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Abstract
Many continuous control tasks have bounded ac-
tion spaces. When policy gradient methods are
applied to such tasks, out-of-bound actions need
to be clipped before execution, while policies are
usually optimized as if the actions are not clipped.
We propose a policy gradient estimator that ex-
ploits the knowledge of actions being clipped to
reduce the variance in estimation. We prove that
our estimator, named clipped action policy gra-
dient (CAPG), is unbiased and achieves lower
variance than the conventional estimator that ig-
nores action bounds. Experimental results demon-
strate that CAPG generally outperforms the con-
ventional estimator, indicating that it is a better
policy gradient estimator for continuous control
tasks. The source code is available at https:
//github.com/pfnet-research/capg.

1. Introduction
Reinforcement learning (RL) has achieved remarkable suc-
cess in recent years in a wide range of challenging tasks,
such as games (Mnih et al., 2015; Silver et al., 2016; 2017),
robotic manipulation (Levine et al., 2016), and locomotion
(Schulman et al., 2015; 2017; Heess et al., 2017), with the
help of deep neural networks. Policy gradient methods are
among the most successful model-free RL algorithms (Mnih
et al., 2016; Schulman et al., 2015; 2017; Gu et al., 2017b).
They are particularly suitable for continuous control tasks,
i.e., environments with continuous action spaces, because
they directly improve policies that represent continuous dis-
tributions of actions to maximize expected returns. For
continuous control tasks, policies are typically represented
by Gaussian distributions conditioned on current and past
observations.

Although Gaussian policies have unbounded support, contin-
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uous control tasks often have bounded action sets that they
can execute (Duan et al., 2016; Brockman et al., 2016; Tassa
et al., 2018). For example, when controlling the torques
of motors, effective torque values will be physically con-
strained. Policies with unbounded support like Gaussian
policies are usually applied to such tasks by clipping sam-
pled actions into their bounds (Duan et al., 2016; Dhariwal
et al., 2017). Policy gradients for such policies are estimated
as if actions were not clipped (Chou et al., 2017).

In this study, we demonstrate that we can improve policy
gradient methods by exploiting the knowledge of actions
being clipped. We prove that the variance of policy gradient
estimates can be strictly reduced under mild assumptions
that hold for popular policy representations such as Gaussian
policies with diagonal covariance matrices. Our proposed
algorithm, named clipped action policy gradient (CAPG),
is an alternative unbiased policy gradient estimator with a
lower variance than the conventional estimator. Our exper-
imental results on MuJoCo-simulated continuous control
benchmark problems (Todorov et al., 2012; Brockman et al.,
2016) show that CAPG can improve the performance of
existing policy gradient-based deep RL algorithms.

2. Preliminaries
We consider a Markov decision process (MDP) defined by
the tuple (S,U , P, r, ρ0, γ), where S is a set of possible
states, U is a set of possible actions, P is a state-transition
probability distribution, r : S×U → R is a reward function,
ρ0 is a distribution of the initial state s0, and γ ∈ (0, 1] is a
discount factor.

A probability distribution of action conditioned on state
is referred to as a policy. The probability density function
(PDF) of a policy is denoted by π. RL algorithms aim to find
a policy that maximizes the expected cumulative discounted
reward from initial states,

η(π) = Es0,u0,...

[∑
t

γtr(st, ut)
∣∣∣π],

where Es0,u0,...[·|π] denotes an expected value with respect
to a state-action sequence s0 ∼ ρ0(·), u0 ∼ π(·|s0), s1 ∼
P (·|s0, u0), u1 ∼ π(·|s1), . . . .

https://github.com/pfnet-research/capg
https://github.com/pfnet-research/capg
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The state-action value function of a policy π is defined as

Qπ(s, u) = Es1,u1,...

[∑
t

γtr(st, ut)
∣∣∣s0 = s, u0 = u, π

]
.

One way to find π∗ = argmaxπη(π) is to adjust the parame-
ters θ of a parameterized policy πθ by following the gradient
∇θη(πθ), which is referred to a policy gradient. The policy
gradient theorem (Sutton et al., 1999) states that

∇θη(πθ) = Es

[
Eu[Qπθ (s, u)ψ(s, u)|s]

]
,

where ψ(s, u) = ∇θ log πθ(u|s), Eu[·|s] denotes a con-
ditional expected value with respect to πθ(·|s), and Es[·]
denotes an (improper) expected value with respect to the
(improper) discounted state distribution ρπθ (·), which is
defined as

ρπ(s) =
∑
t

γt
∫
ρ0(s0)p(st = s|s0, π)ds0.

In practice, the policy gradient is often estimated by a fi-
nite number of samples {(s(i), u(i))|u(i) ∼ πθ(·|s(i)), i =
1, . . . , N}.

∇θη(πθ) ≈
1

N

∑
i

Qπθ (s(i), u(i))ψ(s(i), u(i)). (1)

RL algorithms that rely on this estimation are referred to as
policy gradient methods. While this estimation is unbiased,
its variance is typically high and is considered as a crucial
problem of policy gradient methods.

We address the problem by estimating ∇θη(πθ) in an un-
biased and lower-variance1 manner than (1). To this end,
we derive a random variable Y such that V[Y ] ≤ V[X]
and E[Y ] = E[X], where X = Qπθ (s, u)ψ(s, u). Be-
cause E[X] = Es[Eu[X|s]] and V[X] = Vs[Eu[X|s]] +
Es[Vu[X|s]], it is sufficient to show

Eu[Y |s] = Eu[X|s], (2)
Vu[Y |s] ≤ Vu[X|s] (3)

for all s. For notational simplicity, Eu[·|s] and Vu[·|s] are
written as Eu[·] and Vu[·] below, respectively.

The exact value of Qπθ (s, u) is usually not available and
needs to be estimated. It is often estimated using observed
rewards after executing u at s, sometimes combined with
function approximation to balance bias and variance (Schul-
man et al., 2016; Mnih et al., 2016), but this is possible
only for u that is executed at s. Our algorithm assumes
the estimates of Qπθ (s, u) only for such (s, u) pairs to be
available, and thus is applicable to such cases.

1 When θ is not a scalar, we consider the variance of gradients
with respect to each element of θ throughout the paper.

3. Clipped Action Policy Gradient
We consider the case where any action u ∈ Rd (d ≥ 1)
chosen by an agent is clipped by the environment into a
range [α, β] ⊂ Rd. That is, the state-transition PDF and the
reward function satisfy

P (s′|s, u) = P (s′|s, clip(u, α, β)), (4)
r(s, u) = r(s, clip(u, α, β)), (5)

respectively. The clip function is defined as clip(u, α, β) =
max(min(u, β), α), where max and min are computed el-
ementwise when u is a vector, i.e., d ≥ 2. Each of α and
β can be a constant or a function of s. The case where
the reward function depends on actions before clipping is
discussed in Section 3.4.

Before explaining our algorithm, let us characterize the class
of policies we consider in this study.

Definition 3.1 (compatible PDF). Let pθ(u) be a PDF of
u ∈ R that has a parameter θ. If pθ(u) is differentiable
with respect to θ and allows the exchange of derivative
and integral as

∫ α
−∞∇θpθ(u)du = ∇θ

∫ α
−∞ pθ(u)du and∫∞

β
∇θpθ(u)du = ∇θ

∫∞
β
pθ(u)du, we call pθ(u) a com-

patible PDF. If pθ(u|s) is a conditional PDF that satisfies
these conditions, we call it a compatible conditional PDF.

3.1. Scalar actions

First, we derive an unbiased and lower-variance estimator
of the policy gradient for scalar actions, i.e., d = 1. The
case of vector actions will be covered later in Section 3.2.

From (4) and (5), the state-action value function satisfies

Qπθ (s, u) = Qπθ (s, clip(u, α, β))

=


Qπθ (s, α) if u ≤ α
Qπθ (s, u) if α < u < β

Qπθ (s, β) if β ≤ u
. (6)

Let X be a random variable that depends on u and 1f(u)

be an indicator function that takes 1 when u satisfies the
condition f(u), otherwise 0. Because X = 1u≤αX +
1α<u<βX + 1β≤uX , Eu[X] can be decomposed as

Eu[X] = Eu[1u≤αX] + Eu[1α<u<βX] + Eu[1β≤uX].
(7)

From (6) and (7), we have

Eu[Qπθ (s, u)ψ(s, u)]

= Qπθ (s, α)Eu[1u≤α∇θ log πθ(u|s)]
+ Eu[1α<u<βQ

πθ (s, u)∇θ log πθ(u|s)]
+Qπθ (s, β)Eu[1β≤u∇θ log πθ(u|s)].

(8)

Meanwhile, the following useful lemma holds.
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Lemma 3.1. Suppose πθ(u|s) is a compatible conditional
PDF of u ∈ R whose cumulative distribution function
(CDF) is Πθ(u|s). Then, the following equations hold:

Eu[1u≤α∇θ log πθ(u|s)] = Eu[1u≤α∇θ log Πθ(α|s)],
Eu[1β≤u∇θ log πθ(u|s)] = Eu[1β≤u∇θ log(1−Πθ(β|s))].

See the appendix for the proof.

By applying Lemma 3.1 to (8), we can construct an alterna-
tive estimator:

Eu[Qπθ (s, u)ψ(s, u)]

= Qπθ (s, α)Eu[1u≤α∇θ log Πθ(α|s)]
+ Eu[1α<u<βQ

πθ (s, u)∇θ log πθ(u|s)]
+Qπθ (s, β)Eu[1β≤u∇θ log (1−Πθ(β|s))]

= Eu[Qπθ (s, u)ψ(s, u)], (9)

where

ψ(s, u) =


∇θ log Πθ(α|s) if u ≤ α
∇θ log πθ(u|s) if α < u < β

∇θ log(1−Πθ(β|s)) if β ≤ u
. (10)

By (9) the policy gradient can be estimated using the sample
average of Qπθ (s, u)ψ(s, u). This estimator, which we call
clipped action policy gradient (CAPG), is better than the
conventional estimator (1) in the sense that it has a lower
variance while being unbiased.

The difference between the conventional estimator and
CAPG comes from outside the action bounds. CAPG re-
places πθ(u|s) of ∇θ log πθ(u|s) with Πθ(α|s) and 1 −
Πθ(β|s) at u ≤ α and β ≤ u, respectively. Intuitively
speaking, because both Πθ(α|s) and 1−Πθ(β|s) are deter-
ministic given s, the variance should decrease. In fact, this
observation is true.

To show this, we need to decompose the variance. The
variance of a random variable X that depends on u can be
decomposed as

Vu[X] = Vu[1u≤αX]+Vu[1α<u<βX]+Vu[1β≤uX]

− 2Eu[1u≤αX]Eu[1α<u<βX]

− 2Eu[1α<u<βX]Eu[1β≤uX]

− 2Eu[1β≤uX]Eu[1u≤αX].

Let us compare each term of the right-hand side be-
tween the cases X = Qπθ (s, u)ψ(s, u) and X =
Qπθ (s, u)ψ(s, u). From Lemma 3.1, we can see that the
terms Vu[1α<u<βX], Eu[1u≤αX],Eu[1α<u<βX], and
Eu[1β≤uX] do not make any differences. The follow-
ing lemma shows that the difference arises from the terms
Vu[1u≤αX] and Vu[1β≤uX].

Lemma 3.2. Suppose πθ(u|s) is a compatible conditional
PDF of u ∈ R whose CDF is Πθ(u|s). Then, the following
inequalities hold:

Vu[1u≤α∇θ log πθ(u|s)] ≥ Vu[1u≤α∇θ log Πθ(α|s)],
Vu[1β≤u∇θ log πθ(u|s)] ≥ Vu[1β≤u∇θ log(1−Πθ(β|s))].

The equalities hold only when ∇θ log πθ(u|s) is constant
over u ≤ α and β ≤ u, respectively.

See the appendix for the proof.

Combining Lemma 3.1 and Lemma 3.2 leads to the follow-
ing result.

Lemma 3.3. Suppose πθ(u|s) is a compatible conditional
PDF of u ∈ R whose CDF is Πθ(u|s). Let f(s, u) be a
real-valued function such that

f(s, u) =


f(s, α) if u ≤ α
f(s, u) if α < u < β

f(s, β) if β ≤ u
.

Define ψ(s, u) = ∇θ log πθ(u|s) and ψ(s, u) as (10). Then,
the following equality and inequality hold:

Eu[f(s, u)ψ(s, u)] = Eu[f(s, u)ψ(s, u)],

Vu[f(s, u)ψ(s, u)] ≤ Vu[f(s, u)ψ(s, u)].

The equality of the variances holds only when ψ(s, u) is
constant over both u ≤ α and β ≤ u.

Lemma 3.3 shows that both (2) and (3) are satisfied when
Y = Qπθ (s, u)ψ(s, u) and X = Qπθ (s, u)ψ(s, u). There-
fore, we can conclude that CAPG has a lower variance than
the conventional estimator while being unbiased.

3.2. Vector actions

The results in the previous subsection can be extended to
the case of vector actions, u ∈ Rd where d ≥ 2, as long
as the elements of u are conditionally independent given s,
i.e., the PDF can be factored as

π(u|s) = π
(1)
θ (u1|s)π(2)

θ (u2|s) · · ·π(d)
θ (ud|s),

where ui denotes the i-th element of u, and π(i)
θ denotes its

corresponding conditional PDF. A typical example of such
a policy is a multivariate Gaussian policy with a diagonal
covariance.

Lemma 3.4. Suppose πθ(u|s) is a conditional PDF of
u ∈ Rd (d ≥ 2) whose CDF is Πθ(u|s). The condi-
tional PDF and CDF of ui are denoted by π(i)

θ and Π
(i)
θ ,

respectively. Suppose each π(i)
θ is compatible and the el-

ements of u are conditionally independent given s. Let
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f(s,u) be a real-valued function such that f(s,u) =
f(s, clip(u, α, β)). Define ψ(s,u) =

∑
i ψ

(i)(s, ui),
where ψ(i)(s, u) = ∇θ log π

(i)
θ (u|s). Similarly, define

ψ(s,u) =
∑
i ψ

(i)(s, ui), where

ψ(i)(s, u) =


∇θ log Π

(i)
θ (α|s) if u ≤ α

∇θ log π
(i)
θ (u|s) if α < u < β

∇θ log(1−Π
(i)
θ (β|s)) if β ≤ u

.

Then, the following equality and inequality hold:

Eu[f(s,u)ψ(s,u)] = Eu[f(s,u)ψ(s,u)], (11)

Vu[f(s,u)ψ(s,u)] ≤ Vu[f(s,u)ψ(s,u)]. (12)

The equality of the variances holds only when ψ(i)(s, u) is
constant over both u ≤ α and β ≤ u for all 1 ≤ i ≤ d.

See the appendix for the proof.

3.3. Implementation

CAPG can be easily incorporated into existing policy
gradient-based algorithms. We only have to replace the
computation of ψ(s, u) with that of ψ(s, u) to use CAPG.
When ψ(s, u) is computed using an automatic differentia-
tion tool, we can instead replace log πθ(u|s) with

log Πθ(α|s) if u ≤ α
log πθ(u|s) if α < u < β

log(1−Πθ(β|s)) if β ≤ u
.

3.4. Extensions

Although we have used standard notations of MDPs, our
results do not rely on the Markov property. CAPG works as
an unbiased and lower-variance policy gradient estimator in
non-Markovian environments as well, in the same way that
the REINFORCE algorithm (Williams, 1992) works in such
environments.

We assumed (5) so that Qπθ (s, u) becomes constant outside
the action bounds. However, sometimes it makes sense to
use a reward function that depends on out-of-bound actions
even when the state-transition dynamics does not, e.g., to
penalize the norm of actions to prevent the policy from going
too far out of the bounds. With such a reward function, (6)
no longer holds. Instead, we can use the recursive structure
of Qπθ (s, u) to obtain

Eu[Qπθ (s, u)ψ(s, u)]

= Eu[r(s, u)ψ(s, u)]

+ Eu[γEs′,u′ [Qπθ (s′, u′)]ψ(s, u)]],

(13)

where Es′,u′ [·] denotes an expected value with respect to
s′ ∼ P (·|s, clip(u, α, β)), u′ ∼ πθ(·|s′). We can ap-
ply CAPG to the second term of the right-hand side of

(13) because γEs′,u′ [Qπθ (s′, u′)] only depends on u via
clip(·, α, β).

3.5. Clipped distribution

So far we have derived CAPG as a better policy gradient
estimator. We now argue that CAPG can be interpreted as
estimating the policy gradient of a transformed policy.

Given a policy πθ and action bounds [α, β], we can con-
sider a policy πθ modeled as a probability distribution
with bounded support whose CDF is defined as Πθ(u|s) =
1α≤u<βΠθ(u|s) + 1β≤u, which is a mixture of two de-
generate distributions at {α, β} and a truncated version of
πθ. The corresponding PDF with respect to the measure
generated by the mixture 2 is given by

πθ(u|s) =


Πθ(α|s) if u = α

πθ(u|s) if α < u < β

1−Πθ(β|s) if u = β

.

We call this distribution a clipped distribution. Seeing that
∇θ log πθ(u|s) = ψ(s, u) for u ∈ [α, β], CAPG applied to
πθ is, in fact, estimating the policy gradient of πθ. If we
see Gaussian policies used with action bounds as clipped
Gaussian policies, then CAPG is the straightforward pol-
icy gradient estimator for them, whereas the conventional
estimator has an unnecessarily high variance.

While a clipped distribution resembles a truncated distri-
bution, they are different. A clipped distribution can be
multimodal even when its underlying distribution is uni-
modal because it puts the probability mass at the action
bounds. In contrast, a truncated distribution is always uni-
modal when its underlying distribution is unimodal. This
makes a difference in their representational powers to model
policies.

4. Experiments
In this section, we evaluate the performance of CAPG com-
pared to the conventional policy gradient estimator, which
we call PG, in problems with action bounds.

4.1. Continuum-armed bandit problems

To demonstrate how CAPG works and how it interacts with
each aspect of problems separately, we used continuum-
armed bandit problems (Agrawal, 1995), i.e., MDPs with
continuous action spaces and no state transitions. State-
independent policies were optimized by policy gradients to
maximize action-dependent immediate rewards.

2 The probability measure P corresponding to Πθ(u|s), de-
fined over the measurable space ([α, β],B([α, β])), is such that
P � λ + δα + δβ , where B is the Borel σ-algebra, λ is the
Lebesgue measure, and δx is a Dirac measure at x.
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Figure 1. Means and standard deviations of policy gradient estimates obtained using CAPG and PG on a continuum-armed bandit problem
with a fixed policy of varying means (left half) and variances (right half). For each data point, policy gradients with respect to θµ and θΣ

are estimated 10,000 times using 10,000 different batches of 5 (action, reward) pairs. The CAPG and PG plots of the means of gradients
almost overlap each other, and hence, only the PG plots are visible.
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Figure 2. Training curves on continuum-armed bandit problems with four different aspects separately controlled: (from left to right)
variance of the initial policy, mean of the initial policy, number of dimensions of actions, and batch size. For each run, the last reward
before every policy update is sampled and then averaged over the previous 100 updates to obtain a smoothed curve. The smoothed curves
are then averaged to compute the mean curves with 68% and 95% bootstrapped confidence intervals, which are indicated by the shaded
areas.

The action space was [−1, 1]d, d ≥ 1 and the reward func-
tion was defined as r(u) = − 1

d

∑
i |ui| so that only choos-

ing the optimal action of zeros achieves the maximum, zero
reward.

Each policy was modeled as a multivariate Gaussian distri-
bution with a diagonal covariance matrix and parameterized
by θ = {θµ, θΣ}, where θµ ∈ Rd is the mean vector and
θΣ ∈ Rd is the main diagonal of the covariance matrix.

The following experimental settings were used unless oth-
erwise stated. Actions were scalars, i.e., d = 1. The pa-
rameters of a policy were initialized as zero mean and unit
variance for each dimension. Each policy update used a
batch of 5 (action, reward) pairs. The average reward in
a batch was used as a baseline that was subtracted from
each reward. Adam (Kingma & Ba, 2015) with its default
hyperparameters was used to update the parameters.

To quantify the variance reduction achieved by CAPG, we
repeatedly estimated policy gradients using new samples
without updating a policy. Figure 1 shows the mean and
standard deviation of policy gradient estimates obtained by
CAPG and PG with a fixed policy of varying means and
variances. For both θµ and θΣ in all settings, CAPG consis-
tently achieved lower variance than PG without introducing
visible bias. These results numerically corroborate CAPG’s
variance reduction ability as well as its unbiasedness. The
efficacy of CAPG diminished at σ2 = 0.1, where sampled

actions rarely go outside the bounds.

Figure 2 shows the training curves of CAPG and PG with
four different aspects separately controlled: variance of
the initial policy, mean of the initial policy, number of di-
mensions of actions, and batch size. Each configuration is
evaluated with 10 different random seeds. CAPG consis-
tently achieved faster learning across the settings. A larger
initial variance and a more distant initial mean tend to make
the gap more visible. CAPG’s gain scales even for 100
dimensions, implying its utility for more challenging, com-
plex continuous control tasks. Using smaller batch sizes
benefits more from CAPG, and this is expected because
smaller batch sizes are more affected by the variance of
gradient estimation. With the batch size of 100, the training
curve of CAPG is difficult to distinguish from that of PG.
It should be noted that in these experiments all the actions
are sampled from the same state. In practical model-free RL
scenarios, more than one action cannot be sampled from the
same state.

4.2. Simulated control problems

To evaluate CAPG’s effectiveness in more practical settings,
we used the following two popular deep RL algorithms for
continuous control:

• Proximal policy optimization (PPO) with clipped sur-
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Obs. space Action space

InvertedPendulum-v1 R4 [−3.0, 3.0]1

InvertedDoublePendulum-v1 R11 [−1.0, 1.0]1

Reacher-v1 R11 [−1.0, 1.0]2

Hopper-v1 R11 [−1.0, 1.0]3

HalfCheetah-v1 R17 [−1.0, 1.0]6

Swimmer-v1 R8 [−1.0, 1.0]2

Walker2d-v1 R17 [−1.0, 1.0]6

Ant-v1 R111 [−1.0, 1.0]8

Humanoid-v1 R376 [−0.4, 0.4]17

HumanoidStandup-v1 R376 [−0.4, 0.4]17

Table 1. MuJoCo-simulated environments used in the experiments
and their observation and action spaces.

rogate objective (Schulman et al., 2017)

• Trust region policy optimization (TRPO) (Schulman
et al., 2015) with generalized advantage estimation
(GAE) (Schulman et al., 2016).

For each of the two algorithms, we implemented the variant
that uses CAPG as well as the original one that uses PG.
The only difference between these two is whether CAPG or
PG is used.

For our experiments, we used 10 MuJoCo-simulated en-
vironments implemented in OpenAI Gym that are widely
used as benchmark tasks for deep RL algorithms (Schulman
et al., 2017; Henderson et al., 2018; Ciosek & Whiteson,
2018; Gu et al., 2017b; Duan et al., 2016; Dhariwal et al.,
2017). The names of the environments are listed along with
their observation and action spaces in Table 1. All the en-
vironments have bounded action spaces; hence, actions are
clipped before being sent to the environments.

We considered all the combinations of {PPO, TRPO} ×
{CAPG, PG} × 10 environments, each of which is trained
for 1 million timesteps. Each combination is tried 50 times
with different random seeds. Because we found it difficult
to obtain reasonable performance within 1 million timesteps
on Ant-v1, Humanoid-v1, and HumanoidStandup-v1, we
also tried training for 10 million timesteps on these environ-
ments.

We followed the hyperparameter settings used in (Hender-
son et al., 2018), except that the learning rate of Adam used
by PPO was reduced to 3e-5 for 10 million timesteps train-
ing to obtain reasonable performance with PG. We used
separate neural networks with two hidden layers, each of
which has 64 hidden units with tanh nonlinearities, for both
a policy and a state value function. The policy network
outputs the mean of a multivariate Gaussian distribution.
The main diagonal of the covariance matrix was separately
parameterized as a logarithm of the standard deviation for
each dimension.

Table 2 summarizes the comparison between CAPG and
PG, combined with TRPO and PPO. We used areas under
the learning curves (AUCs) as evaluation measures because
they can measure not only the final performance but also
the learning speed and stability.

For PPO and TRPO with 1 million training timesteps, CAPG
significantly (p < 0.025, i.e., > 95% significance) im-
proved AUCs on 3 and 7 out of the 10 environments, respec-
tively. It also significantly helped in training for 10 million
timesteps on two out of the three harder environments for
both PPO and TRPO. On other environments, it kept al-
most the same level of AUCs on other tasks, although there
seemed to be slight decreases in some environments. These
results indicate that CAPG can safely replace PG in many
cases.

Figures 3 and 4 show the smoothed learning curves of all the
experiments. In some cases, the improvements were small
but consistent, e.g., TRPO on InvertedDoublePendulum-v1
and TRPO on HumanoidStandup-v1 (10 million). In some
other cases, large improvements were achieved, e.g., PPO
on Swimmer-v1 and TRPO on Humanoid-v1 (10 million).

Although we used the same hyperparameters from (Hen-
derson et al., 2018) for both PG and CAPG, the best hy-
perparameters for CAPG can be different. It is possible
that separate hyperparameter tuning can further improve the
performance of CAPG.

Comparing the results of PPO and TRPO, PPO was more
affected than TRPO by the difference in estimators, suggest-
ing that PPO is more vulnerable to high variance in gradient
estimation. TRPO is likely to be more robust against vari-
ance for the following reasons.

• TRPO uses a large batch of 5000 actions for every
policy update. PPO uses minibatches of 64 actions,
resulting in noisier updates.

• TRPO solves a constrained optimization problem for
every policy update so that the change in KL diver-
gence is close to a constant; thus, it is robust to changes
in the scale of gradients. PPO also adapts its step size
using Adam, but this adaptation is slower and based on
the statistics of accumulated past gradients.

Because we observe that even TRPO can benefit from
CAPG, we expect the benefits address other algorithms
with noisier updates as well.

5. Related Work
A variety of techniques has been proposed to reduce the
variance of policy gradient estimation since its introduction.
The control variate method, namely subtracting some base-
line from approximate returns, is widely used to reduce the
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Figure 3. Training curves of PPO (upper half) and TRPO (lower half) on the 10 MuJoCo-simulated environments. For each run, after
every training episode, the average return of the previous 100 training episodes is computed and linearly interpolated between the episodes
to obtain a smoothed curve. The smoothed curves are then averaged to compute the mean curves with 68% and 95% bootstrapped
confidence intervals, which are indicated by the shaded areas.
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Figure 4. Training curves of PPO (upper half) and TRPO (lower half) on the three harder MuJoCo-simulated environments. For each run,
after every training episode, the average return of the previous 100 training episodes is computed and linearly interpolated between the
episodes to obtain a smoothed curve. The smoothed curves are then averaged to compute the mean curves with 68% and 95% bootstrapped
confidence intervals, which are indicated by the shaded areas.



Clipped Action Policy Gradient

PPO CAPG PPO PG p-value TRPO CAPG TRPO PG p-value

InvertedPendulum-v1 955.30±1.12 955.68±0.84 7.88e-01 915.08±5.23 919.94±0.79 3.63e-01
InvertedDoublePendulum-v1 7239.24±23.01 6991.40±43.01 2.67e-06 7108.54±18.17 7007.32±18.95 2.07e-04
Reacher-v1 -10.67±0.15 -11.60±0.17 8.71e-05 -14.66±0.13 -14.93±0.13 1.41e-01
Hopper-v1 2320.49±11.49 2288.50±17.91 1.37e-01 2313.33±16.14 2283.55±16.03 1.94e-01
HalfCheetah-v1 1219.54±60.94 1144.53±58.81 3.78e-01 502.05±18.36 499.99±18.57 9.37e-01
Swimmer-v1 92.56±3.48 82.45±2.75 2.49e-02 148.86±11.44 161.18±11.92 4.58e-01
Walker2d-v1 2185.63±26.23 2060.95±38.92 9.41e-03 1436.38±30.31 1390.69±27.60 2.68e-01
Ant-v1 56.85±5.19 -33.32±7.26 2.01e-16 -204.68±1.84 -212.15±1.92 6.04e-03
Humanoid-v1 547.64±5.90 493.39±3.89 2.49e-11 415.88±0.79 402.19±0.75 3.96e-22
HumanoidStandup-v1 79414.10±496.59 76845.37±512.67 5.03e-04 73592.94±292.50 71796.93±265.64 1.58e-05

Ant-v1 (10m) 1579.54±10.64 1476.51±15.21 2.98e-07 1395.50±28.44 1449.61±32.05 2.10e-01
Humanoid-v1 (10m) 3650.00±33.98 3107.34±59.01 1.06e-11 3353.08±23.57 2743.53±40.29 1.99e-21
HumanoidStandup-v1 (10m) 101826.33±1012.21 105289.56±1173.48 2.78e-02 123777.22±383.77 120994.09±403.91 2.57e-06

Table 2. Performance comparison of CAPG and PG on the 10 MuJoCo-simulated environments. Performance is evaluated with the
average area under the learning curve (AUC) ± standard error over 1 million timesteps. For each training run, its AUC is computed by
linearly interpolating returns between training episodes. For each combination of {TRPO, PPO} × {CAPG, PG} × 10 environments,
from 50 training runs with different random seeds, the average AUC and standard error are computed. p-values are also computed between
CAPG and PG versions using Welch’s t-test. Bold numbers indicate that they are better than their counterparts by 95% significance.

variance while avoiding the introduction of bias into the
estimation (Williams, 1992; Sutton et al., 1999; Greensmith
et al., 2004; Gu et al., 2017a;b). Relying on predicted values
instead of sampled returns is also popular despite the bias
it often introduces (Degris et al., 2012; Mnih et al., 2016;
Schulman et al., 2016; Ciosek & Whiteson, 2018). Our
approach reduces the variance differently from these two
common approaches. Therefore, it can be easily combined
with the existing techniques to reduce the variance further
while not introducing additional bias.

The problem of using probability distributions with un-
bounded support for control problems with bounded ac-
tion spaces was pointed out in (Chou et al., 2017), which
proposed modeling policies as beta distributions as a so-
lution. While they reported performance improvements
by using beta policies across multiple continuous control
environments, Gaussian policies still nearly dominate the
deep RL literature (Dhariwal et al., 2017; Henderson et al.,
2018; Tassa et al., 2018). Truncated distributions have also
been used to deal with bounded action spaces in prior work
(Nakano et al., 2012; Shariff & Dick, 2013; Zimmer et al.,
2016). In contrast, our approach allows us to keep using
the same policy parameterizations, typically Gaussians, and
still exploit action bounds. It is also possible to see CAPG
as using a multimodal distribution with bounded support,
whereas beta policies and truncated Gaussian policies are
unimodal. For example, a clipped Gaussian policy can eas-
ily learn to choose end-values of the action bounds with a
high probability by moving its mean toward the correspond-
ing end, while beta and truncated Gaussian policies need to
be near-deterministic to choose near-end values with a high
probability.

Exploiting the integral form of policy gradients to reduce the
variance has been proposed in (Ciosek & Whiteson, 2018;
Asadi et al., 2017). They directly evaluated the integral over

the whole action space, which can be analytically computed
for limited classes of action value approximators and poli-
cies. Their method can reduce the variance by eliminating
the need for Monte-Carlo estimation of policy gradients
while introducing bias from action value approximation.
Our method only evaluates the integral outside the action
bounds, i.e., where action values are constant, and thus is
unbiased.

6. Discussion
We have shown that the variance of policy gradient estima-
tion can be reduced by exploiting the fact that actions are
clipped before they are sent to the environment. An unbi-
ased and lower-variance policy gradient estimator, named
CAPG, has been proposed based on our analysis. CAPG
is easy to implement and can be combined with existing
variance reduction techniques, such as control variates and
value function approximations.

We numerically analyzed CAPG’s behavior on simple
continuum-armed bandit problems, confirming its efficacy
in variance reduction. When incorporated into existing deep
RL algorithms, CAPG generally achieved the same or better
performance on challenging simulated control benchmark
tasks, indicating its promise as an alternative to the conven-
tional estimator.

While a Gaussian policy is the most common choice in pol-
icy gradient-based continuous control, distributions with
bounded support may be more suitable for bounded action
spaces. Prior work has proposed beta and truncated distribu-
tions to explore this direction. We argued that CAPG can
also be seen as estimating the policy gradient of a trans-
formed distribution with bounded support, termed a clipped
distribution. Further studies are needed on the behaviors of
different kinds of distributions as policy representations.



Clipped Action Policy Gradient

Acknowledgments
We thank Toshiki Kataoka, Kenta Oono, Masaki Watanabe
and others at Preferred Networks for insightful comments
and discussions.

References
Agrawal, R. The Continuum-Armed Bandit Problem. SIAM

Journal on Control and Optimization, 33(6):1926–1951,
1995.

Asadi, K., Allen, C., Roderick, M., Mohamed, A.-r.,
Konidaris, G., and Littman, M. Mean Actor Critic. ArXiv
e-prints, 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
ArXiv e-prints, 2016.

Chou, P.-W., Maturana, D., and Scherer, S. Improving
Stochastic Policy Gradients in Continuous Control with
Deep Reinforcement Learning using the Beta Distribution.
In ICML, 2017.

Ciosek, K. and Whiteson, S. Expected Policy Gradients. In
AAAI, 2018.

Degris, T., White, M., and Sutton, R. S. Off-Policy Actor-
Critic. In ICML, 2012.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. Ope-
nAI Baselines. https://github.com/openai/
baselines, 2017.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking Deep Reinforcement Learning
for Continuous Control. In ICML, 2016.

Greensmith, E., Bartlett, P., and Baxter, J. Variance Reduc-
tion Techniques for Gradient Estimates in Reinforcement
Learning. The Journal of Machine Learning Research, 5:
1471–1530, 2004.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and
Levine, S. Q-Prop: Sample-Efficient Policy Gradient
with an Off-Policy Critic. In ICLR, 2017a.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E.,
Schölkopf, B., and Levine, S. Interpolated Policy Gradi-
ent : Merging On-Policy and Off-Policy Gradient Estima-
tion for Deep. In NIPS, 2017b.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne,
G., Tassa, Y., Erez, T., Wang, Z., Eslami, S. M. A., Ried-
miller, M., and Silver, D. Emergence of Locomotion
Behaviours in Rich Environments. ArXiv e-prints, 2017.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep Reinforcement Learning that
Matters. In AAAI, 2018.

Kingma, D. P. and Ba, J. L. Adam: a Method for Stochastic
Optimization. In ICLR, 2015.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-End
Training of Deep Visuomotor Policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. a., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous Methods for Deep Reinforcement Learning. In
ICML, 2016.

Nakano, D., Maeda, S.-i., and Ishii, S. Control of a Free-
Falling Cat by Policy-Based Reinforcement Learning. In
ICANN, 2012.

Schulman, J., Levine, S., Moritz, P., Jordan, M., and Abbeel,
P. Trust Region Policy Optimization. In ICML, 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and
Abbeel, P. High-Dimensional Continuous Control Using
Generalized Advantage Estimation. In ICLR, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms.
ArXiv e-prints, 2017.

Shariff, R. and Dick, T. Lunar Lander : A Continous-Action
Case Study for Policy-Gradient Actor-Critic Algorithms.
In RLDM, 2013.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., Driessche, G. V. D., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T., Leach, M., and Kavukcuoglu, K. Mastering the game
of Go with deep neural networks and tree search. Nature,
529(7585):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., and Sifre, L.
Mastering the game of Go without human knowledge.
Nature Publishing Group, 550(7676):354–359, 2017.

https://github.com/openai/baselines
https://github.com/openai/baselines


Clipped Action Policy Gradient

Sutton, R. S., Mcallester, D., Singh, S., and Mansour, Y.
Policy Gradient Methods for Reinforcement Learning
with Function Approximation. In NIPS, 1999.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., De,
D., Casas, L., Budden, D., Abdolmaleki, A., Merel, J.,
Lefrancq, A., Lillicrap, T., and Riedmiller, M. DeepMind
Control Suite. ArXiv e-prints, 2018.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In IROS, 2012.

Williams, R. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Ma-
chine Learning, 8(3-4):229–256, 1992.

Zimmer, M., Boniface, Y., and Dutech, A. Off-policy Neu-
ral Fitted Actor-Critic. In NIPS Deep Reinforcement
Learning Workshop, 2016.


