
Inductive Two-layer Modeling with Parametric Bregman Transfer

Vignesh Ganapathiraman 1 Zhan Shi 1 Xinhua Zhang 1 Yaoliang Yu 2

Abstract
Latent prediction models, exemplified by multi-
layer networks, employ hidden variables that au-
tomate abstract feature discovery. They typically
pose nonconvex optimization problems and ef-
fective semi-definite programming (SDP) relax-
ations have been developed to enable global solu-
tions (Aslan et al., 2014). However, these models
rely on nonparametric training of layer-wise ker-
nel representations, and are therefore restricted to
transductive learning which slows down test pre-
diction. In this paper, we develop a new induc-
tive learning framework for parametric transfer
functions using matching losses. The result for
ReLU utilizes completely positive matrices, and
the inductive learner not only delivers superior
accuracy but also offers an order of magnitude
speedup over SDP with constant approximation
guarantees.

1. Introduction
The past decade has witnessed advances of deep learning
in a broad range of application areas such as game playing
(Silver et al., 2016), natural language processing (Sutskever
et al., 2014), image processing and computer vision (He
et al., 2016). Its effectiveness is often attributed to the auto-
mated learning of latent representations, in that salient and
discriminative features are highly beneficial for the over-
all learning task. With abstract and semantic features syn-
thesized, the predictive relations between observations can
be captured with more ease despite the possible compli-
cations in the correlation. In unsupervised learning, la-
tent models have been widely used for clustering (Banerjee
et al., 2005), dimensionality reduction (Lawrence, 2005),
and transformation-invariant visual data analysis (Ranzato
et al., 2012).

1Department of Computer Science, University of Illinois
at Chicago, USA 2School of Computer Science, University
of Waterloo, Canada. Correspondence to: Xinhua Zhang
<zhangx@uic.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

The focus of this paper is conditional modeling for super-
vised learning, where latent variables are learned in the
context of output information, so that accurate reconstruc-
tion of outputs can be facilitated through predictive inter-
vening features. Such features can characterize latent clus-
ters (Tishby et al., 1999), sparse coding (Elad & Aharon,
2006), invariant representation (Rifai et al., 2011), amongst
others.

Despite their advantages in modeling and success in ap-
plications, latent models remain hard to train. The key
challenge originates from the coupling of model param-
eter learning and latent variable inference, which in gen-
eral leads to a nonconvex optimization problem. Although
empirical performance has been the major focus of deep
learning, recently substantial progress has been made to-
wards the analysis of global training and the structure of the
optimization problem. For example, Choromanska et al.
(2014) and Dauphin et al. (2014) showed that the lowest
critical values of the random loss function are close to the
global minimum, and Kawaguchi (2016) showed, under
certain assumptions, that every local minimum is a global
minimum for an expected loss function of a deep nonlin-
ear neural network. Similar global trainability results have
been derived for gradient descent on two-node ReLU net-
works (Tian, 2017), quadratic activations (Soltanolkotabi
et al., 2017), and one-hidden-layer non-overlapping con-
volution nets (Brutzkus & Globerson, 2017). The global
minima in over-parameterized settings were characterized
on deep and wide nets and convolutional nets (Nguyen &
Hein, 2017a;b). However most analyses are still limited,
especially with assumptions on the model and data distri-
bution that are hard to verify in practice.

Along a different line of methodology, reformulations of la-
tent models have been studied which admit tractable global
solutions. Examples include boosting (Bengio et al., 2005),
spectral methods (Anandkumar et al., 2014; Zhong et al.,
2017), kernel methods (Zhang et al., 2016; 2017), poly-
nomial networks and sum-product networks (Livni et al.,
2014; Gens & Domingos, 2012), and semidefinite relax-
ations (Fogel et al., 2015). Unfortunately, they either im-
pose restrictions on the model space (e.g. polynomial net-
work, recursive inverse kernels), or require tractability of
underlying oracles, or rely on realizability assumptions.

Inductive Two-Layer Modeling with Parametric Bregman Transfer

A framework based on reformulation that accommodates
more general latent variable structures was proposed by
Aslan et al. (2013; 2014), where each pair of adjacent
layers are conjoined through a prediction loss that favors
nonlinear connections. A similar approach was designed
by Carreira-Perpinnan & Wang (2014), which introduced
“auxiliary coordinates” to allow deviation from layer-wise
outputs with a penalty. In order to achieve a convex model,
Aslan et al. (2013; 2014) further represent each layer’s out-
put as a kernel matrix, and the loss over adjacent kernels
is relaxed in a jointly convex fashion, retaining nonlinear
transformations that allow a rich set of salient latent fea-
tures to be captured.

However, these models assume that all latent layers be-
have as a multi-label classifier, and the latent kernels are
learned nonparametrically, i.e. there is no explicit para-
metric transfer function and nonlinear relations are intro-
duced only through the loss functions between layers. This
is more restrictive than state-of-the-art deep learners where
the activation functions are parametric and continuously
valued, with popular choices such as ReLU. As a result the
model is restricted to a transductive setting, in that train-
ing examples are required to establish the data-dependent
context of nonparametric kernel learning. This restriction
significantly slows down predictions at test time, which is
more important than the training cost.

Such a challenge in efficiency is exacerbated as the kernel-
based learning leads to an expensive semi-definite pro-
gramming (SDP), whose computational cost limited their
experiments to only 200 examples.

The goal of this paper, therefore, is to develop an induc-
tive and efficient learning strategy for two-layer conditional
models with global optimality guarantees. This allows pre-
dictions to be made as efficiently as a feedforward neu-
ral network (FFNN) does, obviating retraining at test time.
It is achieved by directly constructing a convex relaxation
based on a parametric transfer function (e.g. ReLU) spec-
ified a priori. In particular, we first make a new observa-
tion that no inter-layer loss satisfying nonlinear recovery
and grounding can be jointly convex (§2). However by us-
ing the matching loss, the non-convexity can be encapsu-
lated entirely by a bilinear term, facilitating a convex relax-
ation for ReLU based on completely positive (CP) cones
(§3). The result provides a direct initialization of FFNN
for finer tuning, which yields, inductively, more accurate
predictions than baseline training methods (§5).

Different from the SDP used by Aslan et al. (2013; 2014),
our CP-based model allowed us to develop a new efficient
algorithm using low-rank approximation, scaling up the
size of solvable problems by an order of magnitude (§4).
A new constant approximation guarantee is also proved.

2. Matching Loss for Transfer Functions
Two-layer neural networks are composed of two nonlinear
conditional models. The latent layer is characterized by
a nonlinear transfer function f : Rh → Rh, which con-
verts the linear transformation Wx into φ = f(Wx). Here
x ∈ Rn is the raw input feature, and W ∈ Rh×n is the
hidden layer weights. We use regular lowercase letters for
scalar, bold lowercase letters for vector, and capital letters
for matrix. The resulting φ is further multiplied with the
output layer weights U ∈ Rh×m, and the product is mea-
sured against the given label y ∈ Rm via a loss function
`(U ′φ,y). Here U ′ is the transpose of U . Typical losses
include binary hinge loss `(z, y) = [1− yz]+ with m = 1,
where y ∈ {−1, 1} and [z]+ := max{0, z}. For multi-
class problems with C classes, y encodes a class c with
the canonical vector ec. Then m = C and the hinge loss
`(z,y) = max{1 − y + z − (y′z)1}, where 1 is a vector
of all one’s. The logistic loss is −z′y + log

∑
c exp(zc).

There are several popularly used transfer functions.
The simplest options are elementwise, i.e. f(z) =
(f(z1), . . . , f(zh))′, where all zi are applied separately
to the same function f : R → R. ReLU uses fr(z) =
[z]+, and variants include the leaky rectifier which uses
fl(z) = max{z, az} where a > 0 is a small positive
number, and the bounded hard tanh which uses fh(z) =
max{−1,min{z, 1}}. Transfers that are not piecewise
linear are also available, e.g. the sigmoid fs(z) = (1 +
e−z)−1. These transfers are illustrated in Figure 1. Non-
elementwise transfers are also available, e.g. the soft-max
function with f(z) = (ez1 , . . . , ezh)′/

∑h
k=1 e

zk .

A major source of non-convexity in neural network is the
nonlinear transfer function. To cope with it, a natural ap-
proach is to replace the exact connection of φ = f(z) by
a loss function that penalizes the deviation between φ and
f(z). Formally, it attempts to construct a loss L(φ, z) that
would (ideally) satisfy three conditions:

• Unique recovery: arg minφ L(φ, z) = f(z) for all z,
with the arg min attained uniquely.

• Joint convexity: L is jointly convex over φ and z. This
is required if we choose to build a jointly convex deep
model by directly usingL to connect the input and output
of adjacent layers.

• Grounding: minφ L(φ, z) = 0 for all z, so that there is
no bias towards any value of z.

Unfortunately, it can be shown that such a loss does not
exist, unless f is affine (see the proof in Appendix A):

Theorem 1. There exists a loss L that satisfies all the three
conditions if, and only if, f is affine.

This result motivates us to resort to weaker versions of loss.
Interestingly, the matching loss (Auer et al., 1996) meets

Inductive Two-Layer Modeling with Parametric Bregman Transfer

-4 -3 -2 -1 1 2 3 4

1

2

3

4
Transfer f
Potential F

(a) Linear rectifier (ReLU)

-4 -3 -2 -1 1 2 3 4

1

2

3

4
Transfer f
Potential F

(b) Leaky rectifier ε= .05

-4 -3 -2 -1 1 2 3 4
-1

1

2

3

4
Transfer f
Potential F

(c) Hard tanh

-4 -3 -2 -1 1 2 3 4

0.5

1

1.5

Transfer f
Potential F

(d) Sigmoid

Figure 1. Four examples of transfer function f and the corresponding potential function F

the first and third conditions, and satisfies a weakened ver-
sion of convexity by imposing a very mild condition on f .
In particular, we assume that the transfer function is the
gradient of a strictly convex function F : f = ∇F , with
F : Rh → R. If f is elementwise, this just means the
constituent f is continuous and strictly increasing. As a re-
sult, the inverse of f also exists, and it is well known that
f−1 = ∇F ∗, where F ∗ is the Fenchel conjugate of F .

Although the ReLU fr(z) is not strictly increasing in
the negative hallf line, it can be approximated arbitrarily
closely via max{εz, z} for infinitesimally small ε > 0.
Similar alterations can be applied to hard tanh fh(z) by
allowing a tiny slope ε for |z| ≥ 1. The F corresponding to
the abovementioned transfers f are also shown in Figure 1.

In the case that f is not elementwise, this assumption of
F implies: 1) f is strictly increasing in the vector sense:
(x − y)′(f(x) − f(y)) > 0, and 2) The Jabobian of f is
symmetric (as the Hessian of F): Jf = (Jf)′, provided
f is differentiable. Under this assumption, we adopt the
following loss function based on Bregman divergence:

L(φ, z) = DF∗(φ, f(z)) = F ∗(φ) + F (z)− φ′z, (1)

whereDF∗ is the Bregman divergence induced by F ∗. Ob-
viously L meets the conditions of recovery and grounding,
but is not jointly convex. However, the only nonconvex part
is the bilinear term φ′z, while both F ∗ and F are convex.
Such a decoupling of nonconvex terms from the transfer
functions is the key enabler for our convex reformulation.

3. Convex Two-layer Modeling
Suppose we have t training pairs {(xj ,yj)}tj=1, stacked
in two matrices X = (x1, . . . ,xt) ∈ Rn×t and Y =
(y1, . . . ,yt) ∈Rm×t. The corresponding set of latent layer
outputs are stacked into Φ = (φ1, . . . ,φt) ∈ Rh×t. The
regularized risk minimization objective can be written as

min
W,Φ
U,b

t∑
j=1

DF∗(φj , f(Wxj)) + `(U ′φj+b,yj)+ ‖W‖
2+‖U‖2
2

= min
W,U,b,Φ

t∑
j=1

{F ∗(φj)− φ′jWxj + F (Wxj) (2)

+ `j(U
′φj + b)}+ 1

2 ‖W‖
2

+ 1
2 ‖U‖

2
,

where `j(U ′φj + b) := `(U ′φj + b,yj). We introduced
regularizations via Frobenius norms. The weight of both
regularization terms can be tuned by any model selection
method, e.g. cross validation, and here we put 1 to simplify
the presentation. We also assume that dom `j is the en-
tire space. To keep our notation neat we write vector-input
functions on matrices, representing the sum of the function
values applied to each column, e.g. F ∗(Φ) =

∑
j F
∗(φj).

Now we can rewrite the objective compactly as

min
Φ,W,U,b

F ∗(Φ)− tr(Φ′WX) + F (WX) + `(U ′Φ + b1′)

+ 1
2 ‖W‖

2
+ 1

2 ‖U‖
2
. (3)

It is bi-convex in two groups of variables (Φ,b) and
(W,U), i.e. fixing one group it is convex in the other.
In order to derive a jointly convex reformulation, we first
note that `(U ′Φ + b1′) = maxR{tr(R′(U ′Φ + b1′)) −
`∗(R)}, where `∗ is the Fenchel conjugate of `, and
R ∈ Rm×t. For binary hinge loss, `∗(r) = yr over
r ∈ [min{0,−y},max{0,−y}], and ∞ else. For multi-
class hinge loss, `∗(r) = y′r if r + y ∈ ∆m := {x ∈
Rm+ : 1′x = 1}, and ∞ else. For multiclass logistic loss,
`∗(r) =

∑
i(ri + yi) log(ri + yi) if r + y ∈ ∆m, and∞

else. Similarly, F (WX) = maxΛ{tr(Λ′WX) − F ∗(Λ)}.
So we can rewrite (2) into

min
W,U,b,Φ

max
R,Λ

F ∗(Φ)− tr(Φ′WX) + tr(Λ′WX)

− F ∗(Λ) + tr(R′(U ′Φ + b1′))− `∗(R) + ‖W‖2+‖U‖2
2

= min
Φ

max
R,Λ

min
W,U,b

F ∗(Φ)− tr(Φ′WX) + tr(Λ′WX)

− F ∗(Λ) + tr(R′(U ′Φ + b1′))− `∗(R) + ‖W‖2+‖U‖2
2

= min
Φ

max
R1=0,Λ

F ∗(Φ)− 1
2 ‖(Φ− Λ)X ′‖2 − 1

2 ‖ΦR
′‖2

− F ∗(Λ)− `∗(R). (4)

The optimal W and U for the last equality is W = (Φ +
Λ)X ′ and U = −ΦR′. The first equality swaps minW,U,b
with maxR,Λ. Such a strong duality is indeed not trivial be-
cause the celebrated Sion’s minimax lemma requires that
the domain of (W,U) be compact, which is not assumed
here. However the conclusion is still correct as we formal-
ize here.

Inductive Two-Layer Modeling with Parametric Bregman Transfer

Theorem 2. For any W,U,b, denote L(Φ, R) = F ∗(Φ)−
tr(Φ′WX) + tr(R′(U ′Φ + b1′))− `∗(R). Then

min
Φ

max
R
L(Φ, R) = max

R
min

Φ
L(Φ, R).

To prove it, just use Proposition 2.2 (p173) of (Ekeland &
Témam, 1999). There, take R = Λ = 0 (i.e. p0 = 0), and
then L diverges when (W,U) diverges. Note b disappears
as R = 0.

3.1. Convex relaxation

We now derive a convex relaxation for (4). To be concrete,
consider the ReLU transfer with Fr(Z) = 1

2 ‖[Z]+‖2. Its
Fenchel dual is F ∗r (Φ) = 1

2 ‖Φ‖
2 for Φ ≥ 0 (elementwise),

and +∞ otherwise. Therefore (4) can be specialized into
min
Φ≥0

max
R1=0,Λ≥0

1
2 ‖Φ‖

2 − 1
2 ‖(Φ− Λ)X ′‖2 (5)

− 1
2 ‖ΦR

′‖2 − 1
2 ‖Λ‖

2 − `∗(R).

Notice that both Φ and Λ are constrained to the positive or-
thant, and they are both sized h×t. Since t� h in general,
their ranks are h and their column spaces have full rank. As
a result, we may perform change of variable via Λ = ΦA,
where A ∈ Rt×t+ and is not necessarily symmetric. So we
can rewrite (5) as
min
Φ≥0

max
R1=0,A≥0

1
2 ‖Φ‖

2 − 1
2 tr(Φ′Φ(I −A)X ′X(I −A′))

− 1
2 tr(Φ′ΦR′R)− 1

2 tr(Φ′ΦAA′)− `∗(R).

Although this is still not convex, all occurrences of Φ are
now in the form of Φ′Φ, leading to the natural idea of opti-
mizing over Φ′Φ directly. Denote T := Φ′Φ ∈ Rt×t, and
then we finally arrive at

min
T∈Th

max
R1=0,A≥0

1
2 tr(T)− 1

2 tr(T (I −A)X ′X(I −A′))

− 1
2 tr(TR′R)− 1

2 tr(TAA′)− `∗(R),

where Th :=
{

Φ′Φ : Φ ∈ Rh×t+

}
⊆
{
T ∈ Rt×t+ : T � 0

}
.

T � 0 means T is positive semi-definite (PSD). Now
given T , the maximization over R and A is concave be-
cause T � 0. Indeed A and R are decoupled, making
the inner optimization efficient. The objective function is
also convex in T , because maximization over linear terms
gives a convex function. The only challenge left is the non-
convexity of Th.

The set Th is obviously a cone. In fact, if we relax the
fixed value of h, then T∞ is the well-known completely
positive (CP) matrix cone (Berman & Shaked-Monderer,
2003). More interestingly, it is not hard to show that T∞ is
the tightest convex relaxation of Th, i.e. the convex hull of
Th for any h. Letting T := T∞ yields our final objective

min
T∈T

max
R1=0,A≥0

1
2 tr(T)− 1

2 tr(T (I −A)X ′X(I −A′))

− 1
2 tr(TR′R)− 1

2 tr(TAA′)− `∗(R). (6)

It turns out that the convex relaxation does not require pre-
specifying the number of hidden nodes; h can be figured
out automatically through the rank of the optimal T . We
will see in the sequel that the formulation does implic-
itly favor a low-rank solution through a gauge regularizer
(Lemma 1), although a manual assignment of h can always
be incorporated through truncation after optimization.

Generality of the convexification scheme. We note in
passing that the above technique is general, and can be ex-
tended beyond ReLU. For example, when using the hard
tanh transfer, we have F ∗h (Φ) = 1

2 ‖Φ‖
2 if the L∞ norm

‖Φ‖∞ := maxij |Φij | ≤ 1, and∞ otherwise. Then we get
the same objective function as in (6), only with Th changed
into {Φ′Φ : ‖Φ‖∞ ≤ 1} and the domain of A changed into
{A :

∑
i |Aij | ≤ 1, ∀ j}.

Even more general extensions to non-elementwise transfer
functions can also be developed in our framework. The de-
tails on convexifying the soft-max transfer (and hard tanh)
are deferred to Appendix B, and the space saved will be de-
voted to the more important issue of efficiently optimizing
the model, hence overcoming the key bottleneck that has
much confined the applicability of (Aslan et al., 2014).

4. Optimization
Although the problem (6) is convex, the set T lacks a com-
pact characterization in terms of linear/quadratic, PSD, or
second-order conic constraints. Optimization over com-
pletely positive matrices is known hard (Berman & Shaked-
Monderer, 2003), and even projection to T is NP-hard
(Dickinson & Gijben, 2014).1 Therefore we resort to con-
ditional gradient (Frank-Wolfe) methods that are free of
projection (CG, Jaggi, 2013; Harchaoui et al., 2015). The
key benefit of CG lies in the efficiency of optimizing a lin-
ear function over T (a.k.a. the polar operator), robustness
in its inaccuracy (Freund & Grigas, 2016), and the low rank
of intermediate solutions due to its greedy and progressive
nature (hence efficient intermediate updates).

In practice, however, CG still suffers from slow conver-
gence, and its linearly-converging variants are typically
subject to a large condition number (Lacoste-Julien &
Jaggi, 2015). This is partly because at each step only the
weights on the existing bases are optimized, while the bases
themselves are not. To alleviate this problem, Zhang et al.
(2012) proposed the Generalized Conditional Gradient al-
gorithm (GCG) which simultaneously optimizes the bases.
Despite the lack of theoretical proof, it is much faster in
practice. Furthermore, GCG is robust to inexactness in po-
lar operators, and one of our key contributions below is to

1In spite of the “convexity”, a convex function may itself be
NP-hard to evaluate, or it can be NP-hard to project to a convex
set, or optimize a linear function over it.

Inductive Two-Layer Modeling with Parametric Bregman Transfer

show that it can efficiently solve (6) with a multiplicative
approximation bound of 1

4 .

Since GCG operates on gauge regularized objectives, our
first step is to take a nontrivial path of rewriting (6). Recall
that given a convex bounded set C containing the origin,
the gauge function induced by C evaluated at T is defined
as γC(T) := min{γ ≥ 0 : γX = T, X ∈ C}. If no such
(γ,X) meets the condition, then γC(T) := ∞. Since (6)
does not contain a gauge function induced by a bounded set
(T is unbounded), we first recast it into this framework.

The simplest way to add bound to T is via the trace norm,
which is exactly tr(T) since T � 0:

S := T ∩ {T : tr(T) ≤ 1} (7)
= convT1 ∩ {T : tr(T) ≤ 1} (8)

= conv
{
xx′ : x ∈ Rt+, ‖x‖ ≤ 1

}
. (9)

Our key observation is the following lemma which allows
us to rewrite the problem in terms of gauge regularized ob-
jective. In particular, the domain of the gauge implicitly
enforces the constraint on T .

Lemma 1. S is convex, bounded, and closed. In addition

γS(T) =

{
tr(T) T ∈ T
+∞ otherwise

. (10)

The proof is relegated to Appendix A. In fact, it is easy
to show that for any convex cone C, the gauge function
of its intersection with a half-space tr(A′T) ≤ 1 is exactly
tr(A′T) overC. The significance of Lemma 1 is that it pro-
vides the cornerstone for solving the problem (6) by GCG.
Indeed, (6) can be equivalently rewritten as

min
T

J(T) := 1
2γS(T) + g(T) where (11)

g(T) := max
R1=0,A≥0

− 1
2 tr(T (I −A)X ′X(I −A′)) (12)

− 1
2 tr(TR′R)− 1

2 tr(TAA′)− `∗(R).

This objective finally falls into the framework of GCG
sketched in Algorithm 1 (Zhang et al., 2012; Harchaoui
et al., 2015). GCG proceeds in iterations and at each step
it seeks the steepest descent extreme point T new (a.k.a. ba-
sis) of the set S with respect to the objective gradient (steps
3-4). After finding the optimal conic combination with the
existing solution (step 5), it directly optimizes the underly-
ing factor Φ, initialized by the value that corresponds to the
current solution T (step 6). Although this last step is not
convex (hence called “local optimization”), it offers signif-
icant practical efficiency because it allows all existing bases
to be optimized along with their weights.

We next provide details on the efficient computational
strategies for the above operations in our problem.

Algorithm 1: General GCG algorithm

1 Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ′1Φ1.
2 while k = 1, 2, . . . do
3 Find ∇g(Tk) with Tk = Φ′kΦk by solving the inner

maximization problem in g(Tk) of (12).
4 Polar operator: find a new basis via

T new = arg maxT∈S 〈T,−∇g(Tk)〉.
5 Compute the optimal combination weight

(α, β) := arg minα≥0,β≥0 J(αTk + βT new).
6 Locally optimize T : Φk+1 =arg minΦ≥0 J(Φ′Φ)

with Φ initialized by the value corresponding to
Φ′Φ = αTk + βT new (see Section 4.1).

7 Return Tk+1

4.1. Polar operator and constant multiplicative
approximation guarantee

Given the negative gradient G = −∇g(Tk) ∈ Rt×t, the
polar operator of S tries to solve the following optimization
problem by using the characterization of S in (9):

max
T∈S

tr(G′T) ⇐⇒ max
x∈Rt

+, ‖x‖≤1
tr(x′Gx). (13)

Unfortunately, this problem is NP-hard. If this were solv-
able for any G, then we could use it to answer whether
minx≥0 x

′(−G)x ≥ 0. But the latter is to check the
copositivity of −G, which is known to be co-NP-complete
(Murty & Kabadi, 1987). Usually problems like (13) are
approached by semi-definite relaxations (SDP), and Ne-
mirovski et al. (1999) showed that it can be approximately
solved with a multiplicative bound of O(1/ log t).

As one of our major contributions, we next show that when
G � 0, this bound can be tightened into constant for (13)
with a computational procedure that is much more efficient
than SDP. Furthermore, our problem does satisfy G � 0.

Before proceeding, we first recall the definition of a multi-
plicative α-approximate solution.
Definition 1. Let α ∈ (0, 1] and assume an optimiza-
tion problem maxx∈X f(x) has nonnegative optimal value.
A solution x∗ ∈ X is called α-approximate if f(x∗)
≥ αmaxx∈X f(x) ≥ 0. Similarly, the condition becomes
0 ≤ f(x∗) ≤ 1

α minx∈X f(x) for minimization problems.
Theorem 3. Assume G � 0. Then a 1

4 -approximate solu-
tion to (13) can be found in O(t2) time.
Proof. Since G � 0, it can be decomposed into G = H ′H
and the problem (13) becomes maxx∈Rt

+,‖x‖≤1 ‖Hx‖2.
Let v be top eigenvector ofG that corresponds to the great-
est eigenvalue. Then v maximizes ‖Hx‖ over ‖x‖ ≤ 1.
Decompose v = v+ − v−, where v+ = [v]+ collects
the nonnegative components, and v− collects the negative
components. Apparently we have ‖v+‖ ≤ 1 and ‖v−‖ ≤
1. Without loss of generality assume ‖Hv+‖2 ≥ ‖Hv−‖2
and consequently let us use v+ as an approximate mini-
mizer, which we demonstrate is 1

4 -approximate:

Inductive Two-Layer Modeling with Parametric Bregman Transfer

maxx∈Rt
+,‖x‖≤1‖Hx‖2≤ ‖Hv‖2 = ‖Hv+ −Hv−‖2

≤ 2(‖Hv+‖2+‖Hv−‖2) ≤4 ‖Hv+‖2.

Obviously v+

‖v+‖ is an even better solution, which can also
be used as an initializer for further local optimization. The
computational bottleneck lies in the top eigenvector v of
G, which costs O(t2).

In the case that G is not PSD, it turns out very hard to ex-
tend this technique while retaining a constant bound. How-
ever the SDP-based technique in (Nemirovski et al., 1999)
still applies, and the bound remains 1/ log t. In hindsight,
our choice of the adding Frobenius norm constraint on Φ
when defining S in (7) is not arbitrary. It constitutes the
most straightforward path that allows the polar operator
to be approximated in a tractable fashion. Other choices,
such as structured Frobenius norms, could be possible if
we would like to enforce structured decompositions in the
hidden representation. We leave the extension of tractable
approximation for future exploration.

Finally, although our algorithm for the polar operator re-
quires G be positive semi-definite—which is not satisfied
in general—it happens to be fulfilled by our particular prob-
lem (11). Notice the gradient of g is simply

− 1
2 (I −A)X ′X(I −A′)− 1

2R
′R− 1

2AA
′, (14)

where the R and A are the optimal solution to the inner
maximization. This is obviously negative semi-definite,
providing the key cornerstone for the constant approxima-
tion bound of our approach.

Optimality of GCG and rates of convergence We fi-
nally translate the bound on the polar operator to that of
the original objective (11). As shown by Theorem 1 of
(Cheng et al., 2016), any α-approximate polar operator al-
lows GCG to converge to an α-approximate solution to
the original problem, and the convergence rate is O(1/ε).
Hence we are guaranteed to find a 1

4 -approximate solution
to (11). The overall method is summarized in Algorithm 2.

4.2. Accelerating local optimization by converting
min-max into min-min

The computational bottleneck of applying GCG to
our problem (11) is the step of local optimization:
minΦ J(Φ′Φ) over Φ ∈ Rh×t+ . Owing to the Φ′Φ term,
this objective is not convex. However, it is often observed
in practice that the overall optimization can be much accel-
erated if we solve it just locally (e.g. by BFGS), with Φ ini-
tialized based on the value of the convex optimization vari-
able T (step 6 of Algorithm 1 or step 11 of Algorithm 2).

Unfortunately, since g defined in (12) employs a nested
maximization, we are now faced with a min-max problem.
Different from min-min optimizations minx miny f(x, y)

Algorithm 2: Solve (6) for T by the GCG algorithm

1 Randomly sample Φ1 ∈ [0, 1]t, and set T1 = Φ′1Φ1.
2 while k = 1, 2, . . . do
3 if k = 1 then
4 (Uk,bk) = optimal U and b in (15) for Φ1.
5 Mk = optimal M in (15) for Φ1.
6 Recover the optimal R: Rk=∇`(U ′kΦk+bk1

′).
7 Recover the optimal A by (17).
8 Compute the gradient Gk of gµ at Tk = Φ′kΦk via

(14), with R and A served by Rk and Ak, resp
9 Compute a new basis xk by approximately solving

arg maxx∈Rt
+,‖x‖≤1 x

′(−Gk)x (c.f. Theorem 3).
10 Line search:

(α, β) := arg minα≥0,β≥0 J(αTk + βxkx
′
k).

11 Set Φtmp = (
√
αΦ′k,

√
βxk)′.

12 Local search: (Φk+1, Uk+1,bk+1,Mk+1) :=
Local Opt(Φtmp, Uk,bk,Mk) by Algorithm 3.

13 Return Tk+1

Algorithm 3: Local optimization used by GCG

1 Require (Φtmp, Uk,bk,Mk) from the current step
2 Initialize : Φ = Φtmp, U = Uk, b = bk, M = Mk.
3 for t = 1, 2, . . . do // till the change is small
4 (U,b) = arg minU,b{`(U ′Φ + b1′) + 1

2 ‖U‖
2}.

5 M = arg minM≥0 h(M,Φ).
6 Φ = arg minΦ≥0 {`(U ′Φ + b1′) + h(M,Φ)}.
7 Return (Φ, U,b,M).

which can be solved very efficiently by alternating be-
tween optimizing x and y, a min-max problem like
minx maxy f(x, y) cannot be solved by alternating: fixing
x solve y, and fixing y solve x. Instead, one needs to treat
the objective as a function of x, and for each x solve the in-
ner maximization in y exactly, before obtaining a gradient
in x that is supplied to standard solvers such as BFGS. This
is often much slower than alternating.

To enable an efficient solution by alternating, we next de-
velop a novel reformulation of g as a minimization, such
that minimizing g becomes a min-min problem:

g(Φ′Φ) = max
R1=0

{
− 1

2 ‖ΦR
′‖2 − `∗(R)

}
+ max

A≥0

{
− 1

2 ‖Φ(I −A)X ′‖2 − 1
2 ‖ΦA‖

2
}

= max
R

min
b

{
b′R1−`∗(R)−max

U
− tr(U ′ΦR′)− ‖U‖

2

2

}
+ max

A
min
M≥0

{
−‖Φ(I−A)X′‖2

2 − ‖ΦA‖
2

2 + tr(M ′A)

}
= min

U,b

{
`(U ′Φ + b1′) + 1

2 ‖U‖
2
}

+ min
M≥0

h(M,Φ), (15)

where h(M,Φ) := max
A

{
− 1

2 ‖Φ(I −A)X ′‖2 (16)

− 1
2 ‖ΦA‖

2
+ tr(M ′A)

}
.

Inductive Two-Layer Modeling with Parametric Bregman Transfer

As the key advantage achieved here, the local optimization
minΦ≥0 J(Φ′Φ) = minΦ≥0

1
2 ‖Φ‖

2
+ g(Φ′Φ) can now

be solved by alternating between (U,b), M , and Φ. The
details are shown in Algorithm 3. The optimization over
(U,b) is the standard supervised learning. However, the
optimization over M and Φ is trickier because they require
evaluating h which in turn involves a nested optimization
on A. Fortunately h is quadratic in A, which allows us to
design an efficient closed-form scheme by leveraging the
celebrated Woodbury formula (Woodbury, 1950).

Given (M,Φ), the optimal A can be found by setting its
gradient to zero: Φ′ΦA(X ′X + I) = M + Φ′ΦX ′X . Un-
fortunately, the rank of Φ′ΦA (hence the left-hand side) is
at most h < t. So noA can satisfy the equality if the rank of
the right-hand side is greater than h, and hence h(M,Φ) is
finite only if the column space of (M + Φ′ΦX ′X)(X ′X+
I)−1 is contained in that of Φ′. Such an implicit constraint
between variables precludes the application of alternating.

To address this problem, we introduce a small strongly con-
vex regularizer on A in the definition of h(M,Φ) in (16),
akin to the standard smoothing technique (Nesterov, 2005):

hµ(M,Φ) := max
A

{
− 1

2 ‖Φ(I −A)X ′‖2 − 1
2 ‖ΦA‖

2

+ tr(M ′A)− µ
2 tr(A(X ′X + I)A′)

}
,

where µ > 0 is small. The new term µ
2 tr(A(X ′X + I)A′)

also needs to be added to the definition of g in (12), which
we will denote as gµ. Then the optimal A can be found by
setting the gradient to zero:
A = (Φ′Φ + µI)−1(M + Φ′ΦX ′X)(X ′X + I)−1. (17)

To efficiently computeA, we apply the Woodbury formula:

µA = (M + Φ′ΦX ′X)(X ′X + I)−1

− Φ′(µI + ΦΦ′)−1Φ(M + Φ′ΦX ′X)(X ′X+I)−1.

Computational complexity. Here (µI + ΦΦ′)−1 ∈
Rh×h can be computed efficiently as h is not large (it is ex-
actly the iteration index k in GCG Algorithm 2). Then the
second line can be computed inO(ht2) time as we can pre-
compute (X ′X + I)−1. So the only challenge in comput-
ing A is the term M(X ′X+ I)−1, which costs O(t3) time.
However, if n � t, then we may again save computations
by applying the Woodbury formula: M(X ′X + I)−1 =
M −MX ′(I +XX ′)−1X, which costs O(nt2) time.

Overall, the complexity is 1
ε ·nt

2 multiplied with: i) #round
of alternating in Algorithm 3, and ii) #iteration of LBFGS
in steps 4-6. In practice, with warm start these two numbers
are about 10 before the relative change becomes small.

5. Experiment
We evaluated the proposed inductive training of convexi-
fied two-layer model (CVX-IN) by comparing the general-
ization accuracy with 4 other baselines: FFNN: a two-layer

feedforward neural network; Ker-CVX: the kernel-based
convex model proposed by Aslan et al. (2014); LOCAL:
a model obtained by alternative minimization of the two-
layer objective (3); and CVX-TR: our model learned trans-
ductively (see below). SVM was not included since it was
already shown inferior to Ker-CVX by Aslan et al. (2014).

Inductive learning. A key advantage of our method is
the purely inductive setting, which obviates any retraining
during test time, as opposed to a transductive setting. Af-
ter completing the GCG optimization, CVX-IN directly ob-
tains the optimal U and b thanks to the local minimization
in Algorithm 3. The optimal W can be recovered by solv-
ing (3) with fixed (Φ, U,b), and it is a simple convex prob-
lem. With this initialization, we finely tuned all parameters
by backpropagation.

Transductive learning. As Ker-CVX is transductive, we
also considered the following transductive variant of CVX-
IN. The objective (11) was first trained with X being the
combination of (Xtrain, Xtest), and accordingly the inter-
mediate representation Φ (along with the corresponding T)
also consisted of the combination of (Φtrain,Φtest). Since
only Ytrain was available for training, the loss function
`(U ′Φ + b1′) was applied only to the training data. As
a result, Φtest was learned largely from the matching loss
in the latent layer given by (16). After recovering the opti-
mal U and b by local minimization (same as in CVX-IN),
test data were labeled by Ŷtest = U ′Φtest +b1′. Although
CVX-TR bypasses the recovery of W , optimization has to
be redone from scratch when new test data arrives.

Comparison on smaller datasets. To enable comparison
with Ker-CVX which is highly expensive in computation,
we first used smaller datasets including a synthetic XOR
dataset and three “real world” datasets for binary classifica-
tion: Letter (Lichman, 2013), CIFAR-SM, a binary classi-
fication dataset from (Aslan et al., 2013) based on CIFAR-
100 (Krizhevsky & Hinton, 2009), and G241N (Chapelle).

All methods were applied to two different sizes of training
and test data (Xtrain and Xtest): 100/100 and 200/200,
and the resulting test error, averaged over 10 trials, were
presented in Table 1 and 2 respectively. CVX-IN outper-
forms FFNN on G241N, Letter, and CIFAR-SM, and they
both delivered perfect classification on XOR. This corrob-
orates the advantage of convex models, suggesting that pre-
dictive structures are preserved by the relaxation. CVX-IN
also marginally outperforms or is comparable to CVX-TR
on all the datasets, confirming that inductive learning saves
computation at test time without sacrificing the accuracy.
Consistently poor performance is observed on the LOCAL
method (used in a transductive fashion), and it does not
work even for XOR. This implies that it does suffer seri-
ously from local optimality. Ker-CVX (transductive only)
performs competitively on 200 examples especially on the
Letter dataset, but its error on 100 examples is significantly

Inductive Two-Layer Modeling with Parametric Bregman Transfer

Letter G241N XOR CIFAR-SM
CVX-IN 4.8±0.8 24.2±1.6 0 21.2±1.2

CVX-TR 4.9±1.3 23.1±0.7 0 22.4±0.8

FFNN 7.9±0.8 31.9±0.9 0 31.0±1.1

LOCAL 8.0±1.2 34.0±0.9 27.0±1.5 25.0±0.8

Ker-CVX 5.7±2.9 N/A 0 27.7±5.5

Table 1. Mean test error for 100 training and 100 test examples

Letter G241N XOR CIFAR-SM
CVX-IN 5.1±1.3 21.6±0.9 0 22.6±1.5

CVX-TR 5.3±0.8 22.0±0.8 0 23.4±1.5

FFNN 5.5±0.8 29.9±0.4 0 32.9±1.0

LOCAL 10.5±0.8 33.0±0.6 25.0±1.2 29.5±0.5

Ker-CVX 4.5±0.9 N/A 0 23.3±3.5

Table 2. Mean test error for 200 training and 200 test examples

Letter G241N XOR CIFAR-10
CVX-IN 2.7±0.8 13.0±0.8 0 27.6±1.4

CVX-TR 2.7±0.9 15.1±0.9 0 27.9±2.3

FFNN 3.5±0.7 24.5±1.0 0 30.4±0.9

LOCAL 5.8±0.7 21.4±1.1 26.7±0.5 32.3±0.7

Table 3. Mean test error for 1000 training and 1000 test examples

higher than CVX-IN and CVX-TR. It ran into computa-
tional issues on G241N, hence marked by N/A.

On the CIFAR-SM dataset all methods produced a slightly
higher error with 200 training examples than 100 examples,
probably due to the small size of training set and high vari-
ance. However the comparative results between algorithms
remain similar to other datasets.

Comparison on larger datasets. Thanks to the fast lo-
cal optimization enabled by the new min-min alternating
(§4.2), our model enjoys significant speedup compared
with Aslan et al. (2013; 2014). To demonstrate this, we ap-
plied CVX-IN to Letter, XOR, and CIFAR-10 (Krizhevsky
& Hinton, 2009) with 1000/1000 and 2000/2000 train/test
examples, and to G241N with 1000/500 examples (the en-
tire dataset only has 1500 examples). Details on data pre-
processing are available in Appendix C.

As Table 3 and 4 show, CVX-IN again achieves signifi-
cantly lower test error on these larger datasets over FFNN,
CVX-TR, and LOCAL. The training time of CVX-IN is
summarized in Table 6, and it took 2.5 hours on CIFAR-10
with 2000 examples and 256 features. Although still ex-
pensive, it is substantially faster than Ker-CVX which is
completely incapable of scaling here (hence omitted). In
contrast, the run time of FFNN and LOCAL is much lower.
These are shown for comparison in Appendix D. Overall
CVX-IN scales quadratically in #examples (t), which is
consistent with our analysis in §4.2.

Letter XOR CIFAR-10
CVX-IN 1.0±0.5 0 26.8±1.6

CVX-TR 1.2±0.7 0 27.0±1.9

FFNN 1.7±0.3 0 30.0±1.8

LOCAL 2.3±0.4 27.2±0.3 33.0±1.5

Table 4. Mean test error for 2000 training and 2000 test examples

100 200 1000 2000
Letter 0.45 1.1 17.1 90.6

G241N 0.68 1.5 27.3 N/A
XOR 0.45 1.0 42.0 144.2

CIFAR-10 0.63 1.5 50.6 153.6

Table 5. Training times (in minutes) for CVX-IN on 100, 200,
1000, and 2000 training examples

(a) BOX (b) XOR

(c) hBOX (d) hXOR

Figure 2. BOX and XOR datasets (subplots a and b) and their in-
termediate representations (hdataset in subplots c and d). The rep-
resentations were reduced to 2-D by using the standard PCA.

Intermediate representation. One of the key merits of
our two-layer model is that the relaxation retains the nec-
essary structure in the input data to make accurate pre-
dictions. To test this feature, we tried to visualize the
latent representation learned by our CVX-IN. Figure 2
demonstrates the original features in the input data Xtrain

and the learned intermediate representation Φtrain, for two
datasets Box and XOR which both employ a rich latent
structure. Clearly the convex relaxation was able to sep-
arate the two classes and preserve sufficient structures that
allows it to outperform single-layer models.

6. Conclusions and Future Work
We developed a convex relaxation for parametric transfer
functions such as ReLU based on matching loss. An effi-
cient optimization method was designed with a constant ap-
proximation bound. For future work we will explore other
transfer functions and their influence. To the best of our
knowledge, no nontrivial recovery properties are known
about nonlinear CP or SDP relaxation. Although our em-
pirical results demonstrate compelling promise, it will be
interesting to rigorously establish its theoretical guarantees.

Inductive Two-Layer Modeling with Parametric Bregman Transfer

References
Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Tel-

garsky, M. Tensor decompositions for learning latent
variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

Aslan, O., Cheng, H., Zhang, X., and Schuurmans, D. Con-
vex two-layer modeling. In Neural Information Process-
ing Systems, 2013.

Aslan, O., Zhang, X., and Schuurmans, D. Convex deep
learning via normalized kernels. In Neural Information
Processing Systems, 2014.

Auer, P., Herbster, M., and Warmuth, M. K. Exponen-
tially many local minima for single neurons. Technical
Report UCSC-CRL-96-1, Univ. of Calif.Computer Re-
search Lab, Santa Cruz, CA, 1996. In preparation.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J.
Clustering with Bregman divergences. Journal of Ma-
chine Learning Research, 6:1705–1749, 2005.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and
Marcotte, P. Convex neural networks. In Neural Infor-
mation Processing Systems, 2005.

Berman, A. and Shaked-Monderer, N. Completely Positive
Matrices. World Scientific, 2003.

Brutzkus, A. and Globerson, A. Globally optimal gradient
descent for a ConvNet with gaussian inputs. In Proc.
Intl. Conf. Machine Learning, 2017.

Carreira-Perpinnan, M. and Wang, W. Distributed opti-
mization of deeply nested systems. In Proc. Intl. Con-
ference on Artificial Intelligence and Statistics, 2014.

Chapelle, O. http://olivier.chapelle.cc/ssl-
book/benchmarks.html.

Cheng, H., Yu, Y., Zhang, X., Xing, E., and Schuurmans,
D. Scalable and sound low-rank tensor learning. In Proc.
Intl. Conference on Artificial Intelligence and Statistics,
2016.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. The loss surfaces of multilayer networks.
In Proc. Intl. Conference on Artificial Intelligence and
Statistics, 2014.

Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli,
S., and Bengio, Y. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex op-
timization. In Neural Information Processing Systems,
2014.

Dickinson, P. J. C. and Gijben, L. On the com-
putational complexity of membership problems for
the completely positive cone and its dual. Com-
putational Optimization and Applications, 57(2):403–
415, Mar 2014. ISSN 1573-2894. doi: 10.1007/
s10589-013-9594-z. URL https://doi.org/10.
1007/s10589-013-9594-z.

Ekeland, I. and Témam, R. Convex Analysis and Varia-
tional Problems. SIAM, 1999.

Elad, M. and Aharon, M. Image denoising via sparse
and redundant representations over learned dictionaries.
IEEE Transactions on Image Processing, 15(12):3736–
3745, 2006.

Fogel, F., Jenatton, R., Bach, F., and d’Aspremont, A. Con-
vex relaxations for permutation problems. SIAM Journal
on Matrix Analysis and Applications, 36(4):1465–1488,
2015.

Freund, R. and Grigas, P. New analysis and results for the
Frank-Wolfe method. Mathematical Programming, 155
(1):199–230, 2016.

Gens, R. and Domingos, P. Discriminative learning of
sum-product networks. In Neural Information Process-
ing Systems, 2012.

Harchaoui, Z., Juditsky, A., and Nemirovski, A. Condi-
tional gradient algorithms for norm-regularized smooth
convex optimization. Mathematical Programming, 152:
75–112, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In Proc. Intl. Conf. Machine
Learning, 2013.

Kawaguchi, K. Deep learning without poor local minima.
In Neural Information Processing Systems, 2016.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

Lacoste-Julien, S. and Jaggi, M. On the global linear con-
vergence of Frank-Wolfe optimization variants. In Neu-
ral Information Processing Systems, 2015.

Lawrence, N. Probabilistic non-linear principal component
analysis with gaussian process latent variable models. J.
Mach. Learn. Res., 6:1783–1816, 2005.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

https://doi.org/10.1007/s10589-013-9594-z
https://doi.org/10.1007/s10589-013-9594-z
http://archive.ics.uci.edu/ml

Inductive Two-Layer Modeling with Parametric Bregman Transfer

Livni, R., Shalev-Shwartz, S., and Shamir, O. An algorithm
for training polynomial networks. arXiv:1304.7045v2,
2014.

Murty, K. G. and Kabadi, S. N. Some NP-complete prob-
lems in quadratic and nonlinear programming. Mathe-
matical Programming, 39(2):117–129, 1987.

Nemirovski, A., Roos, C., and Terlaky, T. On maximiza-
tion of quadratic form over intersection of ellipsoids with
common center. Math. Program. Ser. A, 86:463–473,
1999.

Nesterov, Y. Smooth minimization of non-smooth func-
tions. Mathematical Programming, 103(1):127–152,
2005.

Nguyen, Q. and Hein, M. The loss surface of deep and wide
neural networks. In Proc. Intl. Conf. Machine Learning,
2017a.

Nguyen, Q. and Hein, M. The loss surface and
expressivity of deep convolutional neural networks.
arXiv:1710.10928, 2017b.

Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado,
G., Dean, J., Le, Q. V., and Ng, A. Y. Building high-
level features using large scale unsupervised learning. In
Proc. Intl. Conf. Machine Learning, 2012.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio,
Y. Contractive auto-encoders: Explicit invariance during
feature extraction. In Proc. Intl. Conf. Machine Learn-
ing, 2011.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T., Leach, M., Kavukcuoglu, K., Graepel, T., and Has-
sabis, D. Mastering the game of go with deep neural
networks and tree search. Science, 529:484–489, 2016.

Soltanolkotabi, M., Javanmard, A., and Lee, J. D. Theo-
retical insights into the optimization landscape of over-
parameterized shallow neural networks. In Proc. Intl.
Conf. Machine Learning, 2017.

Steinberg, D. Computation of matrix norms with applica-
tions to Robust Optimization. PhD thesis, Faculty of In-
dustrial Engineering and Management, Technion, 2005.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Neural Infor-
mation Processing Systems, 2014.

Tian, Y. An analytical formula of population gradient for
two-layered ReLU network and its applications in con-
vergence and critical point analysis. In Proc. Intl. Conf.
Machine Learning, 2017.

Tishby, N., Pereira, F., and Bialek, W. The information
bottleneck method. In 37-th Annual Allerton Conference
on Communication, Control and Computing, 1999.

UCI. University of California Irvine: Machine Learning
Repository, 1990.

Woodbury, M. A. Inverting modified matrices. Techni-
cal Report MR38136, Memorandum Rept. 42, Statisti-
cal Research Group, Princeton University, Princeton, NJ,
1950.

Zhang, X., Yu, Y., and Schuurmans, D. Accelerated
training for matrix-norm regularization: A boosting ap-
proach. In Neural Information Processing Systems,
2012.

Zhang, Y., Lee, J., and Jordan, M. L1-regularized neural
networks are improperly learnable in polynomial time.
In Proc. Intl. Conf. Machine Learning, 2016.

Zhang, Y., Liang, P., and Wainwright, M. Convexified con-
volutional neural networks. In Proc. Intl. Conf. Machine
Learning, 2017.

Zhong, K., Song, Z., Jain, P., Bartlett, P., and Dhillon,
I. Recovery guarantees for one-hidden-layer neural net-
works. In Proc. Intl. Conf. Machine Learning, 2017.

