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Abstract
Learning graph representations via low-
dimensional embeddings that preserve relevant
network properties is an important class of
problems in machine learning. We here present
a novel method to embed directed acyclic
graphs. Following prior work, we first advocate
for using hyperbolic spaces which provably
model tree-like structures better than Euclidean
geometry. Second, we view hierarchical relations
as partial orders defined using a family of nested
geodesically convex cones. We prove that these
entailment cones admit an optimal shape with a
closed form expression both in the Euclidean and
hyperbolic spaces, and they canonically define
the embedding learning process. Experiments
show significant improvements of our method
over strong recent baselines both in terms of
representational capacity and generalization.

1. Introduction
Producing high quality feature representations of data such
as text or images is a central point of interest in artificial
intelligence. A large line of research focuses on embedding
discrete data such as graphs (Grover & Leskovec, 2016;
Goyal & Ferrara, 2017) or linguistic instances (Mikolov
et al., 2013; Pennington et al., 2014; Kiros et al., 2015) into
continuous spaces that exhibit certain desirable geometric
properties. This class of models has reached state-of-the-
art results for various tasks and applications, such as link
prediction in knowledge bases (Nickel et al., 2011; Bor-
des et al., 2013) or in social networks (Hoff et al., 2002),
text disambiguation (Ganea & Hofmann, 2017), word hyper-
nymy (Shwartz et al., 2016), textual entailment (Rocktäschel
et al., 2015) or taxonomy induction (Fu et al., 2014).
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Popular methods typically embed symbolic objects in low
dimensional Euclidean vector spaces using a strategy that
aims to capture semantic information such as functional
similarity. Symmetric distance functions are usually mini-
mized between representations of correlated items during
the learning process. Popular examples are word embedding
algorithms trained on corpora co-occurrence statistics which
have shown to strongly relate semantically close words and
their topics (Mikolov et al., 2013; Pennington et al., 2014).

However, in many fields (e.g. Recommender Systems, Ge-
nomics (Billera et al., 2001), Social Networks), one has to
deal with data whose latent anatomy is best defined by non-
Euclidean spaces such as Riemannian manifolds (Bronstein
et al., 2017). Here, the Euclidean symmetric models suf-
fer from not properly reflecting complex data patterns such
as the latent hierarchical structure inherent in taxonomic
data. To address this issue, the emerging trend of geometric
deep learning1 is concerned with non-Euclidean manifold
representation learning.

In this work, we are interested in geometrical modeling
of hierarchical structures, directed acyclic graphs (DAGs)
and entailment relations via low dimensional embeddings.
Starting from the same motivation, the order embeddings
method (Vendrov et al., 2015) explicitly models the partial
order induced by entailment relations between embedded
objects. Formally, a vector x ∈ Rn represents a more gen-
eral concept than any other embedding from the Euclidean
entailment regionOx := {y | yi ≥ xi,∀1 ≤ i ≤ n}. A first
concern is that the capacity of order embeddings grows only
linearly with the embedding space dimension. Moreover,
the regions Ox suffer from heavy intersections, implying
that their disjoint volumes rapidly become bounded2. As a
consequence, representing wide (with high branching fac-
tor) and deep hierarchical structures in a bounded region
of the Euclidean space would cause many points to end up
undesirably close to each other. This also implies that Eu-
clidean distances would no longer be capable of reflecting
the original tree metric.

Fortunately, the hyperbolic space does not suffer from the
aforementioned capacity problem because the volume of

1http://geometricdeeplearning.com/
2For example, in n dimensions, no n+ 1 distinct regions Ox

can simultaneously have unbounded disjoint sub-volumes.
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any ball grows exponentially with its radius, instead of poly-
nomially as in the Euclidean space. This exponential growth
property enables hyperbolic spaces to embed any weighted
tree while almost preserving their metric3 (Gromov, 1987;
Bowditch, 2006; Sarkar, 2011). The tree-likeness of hyper-
bolic spaces has been extensively studied (Hamann, 2017).
Moreover, hyperbolic spaces are used to visualize large
hierarchies (Lamping et al., 1995), to efficiently forward
information in complex networks (Krioukov et al., 2009;
Cvetkovski & Crovella, 2009) or to embed heterogeneous,
scale-free graphs (Shavitt & Tankel, 2008; Krioukov et al.,
2010; Bläsius et al., 2016).

From a machine learning perspective, recently, hyperbolic
spaces have been observed to provide powerful representa-
tions of entailment relations (Nickel & Kiela, 2017). The
latent hierarchical structure surprisingly emerges as a sim-
ple reflection of the space’s negative curvature. However,
the approach of (Nickel & Kiela, 2017) suffers from a few
drawbacks: first, their loss function causes most points to
collapse on the border of the Poincaré ball, as exemplified
in Figure 3. Second, the hyperbolic distance alone (being
symmetric) is not capable of encoding asymmetric relations
needed for entailment detection, thus a heuristic score is cho-
sen to account for concept generality or specificity encoded
in the embedding norm.

We here inspire ourselves from hyperbolic embeddings
(Nickel & Kiela, 2017) and order embeddings (Vendrov
et al., 2015). Our contributions are as follows:

• We address the aforementioned issues of (Nickel &
Kiela, 2017) and (Vendrov et al., 2015). We propose to
replace the entailment regionsOx of order-embeddings
by a more efficient and generic class of objects, namely
geodesically convex entailment cones. These cones are
defined on a large class of Riemannian manifolds and
induce a partial ordering relation in the embedding
space.

• The optimal entailment cones satisfying four natural
properties surprisingly exhibit canonical closed-form
expressions in both Euclidean and hyperbolic geometry
that we rigorously derive.

• An efficient algorithm for learning hierarchical em-
beddings of directed acyclic graphs is presented. This
learning process is driven by our entailment cones.

• Experimentally, we learn high quality embeddings and
improve over experimental results in (Nickel & Kiela,
2017) and (Vendrov et al., 2015) on hypernymy link
prediction for word embeddings, both in terms of ca-
pacity of the model and generalization performance.

3See end of Section 2.2 for a rigorous formulation.

We also compute an analytic closed-form expression for the
exponential map in the n-dimensional Poincaré ball, allow-
ing us to perform full Riemannian optimization (Bonnabel,
2013) in the Poincaré ball, as opposed to the approximate
optimization method used by (Nickel & Kiela, 2017).

2. Mathematical preliminaries
We now briefly visit some key concepts needed in our work.

Notations. We always use ‖ · ‖ to denote the Euclidean
norm of a point (in both hyperbolic or Euclidean spaces).
We also use 〈·, ·〉 to denote the Euclidean scalar product.

2.1. Differential geometry

For a rigorous reasoning about hyperbolic spaces, one needs
to use concepts in differential geometry, some of which we
highlight here. For an in-depth introduction, we refer the
reader to (Spivak, 1979) and (Hopper & Andrews, 2010).

Manifold. A manifoldM of dimension n is a set that can
be locally approximated by the Euclidean space Rn. For
instance, the sphere S2 and the torus T2 embedded in R3

are 2-dimensional manifolds, also called surfaces, as they
can locally be approximated by R2. The notion of manifold
is a generalization of the notion of surface.

Tangent space. For x ∈ M, the tangent space TxM
of M at x is defined as the n-dimensional vector-space
approximatingM around x at a first order. It can be defined
as the set of vectors v that can be obtained as v := c′(0),
where c : (−ε, ε) → M is a smooth path inM such that
c(0) = x.

Riemannian metric. A Riemannian metric g onM is a
collection (gx)x of inner-products gx : TxM× TxM→ R
on each tangent space TxM, depending smoothly on x.
Although it defines the geometry ofM locally, it induces
a global distance function d : M×M → R+ by setting
d(x, y) to be the infimum of all lengths of smooth curves
joining x to y in M, where the length ` of a curve γ :
[0, 1]→M is defined as

`(γ) =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t))dt. (1)

Riemannian manifold. A smooth manifold equipped
with a Riemannian metric is called a Riemannian mani-
fold. Subsequently, due to their metric properties, we will
only consider such manifolds.

Geodesics. A geodesic (straight line) between two points
x, y ∈M is a smooth curve of minimal length joining x to
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y inM. Geodesics define shortest paths on the manifold.
They are a generalization of lines in the Euclidean space.

Exponential map. The exponential map expx : TxM→
M around x, when well-defined, maps a small perturba-
tion of x by a vector v ∈ TxM to a point expx(v) ∈ M,
such that t ∈ [0, 1] 7→ expx(tv) is a geodesic join-
ing x to expx(v). In Euclidean space, we simply have
expx(v) = x+ v. The exponential map is important, for in-
stance, when performing gradient-descent over parameters
lying in a manifold (Bonnabel, 2013).

Conformality. A metric g̃ onM is said to be conformal
to g if it defines the same angles, i.e. for all x ∈ M and
u, v ∈ TxM\ {0},

g̃x(u, v)√
g̃x(u, u)

√
g̃x(v, v)

=
gx(u, v)√

gx(u, u)
√
gx(v, v)

. (2)

This is equivalent to the existence of a smooth function
λ :M→ (0,∞) such that g̃x = λ2xgx, which is called the
conformal factor of g̃ (w.r.t. g).

2.2. Hyperbolic geometry

The hyperbolic space of dimension n ≥ 2 is a fundamen-
tal object in Riemannian geometry. It is (up to isometry)
uniquely characterized as a complete, simply connected Rie-
mannian manifold with constant negative curvature (Can-
non et al., 1997). The other two model spaces of constant
sectional curvature are the flat Euclidean space Rn (zero
curvature) and the hyper-sphere Sn (positive curvature).

The hyperbolic space has five models which are often in-
sightful to work in. They are isometric to each other and
conformal to the Euclidean space (Cannon et al., 1997;
Parkkonen, 2013)4. We prefer to work in the Poincaré ball
model Dn for the same reasons as (Nickel & Kiela, 2017)
and, additionally, because we can derive a closed form ex-
pression of geodesics and exponential map.

Poincaré metric tensor. The Poincaré ball model
(Dn, gD) is defined by the manifold Dn = {x ∈ Rn : ‖x‖ <
1} equipped with the following Riemannian metric

gDx = λ2xg
E , where λx :=

2

1− ‖x‖2
, (3)

and gE is the Euclidean metric tensor with components In of
the standard space Rn with the usual Cartesian coordinates.

As the above model is a Riemannian manifold, its metric
tensor is fundamental in order to uniquely define most of
its geometric properties like distances, inner products (in

4https://en.wikipedia.org/wiki/
Hyperbolic_space

tangent spaces), straight lines (geodesics), curve lengths or
volume elements. In the Poincaré ball model, the Euclidean
metric is changed by a simple scalar field, hence the model
is conformal (i.e. angle preserving), yet distorts distances.

Induced distance and norm. It is known (Nickel &
Kiela, 2017) that the induced distance between 2 points
x, y ∈ Dn is given by

dD(x, y) = cosh−1
(

1 + 2
‖x− y‖2

(1− ‖x‖2) · (1− ‖y‖2)

)
.

(4)

The Poincare norm is then defined as:

‖x‖D := dD(0, x) = 2 tanh−1(‖x‖) (5)

Geodesics and exponential map. We derive parametric
expressions of unit-speed geodesics and exponential map
in the Poincaré ball. Geodesics in Dn are all intersections
of the Euclidean unit ball Dn with (degenerated) Euclidean
circles orthogonal to the unit sphere ∂Dn (equations are
derived below). We know from the Hopf-Rinow theorem
that the hyperbolic space is complete as a metric space.
This guarantees that Dn is geodesically complete. Thus, the
exponential map is defined for each point x ∈ Dn and any
v ∈ Rn(= TxDn). To derive its closed form expression, we
first prove the following.

Theorem 1. (Unit-speed geodesics) Let x ∈ Dn and
v ∈ TxDn(= Rn) such that gDx (v, v) = 1. The unit-
speed geodesic γx,v : R+ → Dn with γx,v(0) = x and
γ̇x,v(0) = v is given by

γx,v(t) =

(
λx cosh(t) + λ2x〈x, v〉 sinh(t)

)
x+ λx sinh(t)v

1 + (λx − 1) cosh(t) + λ2x〈x, v〉 sinh(t)
(6)

Proof. See appendix B.

Corollary 1.1. (Exponential map) The exponential map at
a point x ∈ Dn, namely expx : TxDn → Dn, is given by

expx(v) =

λx

(
cosh(λx‖v‖) + 〈x, v

‖v‖ 〉 sinh(λx‖v‖)
)

1 + (λx − 1) cosh(λx‖v‖) + λx〈x, v
‖v‖ 〉 sinh(λx‖v‖)

x+

1
‖v‖ sinh(λx‖v‖)

1 + (λx − 1) cosh(λx‖v‖) + λx〈x, v
‖v‖ 〉 sinh(λx‖v‖)

v

(7)

Proof. See appendix C.

We also derive the following fact (useful for future proofs).

https://en.wikipedia.org/wiki/Hyperbolic_space
https://en.wikipedia.org/wiki/Hyperbolic_space
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Corollary 1.2. Given any arbitrary geodesic in Dn, all its
points are coplanar with the origin O.

Proof. See appendix D.

Angles in hyperbolic space. It is natural to extend the
Euclidean notion of an angle to any geodesically complete
Riemannian manifold. For any points A, B, C on such a
manifold, the angle ∠ABC is the angle between the initial
tangent vectors of the geodesics connecting B with A, and B
with C, respectively. In the Poincaré ball, the angle between
two tangent vectors u, v ∈ TxDn is given by

cos(∠(u, v)) =
gDx (u, v)√

gDx (u, u)
√
gDx (v, v)

=
〈u, v〉
‖u‖‖v‖

(8)

The second equality happens since gD is conformal to gE .

Hyperbolic trigonometry. The notion of angles and
geodesics allow definition of the notion of a triangle in
the Poincaré ball. Then, the classic theorems in Euclidean
geometry have hyperbolic formulations (Parkkonen, 2013).
In the next section, we will use the following theorems.

Let A,B,C ∈ Dn. Denote by ∠B := ∠ABC and by
c = dD(B,A) the length of the hyperbolic segment BA
(and others). Then, the hyperbolic laws of cosines and sines
hold respectively

cos(∠B) =
cosh(a) cosh(c)− cosh(b)

sinh(a) sinh(c)
(9)

sin(∠A)

sinh(a)
=

sin(∠B)

sinh(b)
=

sin(∠C)

sinh(c)
(10)

Embedding trees in hyperbolic vs Euclidean space.
Finally, we briefly explain why hyperbolic spaces are better
suited than Euclidean spaces for embedding trees. However,
note that our method is applicable to any DAG.

(Gromov, 1987) introduces a notion of δ-hyperbolicity in
order to characterize how ‘hyperbolic’ a metric space is.
For instance, the Euclidean space Rn for n ≥ 2 is not δ-
hyperbolic for any δ ≥ 0, while the Poincaré ball Dn is
log(1+

√
2)-hyperbolic. This is formalized in the following

theorem5 (section 6.2 of (Gromov, 1987), proposition 6.7
of (Bowditch, 2006)):

Theorem: For any δ > 0, any δ-hyperbolic metric space
(X, dX) and any set of points x1, ..., xn ∈ X , there exists a
finite weighted tree (T, dT ) and an embedding f : T → X
such that for all i, j,

|dT (f−1(xi), f
−1(xj))− dX(xi, xj)| = O(δ log(n)).

(11)
5https://en.wikipedia.org/wiki/

Hyperbolic_metric_space

Conversely, any tree can be embedded with arbitrary low
distortion into the Poincaré disk (with only 2 dimensions),
whereas this is not true for Euclidean spaces even when an
unbounded number of dimensions is allowed (Sarkar, 2011;
De Sa et al., 2018).

The difficulty in embedding trees having a branching factor
at least 2 in a quasi-isometric manner comes from the fact
that they have an exponentially increasing number of nodes
with depth. The exponential volume growth of hyperbolic
metric spaces confers them enough capacity to embed trees
quasi-isometrically, unlike the Euclidean space.

3. Entailment Cones in the Poincaré Ball
In this section, we define “entailment” cones that will be
used to embed hierarchical structures in the Poincaré ball.
They generalize and improve over the idea of order embed-
dings (Vendrov et al., 2015).

Figure 1. Convex cones in a complete Riemannian manifold.

Convex cones in a complete Riemannian manifold. We
are interested in generalizing the notion of a convex cone to
any geodesically complete Riemannian manifoldM (such
as hyperbolic models). In a vector space, a convex cone
S (at the origin) is a set that is closed under non-negative
linear combinations

v1, v2 ∈ S =⇒ αv1 + βv2 ∈ S (∀α, β ≥ 0) . (12)

The key idea for generalizing this concept is to make use of
the exponential map at a point x ∈M.

expx : TxM→M, TxM = tangent space at x (13)

We can now take any cone in the tangent space S ⊆ TxM
at a fixed point x and map it into a set Sx ⊂M, which we
call the S-cone at x, via

Sx := expx (S) , S ⊆ TxM . (14)

https://en.wikipedia.org/wiki/Hyperbolic_metric_space
https://en.wikipedia.org/wiki/Hyperbolic_metric_space
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Note that, in the above definition, we desire that the ex-
ponential map be injective. We already know that it is a
local diffeomorphism. Thus, we restrict the tangent space
in Eq. 14 to the ball Bn(O, r), where r is the injectivity
radius of M at x. Note that for hyperbolic space models the
injectivity radius of the tangent space at any point is infinite,
thus no restriction is needed.

Angular cones in the Poincaré ball. We are interested
in special types of cones in Dn that can extend in all space
directions. We want to avoid heavy cone intersections and
to have capacity that scales exponentially with the space di-
mension. To achieve this, we want the definition of cones to
exhibit the following four intuitive properties detailed below.
Subsequently, solely based on these necessary conditions,
we formally prove that the optimal cones in the Poincaré
ball have a closed form expression.

1) Axial symmetry. For any x ∈ Dn \ {0}, we require
circular symmetry with respect to a central axis of the cone
Sx. We define this axis to be the spoke through x from x:

Ax := {x′ ∈ Dn : x′ = αx,
1

‖x‖
> α ≥ 1} (15)

Then, we fix any tangent vector with the same direction as x,
e.g. x̄ = exp−1x

(
1+‖x‖
2‖x‖ x

)
∈ TxDn. One can verify using

Corollary 1.1 that x̄ generates the axis-oriented geodesic as:

Ax = expx ({y ∈ Rn : y = αx̄, α > 0}) . (16)

We next define the angle ∠(v, x̄) for any tangent vector
v ∈ TxDn as in Eq. 8. Then, the axial symmetry property
is satisfied if we define the angular cone at x to have a
non-negative aperture 2ψ(x) ≥ 0 as follows:

Sψ(x)x := {v ∈ TxDn : ∠(v, x̄) ≤ ψ(x)} (17)

Sψ(x)
x := expx(Sψ(x)x ).

We further define the conic border (face):

∂Sψ := {v : ∠(v, x̄) = ψ(x)}, ∂Sψ
x := expx(∂Sψx ).

(18)

2) Rotation invariance. We want the definition of cones
S
ψ(x)
x to be independent of the angular coordinate of the

apex x, i.e. to only depend on the (Euclidean) norm of x:

ψ(x) = ψ(x′) (∀x, x′ ∈ Dn \ {0}, s.t. ‖x‖ = ‖x′‖).
(19)

This implies that there exists ψ̃ : (0, 1)→ [0, π) s. t. for all
x ∈ Dn \ {0} we have ψ(x) = ψ̃(‖x‖).

3) Continuous cone aperture functions. We require the
aperture ψ of our cones to be a continuous function. Us-
ing Eq. 19, it is equivalent to the continuity of ψ̃. This
requirement seems reasonable and will be helpful in order
to prove uniqueness of the optimal entailment cones. When
optimization-based training is employed, it is also neces-
sary that this function be differentiable. Surprisingly, we
will show below that the optimal functions ψ̃ are actually
smooth, even when only requiring continuity.

4) Transitivity of nested angular cones. We want cones to
determine a partial order in the embedding space. The dif-
ficult property is transitivity. We are interested in defining
a cone width function ψ(x) such that the resulting angu-
lar cones satisfy the transitivity property of partial order
relations, i.e. they form a nested structure as follows

∀x, x′ ∈ Dn \ {0} : x′ ∈ Sψ(x)
x =⇒ S

ψ(x′)
x′ ⊆ Sψ(x)

x .
(20)

Closed form expression of the optimal ψ. We now an-
alyze the implications of the above necessary properties.
Surprisingly, the optimal form of the function ψ admits an
interesting closed-form expression. We will see below that
mathematically ψ cannot be defined on the entire open ball
Dn. Towards these goals, we first prove the following.

Lemma 2. If transitivity holds, then

∀x ∈ Dom(ψ) : ψ(x) ≤ π

2
. (21)

Proof. See appendix E.

Note that so far we removed the origin 0 of Dn from our
definitions. However, the above surprising lemma implies
that we cannot define a useful cone at the origin. To see
this, we first note that the origin should “entail” the entire
space Dn, i.e. S0 = Dn. Second, similar with property
3, we desire the cone at 0 be a continuous deformation of
the cones of any sequence of points (xn)n≥0 in Dn \ {0}
that converges to 0. Formally, limn→∞Sxn

= S0 when
limn→∞ xn = 0. However, this is impossible because
Lemma 2 implies that the cone at each point xn can only
cover at most half of Dn. We further prove the following:

Theorem 3. If transitivity holds, then the function

h : (0, 1) ∩ Dom(ψ̃)→ R+, h(r) :=
r

1− r2
sin(ψ̃(r)),

(22)

is non-increasing.

Proof. See appendix F.

The above theorem implies that a non-zero ψ̃ cannot be
defined on the entire (0, 1) because limr→0 h(r) = 0, for
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Figure 2. Poincaré angular cones satisfying Eq. 26 for K = 0.1.
Left: examples of cones for points with Euclidean norm varying
from 0.1 to 0.9. Right: transitivity for various points on the border
of their parent cones.

any function ψ̃. As a consequence, we are forced to restrict
Dom(ψ̃) to some [ε, 1), i.e. to leave the open ball Bn(O, ε)
outside of the domain of ψ. Then, theorem 3 implies that

∀r ∈ [ε, 1) : sin(ψ̃(r))
r

1− r2
≤ sin(ψ̃(ε))

ε

1− ε2
.

(23)

Since we are interested in cones with an aperture as large as
possible (to maximize model capacity), it is natural to set
all terms h(r) equal to K := h(ε), i.e. to make h constant:

∀r ∈ [ε, 1) : sin(ψ̃(r))
r

1− r2
= K, (24)

which gives both a restriction on ε (in terms of K):

K ≤ ε

1− ε2
⇐⇒ ε ∈

[
2K

1 +
√

1 + 4K2
, 1

)
, (25)

as well as a closed form expression for ψ

ψ : Dn \ Bn(O, ε)→ (0, π/2)

x 7→ arcsin(K(1− ‖x‖2)/‖x‖), (26)

which is also a sufficient condition for transitivity to hold:

Theorem 4. If ψ is defined as in Eqs.25-26, then transitivity
holds.

The above theorem has a proof similar to that of Thm. 3.

So far, we have obtained a closed form expression for hyper-
bolic entailment cones. However, we still need to understand
how they can be used during embedding learning. For this
goal, we derive an equivalent (and more practical) definition
of the cone S

ψ(x)
x :

Theorem 5. For any x, y ∈ Dn \ Bn(O, ε), we denote the
angle between the half-lines (xy and (0x as

Ξ(x, y) := π − ∠Oxy, (27)

Then, this angle equals

arccos

(
〈x, y〉(1 + ‖x‖2)− ‖x‖2(1 + ‖y‖2)

‖x‖ · ‖x− y‖
√

1 + ‖x‖2‖y‖2 − 2〈x, y〉

)
,

(28)

Moreover, we have the following equivalent expression of
the Poincaré entailment cones satisfying Eq. 26:

Sψ(x)
x =

{
y ∈ Dn

∣∣∣∣ Ξ(x, y) ≤ arcsin

(
K

1− ‖x‖2

‖x‖

)}
.

(29)

Proof. See appendix G.

Examples of 2-dimensional Poincaré cones corresponding
to apex points located at different radii from the origin are
shown in Figure 2. This figure also shows that transitivity is
satisfied for some points on the border of the hypercones.

Euclidean entailment cones. One can easily adapt the
above proofs to derive entailment cones in the Euclidean
space (Rn, gE). The only adaptations are: i) replace the
hyperbolic cosine law by usual Euclidean cosine law, ii)
geodesics are straight lines, and iii) the exponential map is
given by expx(v) = x+ v. Thus, one similarly obtains that
h(r) = r sin(ψ(r)) is non-decreasing, the optimal values
of ψ are obtained for constant h being equal to K ≤ ε and

Sψ(x)
x = {y ∈ Rn | Ξ(x, y) ≤ ψ(x)}, (30)

where Ξ(x, y) now becomes

Ξ(x, y) = arccos

(
‖y‖2 − ‖x‖2 − ‖x− y‖2

2‖x‖ · ‖x− y‖

)
, (31)

for all x, y ∈ Rn \ B(O, ε). From a learning perspective,
there is no need to be concerned about the Riemannian
optimization described in Section 4.2, as the usual Euclidean
gradient-step is used in this case.

4. Learning with entailment cones
We now describe how embedding learning is performed.

4.1. Max-margin training on angles

We learn hierarchical word embeddings from a dataset X
of entailment relations (u, v) ∈ X , also called hypernym
links, defining that u entails v, or, equivalently, that v is a
subconcept of u6.

We choose to model the embedding entailment relation
(u, v) as v belonging to the entailment cone S

ψ(u)
u .

6We prefer this notation over the one in (Nickel & Kiela, 2017)
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Figure 3. Two dimensional embeddings of two datasets: a toy uniform tree of depth 7 and branching factor 3, with root removed (left); the
mammal subtree of WordNet with 4230 relations, 1165 nodes and top 2 nodes removed (right). (Nickel & Kiela, 2017) (each left side) has
most of the nodes and edges collapsed on the space border, while our hyperbolic cones (each right side) nicely reveal the data structure.

Our model is trained with a max-margin loss function simi-
lar to the one in (Vendrov et al., 2015):

L =
∑

(u,v)∈P

E(u, v) +
∑

(u′,v′)∈N

max(0, γ − E(u′, v′)),

(32)

for some margin γ > 0, where P and N define samples
of positive and negative edges respectively. The energy
E(u, v) measures the penalty of a wrongly classified pair
(u, v), which in our case measures how far is point v from
belonging to S

ψ(u)
u expressed as the smallest angle of a

rotation of center u bringing v into S
ψ(u)
u :

E(u, v) := max(0,Ξ(u, v)− ψ(u)), (33)

where Ξ(u, v) is defined in Eqs. 28 and 31. Note that (Ven-
drov et al., 2015) use ‖max(0, v− u)‖2. This loss function
encourages positive samples to satisfy E(u, v) = 0 and
negative ones to satisfy E(u, v) ≥ γ. The same loss is used
both in the hyperbolic and Euclidean cases.

4.2. Full Riemannian optimization

As the parameters of the model live in the hyperbolic space,
the back-propagated gradient is a Riemannian gradient. In-
deed, if u is in the Poincaré ball, and if we compute the
usual (Euclidean) gradient ∇uL of our loss, then

u← u− η∇uL (34)

makes no sense as an operation in the Poincaré ball, since
the substraction operation is not defined in this manifold.
Instead, one should compute the Riemannian gradient∇RuL
indicating a direction in the tangent space TuDn, and should
move u along the corresponding geodesic in Dn (Bonnabel,
2013):

u← expu(−η∇RuL), (35)

where the Riemannian gradient is obtained by rescaling the
Euclidean gradient by the inverse of the metric tensor. As

our metric is conformal, i.e. gD = λ2gE where gE = I
is the Euclidean metric (see Eq 3), this leads to a simple
formulation

∇RuL = (1/λu)2∇uL. (36)

Previous work (Nickel & Kiela, 2017) optimizing word
embeddings in the Poincaré ball used the retraction map
Rx(v) := x+ v as a first order approximation of expx(v).
Note that since we derived a closed-form expression of the
exponential map in the Poincaré ball (Corollary 1.1), we are
able to perform full Riemannian optimization in this model
of the hyperbolic space.

5. Experiments
We evaluate the representational and generalization power
of hyperbolic entailment cones and of other baselines using
data that exhibits a latent hierarchical structure. We follow
previous work (Nickel & Kiela, 2017; Vendrov et al., 2015)
and use the full transitive closure of the WordNet noun
hierarchy (Miller et al., 1990). Our binary classification task
is link prediction for unseen edges in this directed acyclic
graph.

Dataset splitting. Train and evaluation settings. We
remove the tree root since it carries little information and
only has trivial edges to predict. Note that this implies that
we co-embed the resulting subgraphs together to prevent
overlapping embeddings (see smaller examples in Figure 3).
The remaining WordNet dataset contains 82,114 nodes and
661,127 edges in the full transitive closure. We split it into
train - validation - test sets as follows. We first compute
the transitive reduction7 of this directed acyclic graph, i.e.

“basic” edges that form the minimal edge set for which the
original transitive closure can be fully recovered. These
edges are hard to predict, so we will always include them in
the training set. The remaining “non-basic” edges (578,477)

7https://en.wikipedia.org/wiki/
Transitive_reduction

https://en.wikipedia.org/wiki/Transitive_reduction
https://en.wikipedia.org/wiki/Transitive_reduction
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EMBEDDING DIMENSION = 5 EMBEDDING DIMENSION = 10
PERCENTAGE OF TRANSITIVE CLOSURE (NON-BASIC) EDGES IN TRAINING

0% 10% 25% 50% 0% 10% 25% 50%

SIMPLE EUCLIDEAN EMB 26.8% 71.3% 73.8% 72.8% 29.4% 75.4% 78.4% 78.1%
POINCARÉ EMB 29.4% 70.2% 78.2% 83.6% 28.9% 71.4% 82.0% 85.3%

ORDER EMB 34.4% 70.2% 75.9% 81.7% 43.0% 69.7% 79.4% 84.1%
OUR EUCLIDEAN CONES 28.5% 69.7% 75.0% 77.4% 31.3% 81.5% 84.5% 81.6%

OUR HYPERBOLIC CONES 29.2% 80.1% 86.0% 92.8% 32.2% 85.9% 91.0% 94.4%

Table 1. Test F1 results for various models. Simple Euclidean Emb and Poincaré Emb are the Euclidean and hyperbolic methods proposed
by (Nickel & Kiela, 2017), Order Emb is proposed by (Vendrov et al., 2015).

are split into validation (5%), test (5%) and train (fraction
of the rest).

We augment both the validation and the test parts with sets
of negative pairs as follows: for each true (positive) edge
(u, v), we randomly sample five (u′, v) and five (u, v′) neg-
ative corrupted pairs that are not edges in the full transitive
closure. These are then added to the respective negative set.
Thus, ten times as many negative pairs as positive pairs are
used. They are used to compute standard classification met-
rics associated with these datasets: precision, recall, F1. For
the training set, negative pairs are dynamically generated as
explained below.

We make the task harder in order to understand the gener-
alization ability of various models when differing amounts
of transitive closure edges are available during training. We
generate four training sets that include 0%, 10%, 25%, or
50% of the non-basic edges, selected randomly. We then
train separate models using each of these four sets after
being augmented with the basic edges.

Baselines. We compare against the strong hierarchical
embedding methods of Order embeddings (Vendrov et al.,
2015) and Poincaré embeddings (Nickel & Kiela, 2017).
Additionally, we also use Simple Euclidean embeddings, i.e.
the Euclidean version of the method presented in (Nickel &
Kiela, 2017) (one of their baselines). We note that Poincaré
and Simple Euclidean embeddings were trained using a
symmetric distance function, and thus cannot be directly
used to evaluate asymmetric entailment relations. Thus,
for these baselines we use the heuristic scoring function
proposed in (Nickel & Kiela, 2017):

score(u, v) = (1 + α(‖u‖ − ‖v‖))d(u, v) (37)

and tune the parameter α on the validation set. For all the
other methods (our proposed cones and order embeddings),
we use the energy penalty E(u, v), e.g. Eq. 33 for hyper-
bolic cones. This scoring function is then used at test time
for binary classification as follows: if it is lower than a
threshold, we predict an edge; otherwise, we predict a non-
edge. The optimal threshold is chosen to achieve maximum
F1 on the validation set by passing over the sorted array of

scores of positive and negative validation pairs.

Training details. We provide training details in Sec. H.

Results and discussion. Table 1 shows the obtained re-
sults. For a fair comparison, we use models with the same
number of dimensions. We focus on the low dimensional
setting (5 and 10 dimensions) which is more informative.
It can be seen that our hyperbolic cones are better than all
the baselines in all settings, except in the 0% setting for
which order embeddings are better. However, once a small
percentage of the transitive closure edges becomes available
during training, we observe significant improvements of our
method, sometimes by more than 8% F1 score. Moreover,
hyperbolic cones have the largest growth when transitive
closure edges are added at train time. We further note that,
while mathematically not justified8, if embeddings of our
proposed Euclidean cones model are initialized with the
Poincaré embeddings instead of the Simple Euclidean ones,
then they perform on par with the hyperbolic cones.

6. Conclusion
Learning meaningful graph embeddings is relevant for many
important applications. Hyperbolic geometry has proven
to be powerful for embedding hierarchical structures. We
here take one step forward and propose a novel model based
on geodesically convex entailment cones and show its the-
oretical and practical benefits. We empirically discover
that strong embedding methods can vary a lot with the per-
centage of the taxonomy observable during training and
demonstrate that our proposed method benefits the most
from increasing size of the training data. As future work,
it would be interesting to understand if the proposed entail-
ment cones can be used to embed more complex data such
as sentences or images.

Our code is publicly available9.

8Indeed, mathematically, hyperbolic embeddings cannot be
considered as Euclidean points.

9https://github.com/dalab/hyperbolic_
cones.

https://github.com/dalab/hyperbolic_cones
https://github.com/dalab/hyperbolic_cones
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