�N)(1 − ✏). Thus, each fi has
expected regret of (1 − ✏)�N .

Suppose S is the set of contexts that have been observed by our algorithms at time t, and further assume �m = 0 (as it will
be clear that larger �m can only make things worse), so that only regressors with zero square loss are considered. Observe
that f� ∈ Fm and fi ∈ Fm only if xi ∉ S.

Let xi be the context observed at time t. If xi ∈ S, then all regressors in Fm agree on it, so ag will be played. Now, suppose
xi ∉ S. Then we have HIGHFm(xi, ag) = 1 − ✏ (obtained by f�), and LOWFm(xi, ag) = 0 (obtained by fi). Likewise,
HIGHFm(xi, ab) = 1 (from fi) and LOWFm(xi, ab) = 0 (from f�).
We thus see that our algorithms will make a mistake and incur instantaneous regret of (1 − ✏) precisely at the time steps for
which one of the N contexts is encountered for the first time. The regret of the algorithm after t steps can therefore be lower
bounded as min

�N, ⌦̃(t)�.
A.3. Proofs from Section 4.1

We first set up some formal notations and then recall the definition of the disagreement coefficient for reader’s convenience.

Definition 4. For any " > 0, the policy-regret ball of radius " for F is defined as

F(") = �f ∈ F ∶ E[r(⇡f(x))] ≥ E[r(⇡�(x))] − "�.
Definition 5 (Reward width). For any predictor class F , context x, and action a, the reward width is defined as

WF(x, a) = HIGHF(x, a) − LOWF(x, a).
Definition 6 (Disagreement Region). For any predictor class F , the disagreement region Dis(F) is defined as9

Dis(F)
= �x � ∃f, f ′ ∈ F ∶ argmax

a∈A f(x, a) ≠ argmax

a∈A f ′(x, a)�.
Definition 7 (Disagreement set). For a predictor class F and a context x, the disagreement set at x is defined as

AF(x) = �f∈F argmaxa∈A f(x, a).
With these preliminaries, the disagreement coefficient is defined as follows.

Definition (Disagreement Coefficient). The disagreement coefficient for F (with respect to DX ) is defined as

✓
0

∶= sup

�>0,">0
�

"
PrDX �x ∈ Dis(F(")) and ∃a ∈ AF(")(x) ∶WF(")(x, a) > ��.

In addition, the following condition on f� is important to obtain fast rates, but it is not stated as an assumption because it is
not strictly necessary for any of our algorithms.

Definition 8 (Massart noise condition). The distribution D satisfies the Massart noise condition if there exists � > 0, called
a margin, such that

f�(x,⇡�(x)) ≥ f�(x, a) + � for all x and a ≠ ⇡�(x).
9When the maximizing action argmaxa∈A f(x, a) is not unique, the “≠” in the disagreement set definition checks that the two argmax

sets are identical.



Practical Contextual Bandits with Regression Oracles

For all subsequent analyses we will use the following filtration:

Jt ∶= �((x1

, a
1

, r
1

), . . . , (xt−1, at−1, rt−1)).
Let Et[⋅] ∶= E[⋅ � Jt] and Vart[⋅] ∶= Var[⋅ � Jt].
Lemma 2 (Freedman-type inequality e.g. (Agarwal et al., 2014)). For any real-valued martingale difference sequence(Zt)t≤T with �Zt� ≤ R almost surely, it holds that with probability at least 1 − �,

T�
t=1Zt ≤ ⌘(e − 2) T�

t=1Et(Zt)2 + R log(1��)
⌘

(7)

for all ⌘ ∈ [0,1�R].
Recall that epoch schedule used by Algorithm 1 and Algorithm 2 is ⌧m = 2

m−1. Denote the length of epoch m by
Tm = ⌧m+1 − ⌧m = 2

m−1. In addition, we will use the notation g�a(x) ∶= f�(x, a) where f� as in the main text is the
predictor that realizes the mean reward function, and also

Mt(g, a) = ((g(xt) − rt(a))2 − (g�a(xt) − rt(a))2)1{a = at}.
for any g ∶ X → [0,1], and action a ∈ A. When f ∈ F = GA we will overload this notation by writing Mt(f, a) ∶=
Mt(f(⋅, a), a). Also define the class

G̃m(�, a) = �g ∈ G � 1

⌧m − 1
⌧m−1�
t=1 Et[Mt(g, a)] ≤ ��.

To prove the theorem, we make use of following lemmas.
Lemma 3. For any g ∶ X → [0,1] and a ∈ A we have

Et[Mt(g, a)] = Et�(g(xt) − g�a(xt))21{a = at}�,
Vart[Mt(g, a)] ≤ 4Et[Mt(g, a)].

Proof. Note that at and rt are conditionally independent given xt and also Ert[rt(a) � xt] = g�a(xt). We thus have

Et[Mt(g, a)] = Et[(g(xt) − g�a(xt))((g(xt) + g�a(xt) − 2rt(a))1{a = at}] = Et�(g(xt) − g�a(xt))21{a = at}�.
Similarly, since ((g(xt) + g�a(xt) − 2rt(a))2 ≤ 4 we have

Vart[Mt(g, a)] ≤ Et�Mt(g, a)2� ≤ 4Et�(g(xt) − g�a(xt))21{a = at}� = 4Et[Mt(g, a)].

Definition 9 (Covering number). For a class G′ ⊆ {g ∶ X → [0,1]}, an empirical Lp-cover on a sequence x
1

, . . . , xT at
scale " is a set V ⊆ RT such that

∀g ∈ G′ ∃v ∈ V s.t. � 1
T

T�
t=1(g(xt) − vt)p�

1�p
≤ ".

We define the covering number Np(G′, ", x1∶T ) to be the size of the smallest such cover.

Lemma 4. For any fixed class G′ ⊆ {g ∶ X → [0,1]} and fixed a ∈ A, with probability at least 1 − �, it holds that

⌧2�
t=⌧1

Et[Mt(g, a)] ≤ 2 ⌧2�
t=⌧1

Mt(g, a) + 16 log� �G′�T 2

�
� (8)

for all ⌧
1

≤ ⌧
2

and g ∈ G′ when G′ is finite and
⌧2�

t=⌧1
Et[Mt(g, a)] ≤ 2 ⌧2�

t=⌧1
Mt(g, a) + inf

">0�100"T + 320 log�4Ex1∶T N1

(G′, ", x
1∶T )T 2

log(T )
�

�� (9)

for all ⌧
1

≤ ⌧
2

and g ∈ G′ in the general case.



Practical Contextual Bandits with Regression Oracles

Remark 1. Equation (9) implies (8), but with weaker constants.

Corollary 2. Define

C� =min�16 log�2�G�KT 2

�
� , inf

">0�100"T + 320 log�8Ex1∶T N1

(G, ", x
1∶T )KT 2

log(T )
�

���.
With probability at least 1 − ��2, it holds that

⌧2�
t=⌧1

Et[Mt(g, a)] ≤ 2 ⌧2�
t=⌧1

Mt(g, a) +C�, (10)

for all g ∈ G, a ∈ A, and ⌧
1

, ⌧
2

∈ [T ].
Proof of Lemma 4. We first prove the inequality in the finite class case.

For any fixed g ∈ G′, a ∈ A, and ⌧
1

, ⌧
2

∈ [T ], since Zt = Et[Mt(g, a)] −Mt(g, a) forms a martingale different sequence
with �Zt� ≤ 1, applying Lemma 2 and Lemma 3 we have with probability 1 − �,

⌧2�
t=⌧1
(Et[Mt(g, a)] −Mt(g, a)) ≤ 4⌘(e − 2) ⌧2�

t=⌧1
Et[Mt(g, a)] + 1

⌘
log�1

�
�.

This implies
⌧2�

t=⌧1
Et[Mt(g, a)] ≤ 2 ⌧2�

t=⌧1
Mt(g, a) + 16 log �1

�
�

after setting ⌘ = 1�8 and rearranging. Finally, we apply a union bound over all g ∈ G′ and ⌧ ≤ ⌧
2

∈ [T ] to get the result.

For the infinite class case, we appeal to Theorem 9 of (Krishnamurthy et al., 2017) (see page 36 specifically — we do not
use the final theorem statement but rather an intermediate result that is the consequence of their Lemmas 7, 8, 9, and 10).

Let ⌧
1

and ⌧
2

be fixed. Then the result of (Krishnamurthy et al., 2017) implies that for any class G, any fixed " > 0, ⌫ > 0
and a ∈ A, letting c = 1�8,

Pr�sup
g∈G�

⌧2�
t=⌧1

1

2

Et[Mt(g, a)] −Mt(g, a)� > 4⌫ + 16T (1 + c)"� ≤ 4Ex1∶T N1

(G, ", x
1∶T ) exp�− 2c

(3 + c)2 ⌫�.
Rearranging, this implies that with probability at least 1 − �,

sup

g∈G�
⌧2�

t=⌧1
1

2

Et[Mt(g, a)] −Mt(g, a)� ≤ 18"T + 160 log(4Ex1∶T N1

(G, ", x
1∶T )��). (11)

Now consider a grid "i ∶= ei�T for i ∈ [log(T )]. By union bound, (11) implies that with probability at least 1 − �,

sup

g∈G�
⌧2�

t=⌧1
1

2

Et[Mt(g, a)] −Mt(g, a)� ≤ 18"iT + 160 log(4Ex1∶T N1

(G, "i, x1∶T ) log(T )��) ∀i ∈ [log(T )].
This implies that with probability at least 1 − �,

sup

g∈G�
⌧2�

t=⌧1
1

2

Et[Mt(g, a)] −Mt(g, a)� ≤ inf

">0{50"T + 160 log(4Ex1∶T N1

(G, ", x
1∶T ) log(T )��)}.

To see that this inequality is implied by the preceeding inequality, first observe that the infimum over " above may be
restricted to [1�T,1] without loss of generality. This holds because Mt lies in [−1,1] and N

1

(G,1, x
1∶T ) ≤ 1, which both

follow from the fact that the range of G lies in [0,1]. Now let "� obtain the infimum and let i� = min{i � "i ≥ "�}. ThenN
1

(G, "i� , x1∶T ) ≤N1

(G, "�, x
1∶T ) and 18"i�T ≤ 18e"�T ≤ 50"�T .

To conclude, we take a union bound over all ⌧
1

< ⌧
2

∈ [T ].
Lemma 5. Conditioned on the event of Corollary 2, it holds that



Practical Contextual Bandits with Regression Oracles

1. g�a ∈ Ĝm � C�

2(⌧m−1) , a� for all m ∈ [M] and a ∈ A.

2. For all � ≥ 0, m ∈ [M], and a ∈ A,

Ĝm(�, a) ⊆ G̃m �2� + C�

⌧m − 1 , a� .
3. For all � ≥ 0, m ∈ [M], k ∈ [m], and a ∈ A,

Ĝm(�, a) ⊆ Ĝk �⌧m − 1
⌧k − 1 � +

C�

⌧k − 1 , a� .
4. With �m = (M−m+1)C�

⌧m−1 , we have for any m ∈ [M], f� ∈ Fm and also Fm ⊆ Fm−1 ⊆ � ⊆ F1

.

Proof. Each claim in the lemma statement will be handled separately.
First claim. From (10) and nonnegativity of Et[Mt(g, a)], we have that

min

g∈G �2
⌧m−1�
t=1 Mt(g, a)� +C� ≥ 0.

Expanding out Mt(g, a) and rearranging, this gives R̂m(g�a, a) − ming∈G R̂m(g, a) ≤ C�

2(⌧m−1) , which implies g�a ∈
Ĝm � C�

2(⌧m−1) , a�.
Second claim. For any g ∈ Ĝm(�, a), we have by definition

1

⌧m − 1
⌧m−1�
t=1 Mt(g, a) = R̂m(g, a) − R̂m(g�a, a) ≤ R̂m(g, a) −min

g′∈G R̂m(g′, a) ≤ �. (12)

Therefore applying (10) leads to

1

⌧m − 1
⌧m−1�
t=1 Et[Mt(g, a)] ≤ 2

⌧m − 1
⌧m−1�
t=1 Mt(g, a) + C�

⌧m − 1 ≤ 2� +
C�

⌧m − 1 ,
which implies g ∈ G̃m �2� + C�

⌧m−1 , a�.
Third claim. For any g ∈ Ĝm(�, a), we have for any k ∈ [m],

(⌧k − 1)�R̂k(g, a) −min

g′∈G R̂k(g′, a)� ≤ (⌧k − 1) �R̂k(g, a) − R̂k(g�a, a)� +C��2 (by the first claim)

= ⌧m−1�
t=1 Mt(g, a) − ⌧m−1�

t=⌧k
Mt(g, a) +C��2

≤ (⌧m − 1)� − ∑
⌧m−1
t=⌧k Et[Mt(g, a)]

2

+C� (by (12) and (10))

≤ (⌧m − 1)� +C�, (by nonnegativity of Et[Mt(g, a)])
which implies g ∈ Ĝk � ⌧m−1⌧k−1 � + C�

⌧k−1 , a�.
Fourth claim. The value of �m ensures that C�

2(⌧m−1) ≤ �m for any m ∈ [M], and also for any k <m,

⌧m − 1
⌧k − 1 �m +

C�

⌧k − 1 =
(M −m + 2)C�

⌧k − 1 ≤ �k.
Therefore by the first and the third statement we have the claimed conclusions.

Proposition 2. For any two classes F ⊆ F ′ and any context x, AF(x) ⊆ AF ′(x).



Practical Contextual Bandits with Regression Oracles

Lemma 6. Algorithm 1 with OPTION I ensures that for any m ∈ [M] and t ∈ {⌧m, . . . , ⌧m+1 − 1},
At = AFm(xt) = �

f∈Fm

argmax

a∈A f(xt, a).
Proof. For any f ∈ Fm and any a ∈ argmaxa′∈A f(xt, a

′), we have by definitions

HIGHFm(xt, a) ≥ f(xt, a) =max

a′ f(xt, a
′) ≥max

a′ LOWFm(xt, a
′),

which implies a ∈ At. On the other hand, for each a ∈ At, there exists ga ∈ Ĝ(�m, a) such that ga(xt) ≥
maxa′ming∈Ĝ(�m,a′) g(xt), which further implies that for any a′ ≠ a, there exists ga′ ∈ Ĝ(�m, a′) such that ga(xt) ≥
ga′(xt). Therefore, we can construct an f so that f(⋅, a) = ga(⋅) and f(⋅, a′) = ga′(⋅) for all a′ ≠ a, so that clearly f ∈ Fm

and a ∈ argmaxa′∈A f(xt, a
′). This proves the lemma.

Lemma 7. Conditioned on the event of Corollary 2, Algorithm 1 with OPTION I and �m = (M−m+1)C�

⌧m−1 ensures that for any
m ∈ [M], we have Fm ⊆ F("m) with

"m = inf
⌘>0�⌘P⌘ + 4K2

⌘(⌧m − 1)(2M − 2m + 3)C��,
where P⌘ = Prx�f�(x,⇡�(x)) −maxa≠⇡�(x) f�(x, a) < ⌘�.
Proof. We first prove that for any t < ⌧m and f ∈ Fm, the following holds

Ex,r[r(⇡�(x)) − r(⇡f(x))] ≤ inf

⌘>0�⌘P⌘ + 4K

⌘
�
a∈A

Et[Mt(f, a)]�. (13)

Indeed, note that for any ⌘ > 0, with realizability we have

Ex,r[r(⇡�(x)) − r(⇡f(x))]= Ex[f�(x,⇡�(x)) − f�(x,⇡f(x))]
≤ ⌘Prx(f�(x,⇡�(x)) − f�(x,⇡f(x)) < ⌘ and ⇡�(x) ≠ ⇡f(x)) + 1

⌘
Ex(f�(x,⇡�(x)) − f�(x,⇡f(x)))2

≤ ⌘P⌘ + 1

⌘
Ex(f�(x,⇡�(x)) − f�(x,⇡f(x)))2.

By the definition of ⇡f we also have for any x, f(x,⇡f(x)) − f(x,⇡�(x)) ≥ 0 and thus

Ex(f�(x,⇡�(x)) − f�(x,⇡f(x)))2 ≤ Ex(f�(x,⇡�(x)) − f�(x,⇡f(x)) + f(x,⇡f(x)) − f(x,⇡�(x)))2
≤ 2Ex(f�(x,⇡�(x)) − f(x,⇡�(x)))2 + 2Ex(f(x,⇡f(x)) − f�(x,⇡f(x)))2.

Now suppose round t is in epoch k. Since both f ∈ Fm ⊆ Fk and f� ∈ Fk, we have ⇡f(xt),⇡�(xt) ∈ At by Lemma 6.
Therefore, the fact that at is drawn uniformly from At implies

Ex(f�(x,⇡�(x)) − f(x,⇡�(x)))2 ≤K Ex,at(f�(x, at) − f(x, at))2,
and likewise

Ex(f�(x,⇡f(x)) − f(x,⇡f(x)))2 ≤K Ex,at(f�(x, at) − f(x, at))2.
Lastly, plugging the equality

Ex,at(f�(xt, at) − f(xt, at))2 = �
a∈A

Et[Mt(f, a)]
proves Eq. (13). Averaging over t = 1, . . . , ⌧m − 1 then gives

Ex,r[r(⇡�(x)) − r(⇡f(x))] ≤ inf

⌘>0�⌘P⌘ + 4K

⌘(⌧m − 1) �a∈A
⌧m−1�
t=1 Et[Mt(f, a)]�.



Practical Contextual Bandits with Regression Oracles

Using the second statement of Lemma 5 we have ∑⌧m−1
t=1 Et[Mt(f, a)] ≤ 2(⌧m − 1)�m +C� = (2M − 2m + 3)C� and thus

Ex,r[r(⇡�(x)) − r(⇡f(x))] ≤ inf

⌘>0�⌘P⌘ + 4K2

⌘(⌧m − 1)(2M − 2m + 3)C�� = "m,

completing the proof by the definition of F("m).
We are now ready to prove Theorem 2, which is restated below with an extra result under the Massart condition.

Theorem 5 (Full version of Theorem 2). With �m = (M−m+1)C�

⌧m−1 and C� as in Corollary 2, Algorithm 1 with Option I
ensures that with probability at least 1 − �,

RegT = O �T 3
4C�

1
4

�
✓
0

K logT + log(1��)� . (14)

In particular, for finite classes regret is bounded as Õ �T 3
4 (log�G�) 1

4
√
✓
0

K�.
Furthermore, if the Massart noise condition (Definition 8) is satisfied with parameter �, then Algorithm 1 configured as
above with � = 1�T enjoys an in-expectation regret bound of

E� T�
t=1 rt(⇡

�(xt)) − T�
t=1 rt(at)� = O

�
�
✓
0

K2C
1�T log

2 T

�2
�
� , (15)

which for finite classes is upper bounded by Õ � ✓0K2
log(�G�T )
�2 �.

Remark 2. This theorem and the subsequent regret bounds based on moment conditions (Theorem 6 and Theorem 7) give a
high-probability empirical regret bound in the general case, but only give an in-expectation regret bound under the Massart
condition. This is because one incurs an extra O(√T ) factor in going from a (conditional) expected regret bound to an
empirical regret bound, which is a low order term in the general case but may dominate in the Massart case.

Proof. We will first provide a bound on
T�
t=1Et[rt(⇡�(xt)) − rt(at)],

then relate this quantity to the left-hand-side of (14) and (15) at the end.

This proof conditions on the above event and the events of Corollary 2, which happen with probability at least 1 − ��2, and
bounds the conditional expected regret terms Et[f�(xt,⇡

�(xt)) − f�(xt, at)] individually.

For any ⌘′ > 0, we recall the definition used in the proof of Lemma 7: P⌘′ = Prx�f�(x,⇡�(x)) −maxa≠⇡�(x) f�(x, a) < ⌘′�.
Further define two events:

E
1

= {∃a ∈ At ∶ f�(x, a) < f�(x,⇡�(x))}
E

2

= {∃a ∈ At ∶ f�(xt,⇡
�(xt)) − f�(xt, a) ≥ ⌘′}.

We then have

Et[f�(xt,⇡
�(xt)) − f�(xt, at)] = Et[f�(xt,⇡

�(xt)) − f�(xt, at) � E1

]Prxt(E1

)
= Et[f�(xt,⇡

�(xt)) − f�(xt, at) � E1

,¬E
2

]Prxt(E1

,¬E
2

)
+Et[f�(xt,⇡

�(xt)) − f�(xt, at) � E1

,E
2

]Prxt(E1

,E
2

)
≤ ⌘′Prxt(E1

,¬E
2

) +Prxt(E1

,E
2

)
≤ ⌘′P ′⌘ +Prxt(E1

,E
2

).
Next we argue two facts (suppose round t is in epoch m): E

1

implies xt ∈ Dis(Fm), and E
2

implies that there exists a′ ∈ At

such that WFm(x, a′) > ⌘′�2. Indeed, with a being the action stated in event E
1

, we know that by Lemma 6 there exists
f ∈ Fm such that a ∈ argmaxa′ f(xt, a). However, clearly a is not in argmaxa′ f�(xt, a), and thus by f� ∈ Fm and the



Practical Contextual Bandits with Regression Oracles

definition of disagreement region we have xt ∈ Dis(Fm). On the other hand, with a being the action stated in event E
2

, we
have

⌘′ ≤ f�(xt,⇡
�(xt)) − f�(xt, a)≤ HIGHFm(xt,⇡

�(xt)) − LOWFm(xt, a)≤ HIGHFm(xt,⇡
�(xt)) − LOWFm(xt,⇡

�(xt)) + HIGHFm(xt, a) − LOWFm(xt, a)=WFm(xt,⇡
�(xt)) +WFm(xt, a)

where the last inequality is by the fact a ∈ At and the definition of At. The last inequality thus implies that there exists
a′ ∈ At such that WFm(x, a′) > ⌘′�2. We therefore continue with

Prxt(E1

,E
2

) ≤ Prxt(xt ∈ Dis(Fm) and ∃a ∈ At ∶WFm(x, a) > ⌘′�2)≤ Prxt(xt ∈ Dis(Fm) and ∃a ∈ AFm(xt) ∶WFm(x, a) > ⌘′�2)≤ Prxt(xt ∈ Dis(F("m)) and ∃a ∈ AF("m)(xt) ∶WF("m)(x, a) > ⌘′�2) (by Lemma 7 and Proposition 2)

≤ 2✓
0

"m
⌘′ . (by the definition of ✓

0

)

Combining everything we arrive at for any ⌘,⌘′ > 0,

T�
t=1Et[f�(xt,⇡

�(xt)) − f�(xt, at)] ≤ ⌘′TP ′⌘ + 2✓
0

⌘′ �⌘TP⌘ + 4K2C�

⌘

M�
m=1

Tm(2M − 2m + 3)
⌧m − 1 �

≤ ⌘′TP ′⌘ + 2✓
0

⌘′ �⌘TP⌘ + 8K2C�

⌘
(M2 + 2M)� .

In the general case we simply bound P⌘ and P⌘′ by 1 and choose the optimal ⌘ and ⌘′ to arrive at a regret bound of order
O �T 3

4C�
1
4
√
✓
0

K logT + log(1��)�. On the other hand, under the Massart condition (Definition 8) one can pick ⌘ = ⌘′ = �
so that P⌘ = P⌘′ = 0 and obtain a regret bound of order O � ✓0K2C� log

2 T
�2 �.

Lastly, we relate the sum of conditional expected instantaneous regrets to the left-hand side of (14) and (15). In the general
case, since instantaneous regret lies in [−1,1], Azuma-Hoeffding implies that

T�
t=1 rt(⇡

�(xt)) − rt(at) ≤ T�
t=1Et[rt(⇡�(xt)) − rt(at)] +O(�T log(1��))

with probability at least 1 − ��2. By union bound, the theorem statement holds with probability at least 1 − �.

In the Massart case, the law of total expectation implies

E� T�
t=1 rt(⇡

�(xt)) − rt(at)� ≤ O��
✓
0

K2C
1�T log

2 T

�2
�
� +

1

T
⋅ T,

where the second term uses boundedness of regret along with the fact that the events of Corollary 2 hold with probability at
least 1 − 1�T .

A.4. Proofs from Section 4.2

Similarly to the notation Mt(g, a) for the case F = GA, for a general predictor class F we define for any f ∈ F
Mt(f) = (f(xt, at) − rt(at))2 − (f�(xt, at) − rt(at))2.

and also the class

F̃m(�) = �f ∈ F � 1

⌧m − 1
⌧m−1�
t=1 Et[Mt(f)] ≤ ��.



Practical Contextual Bandits with Regression Oracles

Finally, for any a ∈ A we define a class F �a = {x� f(x, a) � f ∈ F}.
We establish several lemmas similar to those in Appendix A.3.
Lemma 8. For any f ∈ F we have

Et[Mt(f)] = Et�(f(xt, at) − f�(xt, at))2�,
Vart[Mt(f)] ≤ 4Et[Mt(f)].

Lemma 9. Define

C ′� =min�16 log�2�F �T 2

�
�, inf

">0�100"KT + 320 �
a∈A

log�8Ex1∶T N1

(F �a, ", x1∶T )KT 2

log(T )
�

���. (16)

With probability at least 1 − ��2, it holds that
⌧2�

t=⌧1
Et[Mt(f)] ≤ 2 ⌧2�

t=⌧1
Mt(f) +C ′�,

for all f ∈ F and ⌧
1

, ⌧
2

∈ [T ].
Proof of Lemma 9. We first prove the inequality in the finite class case. For any fixed f ∈ F , and ⌧

1

≤ ⌧
2

∈ [T ],
Zt ∶= Et[Mt(f)] −Mt(f) forms a martingale different sequence with �Zt� ≤ 1. Applying Lemma 2 and Lemma 8 we have
with probability 1 − �,

⌧2�
t=⌧1
(Et[Mt(f)] −Mt(f)) ≤ 4⌘(e − 2) ⌧2�

t=⌧1
Et[Mt(f)] + 1

⌘
log�1

�
�,

which implies after setting ⌘ = 1�8 and rearranging.
⌧2�

t=⌧1
Et[Mt(f)] ≤ 2 ⌧2�

t=⌧1
Mt(f) + 16 log �1

�
�

We apply a union bound over all f ∈ F and ⌧
1

≤ ⌧
2

∈ [T ] to get the result.

To handle the infinite class case we invoke Lemma 4. In particular, for any fixed a, the lemma with G′ = F �a implies that
with probability at least 1 − �,

⌧2�
t=⌧1

Et[Mt(f(⋅, a), a)] ≤ 2 ⌧2�
t=⌧1

Mt(f(⋅, a), a) + inf
">0�100"T + 320 log�4Ex1∶T N1

(F �a, ", x1∶T )T 2

log(T )
�

��
for all f ∈ F and ⌧

1

≤ ⌧
2

. Observe that Mt(f) = ∑a∈AMt(f(⋅, a), a). Taking a union bound and then summing over all
actions, the preceding statement therefore implies that with probability at least 1 − �,

⌧2�
t=⌧1

Et[Mt(f)] ≤ 2 ⌧2�
t=⌧1

Mt(f) + �
a∈A

inf

">0�100"T + 320 log�4Ex1∶T N1

(F �a, ", x1∶T )KT 2

log(T )
�

��
for all f ∈ F and ⌧

1

≤ ⌧
2

. The final result follows from superadditivity of the infimum.

Lemma 10. Conditioned on the event of Lemma 9, it holds that

1. f� ∈ F̂m � C′�
2(⌧m−1)� for all m ∈ [M].

2. For all � ≥ 0 and m ∈ [M],
F̂m(�) ⊆ F̃m �2� + C ′�

⌧m − 1� .
Consequently, we have E⌧m−1[M⌧m−1(f)] ≤ 2�(⌧m−1)+C′�

Tm−1 for any f ∈ F̂m(�).



Practical Contextual Bandits with Regression Oracles

3. For all � ≥ 0, m ∈ [M], and k ∈ [m],
F̂m(�) ⊆ F̂k �⌧m − 1

⌧k − 1 � +
C ′�
⌧k − 1� .

4. With �m = (M−m+1)C�

⌧m−1 , we have for any m ∈ [M], f� ∈ Fm and also Fm ⊆ Fm−1 ⊆ � ⊆ F1

.

Proof. The proof of this lemma is essentially the same as that of Lemma 5 in Appendix A.3. The only new statement is the
second statement of the second claim in Lemma 10. This holds because for any f ∈ F̂m(�) ⊆ F̃m �2� + C′�

⌧m−1�, we have

⌧m−1�
t=⌧m−1

Et[Mt(f)] ≤ ⌧m−1�
t=1 Et[Mt(f)] ≤ 2�(⌧m − 1) +C ′�,

and also by the epoch schedule of the algorithm Et[Mt(f)] remains the same for all t ∈ {⌧m−1, . . . , ⌧m − 1} and thus
Tm−1E⌧m−1[M⌧m−1(f)] = ∑⌧m−1

t=⌧m−1 Et[Mt(f)] ≤ 2�(⌧m − 1) +C ′� , proving the statement.

We are now ready to prove the main theorems, which are again restated with extra results under the Massart condition.

Theorem 6 (Full version of Theorem 3). With �m = (M−m+1)C′�⌧m−1 and C ′� as in Lemma 9, Algorithm 1 with Option II ensures
that with probability at least 1 − �,

RegT = O ��TL
2,0C ′� logT + log(1��)� .

In particular, for finite classes regret is bounded as Õ ��TL
2,0 log�F ��.

Furthermore, if the Massart noise condition Definition 8 is satisfied with parameter �, then Algorithm 1 configured as above
with � = 1�T enjoys an in-expectation regret bound of

E� T�
t=1 rt(⇡

�(xt)) − rt(at)� = O��
L
2,0C

′
1�T log

2 T

�

�
� ,

which for finite classes is bounded as Õ �L2,0 log�F �
�

�.
Proof. Similar to the proof of Theorem 2, we condition on the events of Lemma 9, which happen with probability at least
1 − ��2.

With m denoting the epoch to which round t belongs and P⌘ = Prx�f�(x,⇡�(x)) −maxa≠⇡�(x) f�(x, a) < ⌘� for any
⌘ > 0, we have

Et[f�(xt,⇡
�(xt)) − f�(xt, at)]

≤ ⌘P⌘ + 1

⌘
Et�(f�(xt,⇡

�(xt)) − f�(xt, at))2�
≤ ⌘P⌘ + 1

⌘
Et�(f�(xt,⇡

�(xt)) − LOWFm(xt,⇡
�(xt)) + HIGHFm(xt, at) − f�(xt, at))2)2� (at ∈ At)

≤ ⌘P⌘ + 2

⌘
Et�(f�(xt,⇡

�(xt)) − LOWFm(xt,⇡
�(xt)))2� + 2

⌘
Et�(HIGHFm(xt, at) − f�(xt, at))2�

≤ ⌘P⌘ + 2

⌘
Et� sup

f∈Fm

(f�(xt,⇡
�(xt)) − f(xt,⇡

�(xt)))2� + 2

⌘
Et� sup

f∈Fm

(f(xt, at) − f�(xt, at))2�
≤ ⌘P⌘ + 4

⌘
sup

x∈X ,a∈A sup

f∈Fm

�(f�(x, a) − f(x, a))2�
= ⌘P⌘ + 4

⌘
sup

f∈Fm

sup

x∈X ,a∈A�(f�(x, a) − f(x, a))2�
≤ ⌘P⌘ + 4L

2,0

⌘
sup

f∈Fm

Ex∼DX Ea∼Unif(A)�1�x ∈ U0

(a)�(f�(x, a) − f(x, a))2� (by Definition 3)

≤ ⌘P⌘ + 4L
2,0

⌘
sup

f∈Fm

Ex∼DX Ea∼Unif(A)�1�a ∈ A⌧m−1�(f�(x, a) − f(x, a))2�,



Practical Contextual Bandits with Regression Oracles

where the last step holds because x ∈ U
0

(a) along with the fact f� ∈ Fm−1 implies

HIGHFm−1(x, a) ≥ f�(x, a) =max

a′ f�(x, a′) ≥max

a′ LOWFm−1(x, a′),
and thus by definition a ∈ A⌧m−1 . We continue with

Et[f�(xt,⇡
�(xt)) − f�(xt, at)] ≤ ⌘P⌘ + 4L

2,0

⌘
sup

f∈Fm

Ex∼DX Ea∼Unif�A⌧m−1��(f�(x, a) − f(x, a))2�
= ⌘P⌘ + 4L

2,0

⌘
sup

f∈Fm

E⌧m−1[M⌧m−1(f)]
≤ ⌘P⌘ + 4L

2,0

⌘
⋅ 2�m(⌧m − 1) +C ′�

Tm−1 (by the second claim of Lemma 10)

= ⌘P⌘ + 4L
2,0(2M − 2m + 3)C ′�

⌘Tm−1 .

Summing over t = 1, . . . , T , we arrive at

T�
t=1Et[f�(xt,⇡

�(xt)) − f�(xt, at)] = ⌘TP⌘ + M�
m=1Tm

4L
2,0(2M − 2m + 3)C ′�

⌘Tm−1 = ⌘TP⌘ + 8L
2,0(M2 + 2M)C ′�

⌘
.

Finally in the general case we bound P⌘ by 1 and pick the optimal ⌘ to arrive at a conditional expected regret bound of order
O(�TL

2,0C ′� logT + log(1��)), while under the Massart condition (Definition 8) one can pick ⌘ = � so that P⌘ = 0 and

obtain a conditional expected regret bound of order O �L2,0C
′
� log

2 T

�
�.

As in the proof of Theorem 5, we relate the sum of conditional expected instantaneous regrets back to the quantities in the
theorem statement differently in the general case and the Massart case. In the general case we have

T�
t=1 rt(⇡

�(xt)) − rt(at) ≤ T�
t=1Et[rt(⇡�(xt)) − rt(at)] +O(�T log(1��))

with probability at least 1 − ��2.

In the Massart case, the law of total expectation implies

E� T�
t=1 rt(⇡

�(xt)) − rt(at)� ≤ O��
L
2,0C

′
1�T log

2 T

�

�
� +

1

T
⋅ T.

Theorem 7 (Full version of Theorem 4). With �m = (M−m+1)C′�
⌧m−1 , where C ′� is as in Lemma 9, and M

0

= 2 +
�log

2

�1 + (2M+3)L1C
′
�

�2 �� for any � ∈ (0,1), Algorithm 2 ensures that with probability at least 1 − �,

RegT = O �L1

C ′� logT
�2

+�TL
2,�C ′� logT� ,

which for finite classes is bounded by Õ �L1 log�F �
�2 +�TL

2,� log�F ��.
Furthermore, if the Massart noise condition (Definition 8) is satisfied with parameter �, then Algorithm 2 configured as
above with � = 1�T enjoys an expected regret bound of

E� T�
t=1 rt(⇡

�(xt)) − rt(at)� = O��
L
1

C ′
1�T logT

�2
+ L

2,�C
′
1�T log

2 T

�
1{� > �}�� ,

which for finite classes is bounded by Õ �L1 log�F �
�2 + L2,� log�F �

�
1{� > �}�.



Practical Contextual Bandits with Regression Oracles

Proof. We condition on the same events of Lemma 9, which hold with probability at least 1 − ��2. By the second claim of
Lemma 10, we have for any f ∈ FM0 ,

⌧M0−1�
t=1 Et[Mt(f)] ≤ 2�M0(⌧M0 − 1) +C ′� = 2(M −M0

+ 1)C ′�
⌧M0 − 1 (⌧M0 − 1) +C ′� ≤ (2M + 3)C ′�.

Since Algorithm 2 performs pure exploration for any t before epoch M
0

, we conclude that

Et[Mt(f)] = Ex∼D Ea∼Unif(A)(f(x, a) − f�(x, a))2 ≤ (2M + 3)C ′�⌧M0 − 1 ,

and therefore together with Definition 2, we have for any f ∈ FM0 , x ∈ X , and a ∈ A,

(f(x, a) − f�(x, a))2 ≤ L
1

Ex′∼DX Ea′∼Unif(A)(f(x′, a′) − f�(x′, a′))2 ≤ (2M + 3)L1

C ′�
⌧M0 − 1 < �2, (17)

where the last step holds by the choice of M
0

. Next we claim that for any t ≥ ⌧M0 , if xt ∈ U�(a) for some a, then it must be
the case at = a = ⇡�(xt). To begin, we have that a = ⇡�(xt), which is by the definition of U�(a). Moreover, with m being
the epoch to which t belongs and a′ = argmaxa≠⇡�(xt) HIGHFm(xt, a), we have

HIGHFm(xt, a) − HIGHFm(xt, a
′)

= f�(xt, a) − f�(xt, a
′)�������������������������������������������������������������������������������������������������������������������������������≥�
+HIGHFm(xt, a) − f�(xt, a)������������������������������������������������������������������������������������������������������������������������������������������������������������������������≥0

+f�(xt, a
′) − HIGHFm(xt, a

′)����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������>−�> � + 0 − � = 0,
where the inequality is by xt ∈ U�(a), f� ∈ HIGHFm , and Eq. (17). By the optimistic strategy of Algorithm 2, this implies
at = a.

Finally we proceed exactly the same as the proof of Theorem 3 to arrive at for any ⌘ > 0, � ∈ (0,1), m >M
0

, and t in epoch
m,

Et[f�(xt,⇡
�(xt)) − f�(xt, at)] ≤ ⌘P⌘ + 4L

2,�

⌘
sup

f∈Fm

Ex∼DX Ea∼Unif(A)�1�x ∈ U�(a)�(f�(x, a) − f(x, a))2�.
With the fact established above, since ⌧m−1 ≥ ⌧M0 we continue with

Et[f�(xt,⇡
�(xt)) − f�(xt, at)] ≤ ⌘P⌘ + 4L

2,�

K⌘
sup

f∈Fm

Ex⌧m−1 �(f�(x⌧m−1 , a⌧m−1) − f(x⌧m−1 , a⌧m−1))2�
= ⌘P⌘ + 4L

2,�

⌘
sup

f∈Fm

E⌧m−1[M⌧m−1(f)]
≤ ⌘P⌘ + 4L

2,�

⌘
⋅ 2�m(⌧m − 1) +C ′�

Tm−1 (by the second claim of Lemma 10)

= ⌘P⌘ + 4L
2,�(2M − 2m + 3)C ′�

⌘Tm−1 .

Therefore, the regret bound is

RegT ≤ ⌧M0+1 + ⌘TP⌘ + M�
m=M0+1

Tm
4L

2,�(2M − 2m + 3)C ′�
⌘Tm−1 ≤ O �L1

C ′� logT
�2

� + ⌘TP⌘ + 8L
2,�(M2 + 2M)C ′�

⌘
.

Again in general we bound P⌘ by 1 and pick the optimal ⌘ to arrive at

T�
t=1Et[rt(⇡�(xt)) − rt(at)] = O �L1

C ′� logT
�2

+�TL
2,�C ′� logT� ,



Practical Contextual Bandits with Regression Oracles

while under the Massart condition we pick ⌘ = � so that P⌘ = 0 and

T�
t=1Et[rt(⇡�(xt)) − rt(at)] = O �L1

C ′� logT
�2

+ L
2,�C

′
� log

2 T

�
� .

Specifically, if we choose � ≤ �, then every xt is in U�(⇡�(xt)) and thus at = ⇡�(xt) for all t ≥ ⌧M0 and the algorithm
suffers no regret at all after the warm start, that is, RegT = O �L1C

′
� logT

�2 �.
To conclude we proceed as in the proof of Theorem 6: In the general case we have

T�
t=1 rt(⇡

�(xt)) − rt(at) ≤ T�
t=1Et[rt(⇡�(xt)) − rt(at)] +O(�T log(1��))

with probability at least 1 − ��2 by Azuma-Hoeffding.

In the Massart case, the law of total expectation implies

E� T�
t=1 rt(⇡

�(xt)) − rt(at)� ≤ O��
L
1

C ′
1�T logT

�2
+ L

2,�C
′
1�n log2 T
�

�
� +

1

T
⋅ T.

For the following proposition we recall the notation � ∶ X ×A → Rd and F = {(x, a)� w��(x, a) �w ∈W} for someW ⊆ Rd.

Proposition 3.

• If ��(x, a)�
2

≤ 1 and �w�
2

≤ 1 then L
2,� is bounded by

K

�
min

�∑a∈A Ex�1{x ∈ U�(a)}�(x, a)�(x, a)��� ,
where �

min

(⋅) is the smallest eigenvalue of a matrix, and L
1

is bounded by

K

�
min

(∑a∈A Ex[�(x, a)�(x, a)�]) .

• In the sparse high-dimensional setting with ��(x, a)�∞ ≤ 1, �w�∞ ≤ 1, and �w�
0

≤ s, then L
2,� is bounded by

2Ks

 
min

�∑a∈A Ex�1{x ∈ U�(a)}�(x, a)�(x, a)��� ,
where  

min

(A) ∶=minw≠0∶ �w�0≤2sw�Aw �w�w. The coefficient L
1

is bounded by

2Ks

 
min

�∑a∈A Ex��(x, a)�(x, a)��� .

Proof of Proposition 3. For this proof we will adopt the shorthand 1{U�(a)} ∶= 1{x ∈ U�(a)}.
We first consider the `

2

case. In this case (using w ∈ Rd as a stand-in for f − f� andW� ∶=W −w� � {0}) it is sufficient to



Practical Contextual Bandits with Regression Oracles

take

L
2,� ≤ sup

w∈W�
supx∈X ,a(w��(x, a))2

1

K ∑a∈A Ex(w��(x, a)1{U�(a)})2
≤ sup

w∈W�
�w�2

2

1

K ∑a∈A Ex(w��(x, a)1{U�(a)})2
≤ sup

w∈W�
�w�2

2�w�2
2

�min� 1

K ∑a∈A Ex �(x, a)�(x, a)�1{U�(a)}�
= 1

�min� 1

K ∑a∈A Ex �(x, a)�(x, a)�1{U�(a)}� .
In the sparse high-dimensional setting we have

L
2,� ≤ sup

w∈W�
supx∈X ,a(w��(x, a))2

1

K ∑a∈A Ex(w��(x, a)1{U�(a)})2
≤ sup

w∈W�
2s�w�2

2

1

K ∑a∈A Ex(w��(x, a)1{U�(a)})2
≤ sup

w∈W�
2s�w�2

2�w�2
2

 min� 1

K ∑a∈A Ex �(x, a)�(x, a)�1{U�(a)}�
= 2s

 min� 1

K ∑a∈A Ex �(x, a)�(x, a)�1{U�(a)}� .

As remarked in the main body, in general it holds that L
1

≤ L
2,0. Nonetheless, it is also possible to directly bound L

1

using
similar reasoning to the proof above:

L
1

≤ 1

�min� 1

K ∑a∈A Ex �(x, a)�(x, a)��
for the `

2

example and

L
1

≤ 2s

 min� 1

K ∑a∈A Ex �(x, a)�(x, a)�� ,
for the sparsity example.

B. Experimental Details
B.1. Datasets

We evaluated on datasets for learning-to-rank and for multiclass classification.

The learning-to-rank datasets, which were previously used for evaluating contextual semibandits in (Krishnamurthy et al.,
2016), are as follows:

• Microsoft Learning to Rank (Qin & Liu, 2010). We use the MSLR-WEB30K variant available at https://www.
microsoft.com/en-us/research/project/mslr/. This dataset has T = 31278, d = 136. We limit the
choices to K = 10 documents (actions) per query. The MSLR repository comes partitioned into five segments, each
with T = 31278 queries and a varying number of documents. We use the first three segments for the documents in our
training dataset and use documents from the fourth segment for validation.

• Yahoo! Learning to Rank Challenge V2.0 (Chapelle & Chang, 2011) (variant C14B at https://webscope.
sandbox.yahoo.com/catalog.php?datatype=c). The dataset has T = 33850, d = 415, and K = 6. We
hold out 7000 examples for test.



Practical Contextual Bandits with Regression Oracles

Each learning-to-rank dataset contains over 30,000 queries, with the number of documents varying. In both datasets
feedback each document is labeled with relevance score in {0, . . . ,4}. We transform this to a contextual bandit problem by
presenting K documents as actions and their relevance scores as the rewards, so that the goal of the learner is to choose the
document with the highest relevance each time it is presented with a query.

The multiclass classification datasets are taken from the UCI repository (Lichman, 2013) summarized in Table 1. This
collection was previously used for evaluating contextual bandit learning in (Dudı́k et al., 2011). Each context is labeled with
the index in [K] of the class to which the context belongs, and the reward for selecting a class is 1 if correct, 0 otherwise.

Validation Validation is performed by simulating the algorithm’s predictions on examples from a holdout set without
allowing the algorithm to incorporate these examples. The validation error at round t therefore approaches the instantaneous
expected reward Ext,at[f�(xt, at)] at a rate determined by uniform convergence for the class F . We also plot the validation
reward of a “supervised” baseline obtained by training the oracle (either Linear or GB5) on the entire training set at once
(including rewards for all actions).

Noisy dataset variants For all of the multiclass datasets we also create an alternate version with real-valued costs by
constructing a reward matrix Rt ∈ RK×K and returning Rt(a, a�) as the reward for selecting action a when a� is the correct
label at time t. Rt is constructed as a (possibly asymmetric) matrix with all ones on the diagonal (Rt(a, a) = 1) and random
values in the range [0,1] for each off-diagonal entry. The off diagonal elements are generated through the following process:
1) For each off-diagonal pair (a, a′) draw a “mean” µ(a, a′) ∈ [0,1] uniformly at random. This value of µ is held constant
across all timesteps and all repetitions. 2) At time t, sample Rt(a, a′) as a Bernoulli random variable with bias µ(a, a′).
The reward matrices that were sampled are included in Section B.7 for reference.

Table 1. UCI datasets (before validation split).
Dataset T d K
letter 20000 17 26

optdigits 5620 65 10
adult 45222 105 2

page-blocks 5473 11 5
pendigits 10992 17 10
satimage 6430 37 6
vehicle 846 19 4
yeast 1479 9 9

B.2. Benchmark algorithms

We compared with the following benchmark algorithms:

• ✏-Greedy (Langford & Zhang, 2008). Policy is updated on a doubling schedule: Every 2

i�2 rounds. We use an
exploration probability of max

�
1�√t, ✏� at time t, then tune ✏ as described in the main paper.

• ILOVETOCONBANDITS (Agarwal et al., 2014): Updated every 2

i�2 rounds. We tune the constant in front of the
parameter µm described in Algorithm 1 in (Agarwal et al., 2014).

• Bootstrap-TS (Dimakopoulou et al., 2017): At each epoch, the algorithm draws N bootstrap replicates of the dataset so
far, then fits a predictor in F to each replicate, giving a collection of predictors (fi)i∈[N]. To predict on a new context
x we compute the mean Mean(a) and variance Var(a) of the predictions fi(x, a). To pick an action we first sample
za ∼N (Mean(a),� ⋅Var(a)) for each a ∈ [K], then set at = argmaxa za. The parameter � > 0 is tuned.

We also experimented with a UCB variant of the Bootstrap algorithm (Dimakopoulou et al., 2017) in which the
algorithm picks the action maximizing Mean(a)+�� ⋅Var(a). The results of this experiment are omitted as we found
the UCB variant to be dominated by the Thompson sampling variant.

• As discussed in the main body, we tune the parameter � = �m for both RegCB variants.



Practical Contextual Bandits with Regression Oracles

• We also compared against a pure exploitation strategy but found that this was uniformly outperformed by RegCB and
Bootstrap-TS. These results are omitted for space.

For each algorithm we tried 8 different values of the relevant parameter coming from a logarithmically spaced grid ranging
from 10

2 to 10

−8 for the confidence interval-based algorithms (RegCB and Bootstrap-TS) and range 10

−1 to 10

−8 for
✏-Greedy and ILTCB.

Each algorithm must be supplied with a model class F and an optimization oracle for this class. Both the model class F and
the oracle implementation are hyperparameters. How to choose the oracle once the class F is been fixed is discussed below.

B.3. Oracle implementation

All of the oracle-based algorithms require optimization oracles, for either predictor classes or policy classes. We consider
the following three types of basic oracles.

1. Weighted regression onto single action

argmin

f∈F
T�
t=1wt(f(xt, at) − rt(at))2.

2. Weighted regression onto all actions

argmin

f∈F
T�
t=1 �a∈Awt,a(f(xt, a) − rt(a))2.

3. Weighted multiclass classification

argmin

f∈F
T�
t=1wt1{⇡f(xt) ≠ at}.

Oracles for importance-weighted observations One of the most common datasets one needs to optimize over to
implement oracle-based contextual bandit algorithms is an importance weighted history of interactions. That is, HT ={(xt, at, rt(at), pt(at))}Tt=1, where xt and rt(at) are the unmodified context and reward provided by nature, at is the
action selected by a randomized contextual bandit algorithm, and pt(at) is the (positive) probability that at was selected.
The core optimization problem that must be solved for such a dataset (e.g., in ✏-Greedy) is

argmax

f∈F
T�
t=1

rt(at)
pt(at)1{⇡f(xt) = at}. (18)

This problem most naturally reduces to weighted multiclass classification, but under the realizability assumption in
Assumption 1 it can also be reduced to regression in a number of principled ways. The full list of possible reductions we
consider is as follows:

• Unweighted regression

argmin

f∈F
T�
t=1(f(xt, at) − rt(at))2. (A)

• Importance-weighted regression

argmin

f∈F
T�
t=1

1

pt(at)(f(xt, at) − rt(at))2. (B)

• Regression with importance weighted targets

argmin

f∈F
T�
t=1(f(xt, at) − rt(at)�pt(at))2 + �

a≠at

(f(xt, a))2. (C)



Practical Contextual Bandits with Regression Oracles

• Importance-weighted multiclass

argmin

⇡∈⇧
T�
t=1

rt(at)
pt(at)1{⇡(xt) ≠ at}. (D)

Note that in this case the policy class ⇧ is not necessarily induced by a predictor class F , though when it is it may be
possible to further reduce this optimization problem to one of the first three problems.

The minimizer of (D) corresponds to the maximizer of (18). Reductions (A), (B), and (C) all have the property that if the
conditional expectation version of the loss (e.g. ∑T

t=1E(xt,rt)∼D Eat�xt,Ht−1�(f(xt, at) − rt(at))2� for (A)) is used, then
the Bayes predictor f�(x, a) = E[r(a) � x] is the minimizer when f� ∈ F , which (via uniform convergence) justifies the
use of the empirical versions.

Oracle choices for benchmark algorithms Depending on the needs of each benchmark algorithm, (A), (B), (C), or (D)
as well as other oracles may be possible to use or required. We discuss the choices for each benchmark

• ✏-Greedy: This strategy only needs to solve an importance weighted argmax of the form (18), so all of (A), (B), (C),
and (D) can be used under realizability. Note that since actions are sampled uniformly in the non-greedy rounds, (A)
and (B) are equivalent under this strategy. In experiments we use (B).

• Bootstrap-TS: Like RegCB, this strategy is tailored to the realizable regression setting, so (A) suffices. While (B) and
(C) could also be used, we expect them to have higher variance.

• ILOVETOCONBANDITS: This algorithm requires two different oracles. First, it requires the optimization problem (18)
to be solved on the unmodified reward/context sequence. Second, it requires a bonafide cost-sensitive classification
optimization oracle of the form

argmax

f∈F
T�
t=1 rt(⇡f(xt))

for an artificial sequence of rewards which may not be realizable even when the rewards given by nature are. As
in ✏-Greedy, the first oracle can use (A), (B), (C), and (D). The second oracle is more complicated. Cost-sensitive
classification is typically not implemented directly and instead is reduced to either weighted multiclass (D) or multi-
output regression, for which (C) is a special case. Note that (D) can further be reduced to (A), (B), (C), but because we
do not expect realizability to hold it is more natural to use the direct reduction to (C) in this case. In experiments we
used (B) for empirical regret minimizer and (C) for the cost-sensitive classifier to solve the optimization problem OP in
Agarwal et al. (2014).

Label-dependent features For different datasets we consider different instantiations of the general predictor class setup
described in the main paper. We assume there is a base context space Z and predictor class G ∶ Z → R. Give such a class
there are two natural ways to build a class of predictors over the joint context-action space depending on how the dataset is
featurized.

• Label-dependent features For the MSLR and Yahoo datasets, each context comes with a distinct set of features for
each action. This is captured by our abstraction by defining a fixed feature map � ∶ X ×A → Z , then defining the classF via F = {(x, a)� g(�(x, a)) � g ∈ G}.

• Label-independent features When the contexts do not have label-dependent features, we use one instance of the base
real-valued predictor class G for each action, i.e. we set Z = X and take F = �(x, a)� ga(x) � g = (ga)a∈A ∈ GA�.

Predictor class and base oracle implementation We use real-valued predictors from the scikit-learn library (Pedregosa
et al., 2011). The two predictor classes used were

• sklearn.linear model.Ridge(alpha=1)

• sklearn.tree model.GradientBoostingRegressor(max depth=5, n estimators=100).

Each of the scikit-learn predictor classes handles this real-valued output case directly, via the fit() function for each class.
In the label-dependent feature case we use a single oracle for G, and in the label-independent feature case we use the oracle
for G, then take F = GA, so that there are actually �A� oracle instances.



Practical Contextual Bandits with Regression Oracles

Incremental implementation for RegCB As mentioned in the main body, we restrict the optimization for the gradient
boosting oracle when used with RegCB. At the beginning of each epoch m, we find best regression tree ensemble on
the dataset so far (with respect to R̂m). For each round within the epoch, we keep this tree structure fixed for the call to
ORACLE(H), so that only the ensemble and leaf weights need to be re-optimized.

B.4. Holdouts and multiple trials

Each dataset shuffled via random permutation, then presented to the learner in order.

Each (algorithm, parameter configuration, dataset) tuple was run for 5 repetitions. For a given trial we distinguish between
two sources of randomness: Randomness from the dataset, which may come from the random ordering or from randomness
in the labels as described in the dataset section, and randomness in the contextual bandit algorithm’s decisions. We control
for randomness in the dataset across different (algorithm, parameter) configurations by giving each repetition an index k and
using the same random seed to select the dataset randomness across all configurations. This means that when k is fixed, all
variance is induced by the algorithm’s action distribution.

Validation reward was computed every T �15 steps.

B.5. Additional details for disagreement plots

For Figure 3 and Figure 6 all plots are averaged using a sliding window of length 20. The set At is well-defined for both
RegCB-Opt and Bootstrap-TS even through neither algorithm instantiates it explicitly. For the yahoo and mslr datasets�At� is technically a lower bound on the true disagreement set size �AFm(xt)� because our classes F do not have product
structure on these datasets—see discussion in Section 4.1.



Practical Contextual Bandits with Regression Oracles

B.6. Full collection of plots

Figure 4. Cumulative performance across all data sets at various sample sizes.



Practical Contextual Bandits with Regression Oracles

Figure 5. Performance on individual datasets.



Practical Contextual Bandits with Regression Oracles

Figure 6. Size of disagreement set and confidence width.



Practical Contextual Bandits with Regression Oracles

B.7. UCI Reward Matrices

Table 2. Mean reward matrix: yeast
1.00 0.02 0.26 0.89 0.20 0.31 0.97 0.34 0.39
0.25 1.00 0.65 0.29 0.03 0.52 0.30 0.10 0.09
0.49 0.92 1.00 0.61 0.33 0.84 0.22 0.37 0.62
0.21 0.67 0.13 1.00 0.27 0.69 0.39 0.97 0.15
0.26 0.63 0.11 0.39 1.00 0.25 0.34 0.17 0.69
0.78 0.11 0.22 0.16 0.22 1.00 0.68 0.39 0.55
0.40 0.71 0.40 0.45 0.23 0.48 1.00 0.99 0.43
0.41 0.48 0.85 0.87 0.22 0.46 0.33 1.00 0.96
0.07 0.76 0.49 0.74 0.44 0.85 0.09 0.23 1.00

Table 3. Mean reward matrix: letter

1.00 0.33 0.82 0.04 0.11 0.60 0.53 0.42 0.34 0.62 0.44 0.74 0.52 0.58 0.65 0.99 0.82 0.41 0.88 0.82 0.05 0.72 0.80 0.74 0.71 0.54
0.12 1.00 0.40 0.22 0.72 0.99 0.26 0.67 0.60 0.72 0.94 0.35 0.25 0.40 0.75 0.72 0.41 0.99 0.45 0.37 0.71 0.08 0.40 0.77 0.76 0.28
0.19 0.47 1.00 0.73 0.19 0.33 0.84 0.62 0.89 0.98 0.84 0.18 0.62 0.48 0.40 0.74 0.83 0.68 0.14 0.70 0.06 0.19 0.92 0.41 0.15 0.68
0.16 0.65 0.25 1.00 0.96 0.07 0.51 0.34 0.66 0.84 0.60 0.59 0.12 0.71 0.20 0.49 0.04 0.32 0.86 0.56 0.55 0.37 0.83 0.28 0.13 0.56
0.27 0.78 0.18 0.78 1.00 0.04 0.56 0.67 0.94 0.79 0.75 0.50 0.04 0.82 0.01 0.55 0.57 0.11 0.06 0.57 0.49 0.30 0.04 0.63 0.12 0.01
0.28 0.30 0.18 0.07 0.78 1.00 0.25 0.52 0.25 0.85 0.48 0.62 0.97 0.35 0.22 0.98 0.59 0.98 0.97 0.71 0.02 0.61 0.25 0.13 0.37 0.20
0.77 0.93 0.03 0.26 0.27 0.14 1.00 0.25 0.36 0.05 0.24 0.88 0.96 0.66 0.30 0.06 0.86 0.16 0.27 0.55 0.25 0.84 0.50 0.48 0.91 0.92
0.24 0.02 0.67 0.27 0.01 0.10 0.42 1.00 0.21 0.75 0.46 0.11 0.22 0.93 0.01 0.64 0.64 0.68 0.58 0.78 0.82 0.65 0.18 0.73 0.28 0.84
0.57 0.09 0.91 0.46 0.94 0.04 0.11 0.76 1.00 0.45 0.82 0.42 0.19 0.84 0.11 0.29 0.22 0.46 0.32 0.91 0.79 0.71 0.14 0.61 0.85 0.92
0.66 0.26 0.28 0.64 0.72 0.31 0.68 0.51 0.83 1.00 0.91 0.12 0.84 0.95 0.57 0.00 0.03 0.41 0.46 0.48 0.68 0.75 0.82 0.35 0.61 0.39
0.73 0.56 0.59 0.39 0.63 0.87 0.65 0.13 0.09 0.68 1.00 0.31 0.89 0.86 0.81 0.36 0.64 0.60 0.24 0.59 1.00 0.05 0.24 0.33 0.80 0.44
0.06 0.32 0.83 0.74 0.28 0.73 0.32 0.15 0.98 0.26 0.61 1.00 0.64 0.43 0.40 0.05 0.08 0.45 0.92 0.23 0.87 0.81 0.17 0.31 0.43 0.86
0.63 0.82 0.50 0.58 0.45 0.26 0.62 0.58 0.87 0.92 0.57 0.69 1.00 0.68 1.00 0.94 0.14 0.94 0.04 0.03 0.18 0.31 0.98 0.94 0.76 0.62
0.97 0.57 0.21 0.13 0.76 0.53 0.82 0.79 0.67 0.78 0.69 0.43 0.83 1.00 0.78 0.09 0.95 0.48 0.89 0.08 0.94 0.31 0.42 0.69 0.09 0.21
0.58 0.39 0.11 0.01 0.90 0.67 0.32 0.89 0.97 0.08 0.26 0.53 0.92 0.23 1.00 0.90 0.34 0.23 0.18 0.05 0.96 0.15 0.96 0.34 0.06 0.82
0.80 0.46 0.77 0.75 0.45 0.28 0.14 0.91 0.08 0.73 0.08 0.67 0.06 0.11 0.48 1.00 0.03 0.64 0.90 0.48 0.84 0.71 0.93 0.97 0.59 0.95
0.71 0.46 0.92 0.58 0.24 0.39 0.42 0.16 0.02 0.05 0.68 0.25 0.15 0.20 0.82 0.89 1.00 0.74 0.58 0.49 0.64 0.95 0.80 0.41 0.25 0.00
0.29 0.98 0.42 0.54 0.06 0.14 0.99 0.54 0.22 0.64 0.73 0.50 0.33 0.72 0.13 0.72 0.45 1.00 0.63 0.86 0.32 0.70 0.12 0.44 0.72 0.89
0.56 0.63 0.53 0.35 0.85 0.57 0.26 0.80 0.83 0.45 0.68 0.09 0.72 0.34 0.02 0.71 0.55 0.83 1.00 0.99 0.33 0.13 0.04 0.32 0.21 0.57
0.96 0.22 0.33 0.27 0.27 0.69 0.89 0.58 0.40 0.43 0.55 0.31 0.26 0.91 0.51 0.12 0.57 0.25 0.01 1.00 0.36 0.68 0.61 0.17 0.30 0.72
0.43 0.13 0.17 0.73 0.62 0.56 0.06 0.39 0.45 0.58 0.70 0.72 0.59 0.27 0.41 0.78 0.47 0.40 0.85 1.00 1.00 0.63 0.91 0.15 0.29 0.65
0.18 0.28 0.94 0.31 0.10 0.50 0.08 0.25 0.96 0.84 0.15 0.25 0.05 0.20 0.81 0.91 0.62 0.09 0.50 0.67 0.11 1.00 0.76 0.39 0.83 0.17
0.26 0.80 0.68 0.78 0.18 0.95 0.18 0.70 0.31 0.51 0.91 0.78 0.75 0.11 0.91 0.90 0.98 0.11 0.38 0.27 0.85 0.90 1.00 0.22 0.05 0.88
0.95 0.75 0.82 0.31 0.13 0.10 0.67 0.14 0.92 0.24 0.75 0.61 0.34 0.63 0.02 0.76 0.17 0.61 0.12 0.57 0.73 0.80 0.14 1.00 0.41 0.40
0.83 0.19 0.76 0.74 0.42 0.14 0.70 0.88 0.18 0.12 0.21 0.44 0.46 0.76 0.16 0.90 0.52 0.28 0.02 0.59 0.20 0.44 0.96 0.20 1.00 0.84
0.03 0.67 0.47 0.34 0.50 0.43 0.56 0.11 0.36 0.93 0.50 0.64 0.47 0.97 0.12 0.35 0.68 0.79 0.40 0.74 0.37 0.10 0.02 0.14 0.99 1.00

Table 4. Mean reward matrix: optdigits
1.00 0.56 0.12 0.40 0.78 0.51 0.18 0.85 0.96 0.98
0.19 1.00 0.23 0.03 0.95 0.92 0.29 0.17 0.40 0.51
0.31 0.43 1.00 0.56 0.83 1.00 0.33 0.09 0.77 0.15
0.73 0.96 0.07 1.00 0.84 0.15 0.77 0.78 0.68 0.13
0.04 0.66 0.25 0.99 1.00 0.06 0.70 0.63 0.90 0.16
0.61 0.32 0.76 0.16 0.93 1.00 0.83 0.23 0.11 0.67
0.58 0.88 1.00 0.28 0.74 0.28 1.00 0.49 0.87 0.16
0.97 0.05 0.70 0.65 0.05 0.20 0.33 1.00 0.37 0.53
0.35 0.51 0.26 0.85 0.62 0.30 0.78 0.90 1.00 0.86
0.82 0.87 0.38 0.61 0.42 0.24 0.06 0.82 0.38 1.00

Table 5. Mean reward matrix: page-blocks
1.00 0.38 0.66 0.16 0.96
0.35 1.00 0.24 0.59 0.41
0.14 0.54 1.00 0.77 0.93
0.09 0.20 0.99 1.00 0.24
0.63 0.73 0.69 0.03 1.00



Practical Contextual Bandits with Regression Oracles

Table 6. Mean reward matrix: pendigits
1.00 0.37 0.56 0.96 0.74 0.82 0.10 0.93 0.61 0.60
0.09 1.00 0.66 0.44 0.55 0.70 0.59 0.05 0.56 0.77
0.91 0.09 1.00 0.46 0.45 1.00 0.16 0.71 0.16 0.81
0.04 0.53 0.17 1.00 0.05 0.24 0.67 0.78 0.70 0.33
0.49 0.52 0.30 0.46 1.00 0.50 0.40 0.73 0.86 0.03
0.29 0.79 0.46 0.01 0.42 1.00 0.60 0.32 0.98 0.59
0.13 0.52 0.36 0.01 0.10 0.78 1.00 0.20 0.62 0.64
0.27 0.13 0.47 0.39 0.41 0.38 0.29 1.00 0.43 0.78
0.70 0.78 0.29 0.21 0.50 0.13 0.17 0.25 1.00 0.23
0.63 0.63 0.53 0.74 0.82 0.37 0.80 0.88 0.59 1.00

Table 7. Mean reward matrix: satimage
1.00 0.06 0.12 0.79 0.98 0.27
0.87 1.00 0.64 0.78 0.63 0.13
1.00 0.63 1.00 0.62 0.34 0.76
0.11 0.52 0.63 1.00 0.11 0.29
0.07 0.67 0.23 0.52 1.00 0.45
0.73 0.97 0.20 0.72 0.79 1.00

Table 8. Mean reward matrix: vehicle
1.00 0.36 0.18 0.52
0.01 1.00 0.80 0.76
0.67 0.03 1.00 0.40
0.19 0.77 0.62 1.00

Table 9. Mean reward matrix: adult
1.00 0.61
0.66 1.00


