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Abstract

Recent advances in Bayesian Network (BN) struc-
ture learning have focused on local-to-global
learning, where the graph structure is learned via
one local subgraph at a time. As a natural progres-
sion, we investigate parallel learning of BN struc-
tures via multiple learning agents simultaneously,
where each agent learns one local subgraph at a
time. We find that parallel learning can reduce the
number of subgraphs requiring structure learning
by storing previously queried results and commu-
nicating (even partial) results among agents. More
specifically, by using novel rules on query subset
and superset inference, many subgraph structures
can be inferred without learning. We provide a
sound and complete parallel structure learning
(PSL) algorithm, and demonstrate its improved
efficiency over state-of-the-art single-thread learn-
ing algorithms.

1. Introduction

Bayesian networks (BN) are widely used in machine learn-
ing applications (Ott et al., 2004; Spirtes et al., 1999). The
structure of a BN takes the form of a directed acyclic graph
(DAG) and plays a vital part in applications such as causal
inference. Many algorithms for learning BN structures
from data have been developed, including score-based and
constraint-based approaches (Chickering, 2002; Koivisto &
Sood, 2004; Silander & Myllymaki, 2006; Jaakkola et al.,
2010; Cussens, 2011; Yuan & Malone, 2013).

To alleviate the NP-hard complexity (Chickering et al.,
2012) of learning a BN structure all at once, i.e. globally,
both local and local-to-global learning approaches have been
proposed (Niinimaki & Parviainen, 2012; Gao et al., 2017).
Instead of operating on the full DAG search space over
all variables, local and local-to-global methods limit the
size of the space by learning local structures over smaller
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sets of variables. Here, local structures usually refer to
the parent-child (PC) set or the Markov Blanket (MB) set
(Pearl, 1988) of one or more nodes in a DAG. Local learn-
ing algorithms (Koller & Sahami, 1996; Tsamardinos et al.,
2003; Fu & Desmarais, 2008) focus on a specific target
variable and iteratively query other variables to learn the
local structure around the target, either its PC set, MB set,
or both. Many local learning algorithms have shown promis-
ing performance in practice (Aliferis et al., 2010). Using
learned local structures, some prior works have taken the
next step of combining them into a global structure. Several
researchers (Margaritis & Thrun, 1999; Pellet & Ellisseeff,
2008) have proposed algorithms that first identify the MBs
of some nodes in the graph and then connect the MBs in a
maximally consistent way to learn the global structure of
the BN. This approach has the benefit of improving the effi-
ciency of exact structure learning for graphs with favorable
neighbor structures (Gao et al., 2017), as at each step only a
small number of variables is expected to be used.

In this paper, we consider the problem of learning a BN
structure using multiple local learning agents at the same
time. Each agent follows a local learning approach as de-
scribed above. A naive solution would be to learn the local
structure of each node using a separate agent, and then
combine these local structures after learning. Given the
parallel paradigm however, a more sophisticated approach
would allow communication among agents both during and
after each round of local structure learning. We address
the question of how to maximize computational savings
using such communication. In particular, we find that by
tracking the query sets generated during local learning as
well as the non-edges that are learned, the graphs that would
result from structure learning on some future query sets can
instead be more efficiently inferred from this history. We in-
troduce two such inference rules: query subset and superset
inference, and propose a sound and complete parallel BN
structure learning (PSL) algorithm. The number of struc-
ture learning function calls saved by subset and superset
inference is analyzed. We demonstrate that the proposed
algorithm could lead to very significant savings compared
to single-thread baseline methods such as graph growing SL
algorithm (GGSL) (Gao et al., 2017).

Our approach is fundamentally different from and com-
plementary to existing parallel algorithms for global BN
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structure learning. These algorithms (Tamada et al., 2011;
Nikolova et al., 2013; Misra et al., 2014) divide the DAG
search space and associated computational load into multi-
ple parts and assign agents to different parts. In contrast, our
parallel algorithm does not consider the global search space,
instead assigning agents to different target nodes and search-
ing the much smaller space of local structures around each
target, which are later combined. The two approaches can
be combined by having each agent in our algorithm use the
existing parallel algorithms to learn BN structures over the
query sets that it encounters, resulting in even more parallel
and efficient computation. Our approach is also different
from existing parallel algorithms for other graphical models
(Guestrin et al., 2003; Gonzalez et al., 2009; 2011), which
are designed for inference and utilize smart parallelism in
computation but do not consider directed acyclic graphs
(DAG) directly.

Notation: We use capital letters (such as X, Y) to represent
variables, small letters (such as x,y) to represent values
of variables, and bold letters (such as V, MB) to represent
variable sets. |V| represents the size of aset V. X 1 Y and
X N Y represent independence and dependence between
X and Y, respectively.

2. Technical Preliminaries
2.1. Bayesian Networks and Structure Learning

Let V denote a set of random variables. A Bayesian network
(BN) for V is represented by a pair (G, 8), where 6 is a set of
parameters for the associated probability distribution. Our
focus is on the network structure G, a DAG with nodes
corresponding to the random variables in V. If a directed
edge exists from node X to node Y in G, X is a parent of
Y and Y is a child of X. More generally, X is an ancestor
of Y and Y is a descendant of X if there is a sequence of
edges in the same direction beginning with X and leading
to Y. If X and Y have a common child and they are not
adjacent, X and Y are spouses of each other.

The Local Markov Condition (Pearl, 1988) states that a node
in a BN is independent of its non-descendant nodes, given
its parents. A Markov Blanket of a variable T', M B, is the
minimal set of nodes conditioned on which all other nodes
are independent of T, denoted as X 1 T|MBp,VX €
{V\ T\ MBr}. The Markov Blanket consists of the
parents, children, and spouses of 7.

A DAG G and a joint distribution P are faithful to each other
if all and only the conditional independencies true in P are
entailed by G (Pearl, 1988). The faithfulness condition
enables us to recover G from P. Given independent and
identically distributed (i.i.d.) samples D from an unknown
distribution P, corresponding to a faithful but unknown
DAG GV, structure learning refers to recovering the DAG

Algorithm 1 Locallearn

Input: dataset D, target node T'

{step 1: find the PC set }

PCr «+ 0,0+ V\{T};

while O is nonempty do
choose X € 0,0 < O\ {X};
Z+—{T,X} UPCr;
G < BNStructLearn (Z, Dyz);
PCr,Pr,Cr + £indPC(G,T);

end while

{step 2: remove false PC nodes and find spouses }

St « 0,0+« V\PCr;

while O is nonempty do
choose X € 0,0 + O\ {X};
7 {T,X} UPCrUS7;
G < BNStructLearn (Z,Dyz);
PCr,Pp,Cr + £indPC(G,T) ;
St ¢ findSpouse(G,T);

end while

Return: MB + P UC+ US7;

G° from D while local structure learning refers to finding
the PC or MB set of a target node in G°. To avoid symbol
confusion, we use G to represent any learned DAG and use
G to represent the ground truth DAG.

Score-based structure learning algorithms use a score func-
tion s(G, D) that measures the goodness of fit of a DAG G
to data D, seeking a G that maximizes the score. Commonly
used Bayesian score criteria, such as BDeu, are decompos-
able, consistent, locally consistent (Chickering, 2002), and
score equivalent (Heckerman et al., 1995).

We assume the Markov condition, faithfulness condition,
and infinite data size hold in the theoretical development of
the paper. By using score consistency, it is easy to show that
true positive edges in the ground truth DAG G° will always
be present in a learned DAG or sub-DAG, and non-edges in
learned graphs will be true negatives.

Lemma 1. Learned v.s. Ground Truth Edges. Let G° be
a faithful DAG for distribution P over V, and Gz be the
DAG learned by an exact BN structure learning algorithm
over the subset of variables Z C V. Under the faithfulness
and infinite data assumption, then 1) edges in subgraph G,
are a subset of edges in Gz, where G, is inferred from G°.
2) edges absent in Gz are also absent in GY,.

2.2. Local Structure Learning

We now review a state-of-the-art algorithm, LocalLearn,
for score-based local structure learning (Gao & Ji, 2017). A
variation of LocalLearn is used by each learning agent in
our proposed parallel algorithm. LocalLearn is also used
in existing local-to-global algorithms (Gao et al., 2017).
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In Algorithm 1, subroutine BNSt ructLearn learns an
optimal DAG over a set of variables in the data, and can
use any exact global BN structure learning algorithm. Dif-
ferent BNSt ructLearn have different performance and
we analyze the algorithms independent of this subroutine.
Subroutines £indPC and findSpouse extract a variable
T’s PC set and spouse set given the adjacency matrix of a
graph G. LocalLearn first sequentially learns the PC set
by repeatedly using BNSt ructLearn on a set of nodes Z
containing the target node 7, its current PC set PCr, and
one new query variable X. Then it uses a similar procedure
to learn the spouse set and update the PC set. Although the
procedure is very similar to some constraint-based structure
learning methods, local score-based algorithms have been
shown to enjoy soundness and completeness following only
this specific procedure (Gao et al., 2017).

3. Multiple Learning Agents: Parallel BN
Structure Learning

We consider the problem of learning a BN structure using
K > 1 local learners or agents working in parallel. We
focus on the setting where each agent has access to suffi-
cient data samples for potentially all the variables. Letting
DN*M denote the data consisting of N sample instances of
M variables, each agent k has access to DZ’“ xM C DNxM,
where n; < N. In developing and analyzing our algo-
rithm in this section, we make the simplifying assumption
of infinite data, i.e. ny — 00, common to existing works.

Our starting baseline is for each agent to use LocalLearn
to learn a local structure separately, based on the fact that
it is a sound and complete algorithm for this task (Theo-
rem 1, (Gao et al., 2017)). The local structures could then
be combined into a global graph using local-to-global ap-
proaches such as SLL (Niinimaki & Parviainen, 2012) or
GGSL (Gao et al., 2017). The goal in the remainder of the
paper is to improve upon this baseline in terms of compu-
tational efficiency, for example by reducing the total time
or number of function calls. This goal entails several re-
search questions: how agents should be assigned to different
parts of the network, how agents should communicate, and
how learned structures from different agents can be merged.
These questions are addressed in Section 3.2.

As discussed in Section 2.2, LocalLearn proceeds by per-
forming structure learning queries on a sequence of subsets
of the variables, referred to as query sets. We assume non-
delayed communication between learning agents, meaning
that agents may share information after each query rather
than waiting until the completion of Locallearn. We
also assume that the cost of communication is minimal com-
pared to structure learning. Thus given multiple agents with
the ability to communicate while executing LocalLearn
in parallel, the question arises as to how they may help each

other in the process, and specifically how the query sets
that they generate relate to each other. This question is the
subject of Section 3.1.

In addition, we distinguish between synchronous and asyn-
chronous learning. In synchronous learning, every agent
performs one query and waits for other agents to finish be-
fore communicating and proceeding with the next query.
Asynchronous learning means that agents do not wait for
other agents to finish their queries, continuing with the next
if they finish ahead of others.

3.1. Query Set Relationships

Query sets from different agents can either overlap at least
partially or not overlap at all. Within the partially overlap-
ping case, we consider the subcases in which one query
set is either a subset or a superset of another. For the non-
overlapping case, we conjecture that agents cannot help
each other as there is no common information.

3.1.1. QUERY SUBSET INFERENCE

Suppose that a set to be queried is a subset of an already
queried set. The simplest case is when the two query sets
are in fact identical. In this case, it suffices to cache the
query set and learned graph each time a BNSt ructLearn
query is completed, and to retrieve the graph whenever the
same query set is encountered again. Such query set caching
could be implemented for example using a hash table.

If the set to be queried is a proper subset of an existing query
set, then the following lemma ensures that structure learning
can still be skipped by inferring the result from the graph
for the existing query set.

Lemma 2. IfS; C S; and S; has been queried before with
learned graph G's,, let Glsi be a subgraph for S; inferred
from Gs ;. Then compared to G's,, the graph that would be
learned from S;, G”Sl continues to contain all the true edges
in Goi, the ground truth subgraph, and contains no more
false edges than Gs, .

Proof. By Markov condition and score local consistency,
all the dependent relationships can be identified by d-
separation, given a graph G's; in the superset S;. Then all
the dependence relationships among the newly queried sub-
sets can be directly read from G's;. Moreover, by assuming
faithfulness, G's; captures all the dependence relationships
over S; and hence G’Si captures edges between X and YV
if X N Y,VX|Y € S;. Moreover, in comparison to G >
G's, can capture additional spurious relationships over S;
due to the removal of variables in S; \ S,. O

Lemma 2 essentially states that the graph G/S inferred from
G's,, the graph for the existing query set, is no worse than



Parallel BN Structure Learning

the graph Gg, that would have been learned from the subset
because of the possible inclusion of some latent variables.
Moreover, G/sf can be efficiently inferred using d-separation
from Gsg, which is much faster than the exponential com-
plexity of local structure learning. In fact, Lemma 2 suggests
maintaining a single graph G of the same size as the ground
truth DAG G? to capture all query set results. PC and spouse
relationships can then be efficiently inferred from G without
necessarily inferring the full subgraph for a subset.

3.1.2. QUERY SUPERSET INFERENCE

In the case where the set to be queried is a superset of an
existing query set, it may also be possible to avoid a query
to BNSt ructLearn and instead infer the result from the
existing graph, based on the following lemma.

Lemma 3. Let S; be an already queried set, and let node
X be a node to be queried next, forming the next query
set S; < S; U{X}. If X is not adjacent to any node in
S; according to previous learning, then the graph over S,
G's,, can be inferred from G's, over S;.

Proof. By Lemma 1, true positive edges will always be
reflected in any learned subgraph of G's;. Since X and S;
are not adjacent according to previous learning, they cannot
be adjacent in G's; or any supergraph of G;. O

Hence based on Lemma 3, even if X U S; is never queried
jointly, from existing learned subgraphs it is possible to iden-
tify the independence relationships between X and other
variables. If X is not adjacent to any variable in S;, the in-
dependence relationships have to hold even if S; is queried
jointly. However, if X is adjacent to at least one variable in
S;, a new query would be needed as the exact location of X
in the graph over set S; would be unclear.

3.2. Proposed Algorithm

Based on the preceding discussion, we propose a novel
parallel structure learning algorithm (PSL), as shown in
Algorithm 2. Below we explain the different elements of
PSL.

Shared Memory. The learning agents share information
with each other through two objects, a graph adjacency ma-
trix GG, and query set history H. The adjacency matrix G
is continuously updated by the agents to represent the cur-
rent knowledge of the graph, per discussion in Section 3.1.
Each element G(3, j), i,j € V, can take 4 different values
with the following meanings: G(4,j) = G(j,4) = 0 indi-
cates that there is definitely no edge between nodes ¢ and j.
G(i,j) = 1 and G(34,4) = 0 means that there is definitely
a directed edge from i to j, while G(i,j) = G(j,i) = 1
means that there is a definite edge between ¢ and j but the
direction is unknown. G(4, j) = 2 indicates a possible but

not confirmed edge, an intermediate product of the learning
procedure. Lastly, G(3, j) is initialized to —1 to represent
unknown and non-queried edges. The query history H is a
collection of past query sets, i.e. subsets of nodes for which
the BN structure has been learned via BNStructLearn.
‘H is also continuously updated by the agents.

Algorithm 2 Parallel BN Structure Learning
Input: dataset D for all variables V, K learning agents,
exploitation probability p
G(i,j) < —-1Vi,jeV
A0
H<« 0
while |A| < |V| — 1 and agent is available do

T < chooseTarget(G, A, p)
MBr < £indMB(G,T)
O+ MBrU(V\{T,A})
O + orderQueries(O,T,G,A)
Assign to agent:
G,H + Parallellocallearn(Dyz,T,0,G,H)
A+~ AU{T}
end while
G + PDAG-to-DAG(G)
Return: G

Agent Coordination. Algorithm 2 includes several coordi-
nating tasks, which could be performed by a central agent.
These are 1) assigning available agents to new target nodes
T, 2) tracking the set of previous targets A, 3) forming the
set of non-target variables O that an agent will use in local
structure learning, and 4) determining the order in which
an agent will query variables in O. Task 3) is done in the
same way as in (Gao et al., 2017); namely, previous targets
that are not in the MB of T" (according to the current G) are
excluded for efficiency. The following paragraphs describe
tasks 1) and 4) in more detail. The algorithm continues until
all but one node has been selected as target.

Target Selection. The selection of targets for agents (func-
tion chooseTarget in Algorithm 2) can be seen as a
trade-off between exploitation and exploration. Exploitation
in this context refers to choosing targets that are adjacent to
previous targets on the expectation that their local structures
can be more easily learned by leveraging existing knowl-
edge. Exploration on the other hand means choosing targets
whose local structure is relatively unknown or that are “far
away” in the sense of being relatively disconnected from
previous targets. In both cases, exploring such targets is
expected to yield more new information. In the multi-agent
setting, this motivates assigning agents to different parts
of the graph so that the information they exchange is more
diverse and could lead to more savings in later iterations.

We propose two strategies for selecting targets that make
the above intuition concrete. Further justification for these
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strategies is provided in Section 3.3. In the first strategy
corresponding to exploitation, a new target is chosen from
the largest of the MB sets of previous targets,

T ¢ MB <arg max |MBA|) . ()
A€A

The specific member of the MB can be chosen arbitrarily,
as can be the largest MB set when it is not unique. In the
second strategy corresponding to exploration, a new target
is chosen as the node with the most —1 and 0 elements in
the current adjacency matrix,

T € argmax |{j : Gi; < 0} ()
iev

In other words, it is the node with the most non-queried
edges plus known non-adjacencies. Again ties can be broken
arbitrarily.

A more sophisticated version of (1) accounts for the fact that
Algorithm 2 excludes from the set O previous targets that
are not in MBr, i.e. A\MB7. Thus (1) becomes a joint
maximization over previous MBs and members thereof,

T, A* € argmax {|{ MB4\(A\MB7 )| :
T'e MB4,Ac A}. (3)

In our implementation, both the simulations in Section 4
and analysis in Section 3.3 use the more refined version (3).

To trade off exploitation for exploration, we propose a
simple randomization: With probability p, the function
chooseTarget in Algorithm 2 returns a target chosen
according to (1) or (3), and with probability 1 — p, it returns
the result of (2).

Initial Target Selection. At the beginning of Algorithm 2
when the adjacency matrix GG is completely unknown and
all agents are available, the preceding target selection strate-
gies do not favor any one node. Hence the initial selection
chooses K of the nodes uniformly at random as targets.

Query Order. To complement the target selection strate-
gies in (2)—(3), the function orderQueries orders non-
target variables in O, which consists of the currently learned
M Br of T and other non-queried variables, in a particu-
lar way. f£indMB is an extraction function that reads of
M Br from the current learned G. Section 3.3 explains
how the target selection and query order work together.
orderQueries sorts the variables in O into three groups.
Variables within a group can be in any order. The first group
consists of nodes known to not be adjacent to 7', i.e. nodes ¢
for which G7; = 0 in the current adjacency matrix. Next, if
T was chosen using (1) or (3) and A* € A denotes the pre-
vious target with the maximizing MB set, then the second
group is set to be

{A"} UMBA-)\({T} U A\MB). )

The above differs slightly from the expression in (3) in
that T" is now excluded while A* is included. Otherwise
if (2) was used, the second group is chosen as the largest
of the previous MBs that contain 7', again accounting for
the removal of T and A\MB7 as in (4), i.e. the nodes
corresponding to

max {|({A} UMB)\({T} U A\MB7)| :
AeA,TecMB,}.

The remaining variables in O form the third group.

Local Structure Learning. The subroutine
ParallellocalLearn (Algorithm 3) is an adap-
tation of LocalLearn from (Gao et al., 2017) for learning
the local structure of a target node, taking into account
the aid of other agents and existing knowledge. Like
Locallearn, ParallellLocallLearn consists of
two steps, one loop to learn the PCs of the target, and a
second loop to learn the spouses and remove false PCs.
The differences from LocalLearn are the ordering of the
query variables in O, already discussed, and the application
of query subset and superset inference from Section 3.1.
Specifically, each time a query set Z is formed in both the
PC and spouse steps, the algorithm checks whether the new
node ¢ is not adjacent to any other nodes in Z and whether
Z is a subset of a previous query set Z in the history H. If
the first case is true, then by Lemma 3, the query set can
be skipped. If the second case is true, then by Lemma 2,
the sets PC7 and St can be updated by reading from the
subgraph corresponding to Zy O Z.

If neither subset nor superset inference apply, then the query
set Z is passed to BNStructLearn as before to learn its
structure. Upon completion, the sets PC7 and St and the
global adjacency matrix G are updated, and Z is added to
the history .

Graph Updating. The function updateGraph can
change the values of G (4, j) according to the following rules:
—1 can be changed to 0 or 2 but not to 1 directly. The reason
is that confirmation of an edge requires at least a second pass
in the form of Step 2 of Algorithm 3, and a change from —1
is by definition a first pass. 2 can be changed to 0 (false posi-
tive) but 0 can never be changed (no false negatives). Lastly,
2 can be changed to 1 only when ParallelLocalLearn
is complete (last updateGraph in Algorithm 3) and only
for edges incident to the target. These rules can be justified
by properties of (Parallel)LocallLearn established
in (Gao et al., 2017), particularly Lemma 2 and Theorem
1 therein. updateGraph can also reorient edges in the
same manner as discussed in (Gao et al., 2017). In the end
of Algorithm 2, running Meek-rules (Meek, 1995) would be
similarly necessary.

Since the PSL algorithm follows the same learning frame-
work as GGSL, in particular for K = 1 agent, and the
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Algorithm 3 Parallellocallearn
Input: dataset D, target node T, ordered query list O,
current global graph G, query history H
{Step 1: Find the PC set }

PCr « @;
for: € O do
{superset inference }
Z+— {T}UuPCr
if 7 is not adjacent to Z in GG then
continue
end if
Z<+—ZU{i};
{subset inference }
if 3 Zy € H such that Z C Zy then
Update PCr by reading G(Z )
else
Gr + BNStructLearn (Z,Dyz);
PCr < £indPC(Gr,T);
G + updateGraph(G, Gr)
H+ {H,Z}
end if
end for
{Step 2: Remove false PC nodes and find spouses }
ST<—®,O<—O\PCT;
for i € O do
{superset inference }
7 +— {T}UPCTUST
if ¢ is not adjacent to Z in GG then
continue
end if
Z—ZU{i};
{subset inference}
if 3Z 5y € Hsuch that Z C Z g then
Update PCr, St by reading G(Z g )
else
Gt + BNStructLearn (Z,Dy);
PCr,St <+ findvB(Gr,T) ;
G + updateGraph(G, Gr)
H«+ {H,Z}
end if
end for
G + updateGraph(G, Gr)
Return: G, H

proposed subset and superset inference rules are sound by
Lemma 2 and 3, it is straightforward to show PSL’s sound-
ness and completeness.

Proposition 1. Soundness and Completeness. Under
the infinite data and faithfulness assumptions, PSL (Algo-
rithm 2) learns all and only the true edges in the underlying
DAG G°, up to the Markov equivalent class of G°.

Differences with Local-to-Global Learning. The pro-

posed PSL algorithm differs from the state-of-the-art local-
to-global learning algorithm GGSL (Gao et al., 2017) even
in the single-agent ' = 1 case. Most notably, in GGSL the
single agent does not interact with the learning history (in
the form of the current DAG) during LocalLearn, only
afterward. GGSL does not use subset or superset inference
to save on structure learning queries. In addition, GGSL
uses a simpler target selection strategy of choosing from
neighbors of previous targets, and it does not order queries
in any way.

3.3. Computational Savings

Query subset and superset inference as incorporated in
ParallelLocalLearn result in computational savings
over the state-of-the-art GGSL algorithm (Gao et al.,
2017), specifically in terms of the number of calls to
BNStructLearn. This subsection characterizes the sav-
ings attributable to the proposed target selection strategies
and query order. The cases of subset inference and superset
inference are discussed separately.

Additional savings occur whenever query subset or super-
set inference is triggered within ParallelLocalLearn,
beyond those due to target selection and query order ana-
lyzed below. It is more difficult however to predict when
these instances will occur, especially with multiple agents
exchanging information in real time. We evaluate empiri-
cally the total savings over GGSL in Section 4.

First, we state some facts about Locallearn, which apply
alsoto ParallelLocalLearn.

Lemma 4. : The query sets Z generated in the course of
LocalLearn have the following properties:

1. By the end of step 1 (PC step), there is at least one
query set containing all the (true) PCs of the target T.

2. By the end of step 2 (spouse step), there is at least one
query set containing all the PCs and spouses of T.

3. By the end of step 2 (spouse step) and for all nodes X
that are not PCs of T, there is at least one query set
containing all the PCs of T plus X.

Proof. Properties 1 and 2 are corollaries of Lemma 2
(preservation of true PCs) and Theorem 1 (soundness and
completeness) from (Gao et al., 2017). For property 3, if
X is a false PC at the end of step 1, then the last query
set in step 1 contains X and all true PCs from property 1.
Otherwise, step 2 iterates through all remaining X and does
not drop any true PCs of T'. O

3.3.1. SUBSET INFERENCE

The following result pertains equally to the single-agent and
multiple-agent cases.
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Proposition 2. Assume that a new target T' is chosen ac-
cording to (3) and that its query order is determined by the
function orderQueries. Then learning the local struc-
ture of T using ParallelLocalLearn saves at least

max {{MB4\(A\MBy/)| : T' € MB4, A € A}

calls to BNSt ructLearn compared to LocalLearn.

Proof. Denote by A* the previous target that maximizes
(3) jointly with T'. By Lemma 4.2, there exists a previous
query set Zy containing A* and MB 4« = PC 4« U S+,
which also includes 7' € MB 4- according to (3). By
definition of the function orderQueries, the set defined
in (4) is also placed early in the query order for target T',
after nodes known not to be adjacent to 7' (which do not
contribute to PCy) and before all other nodes. Hence
during step 1 (PC step) of Algorithm 3, as long as the query
variable ¢ belongs to the set in (4), all query sets Z must be
subsets of Z r since the nodes can be drawn from at most
{A*} UMB4- C Zy. Subset inference therefore avoids
a number of calls to BNStructLearn at least equal to
the cardinality of the set in (4). This cardinality expression
can be simplified slightly by noting that the inclusion of A*
always increases the cardinality by 1, which is offset by the
exclusion of T'. O

Proposition 2 supports the intuition that the savings of subset
inference are greater when a large MB is discovered early in
Algorithm 2 (so that A is also small). A similar but weaker
result holds if a target is chosen according to (1).

For K > 1, there is a trade-off between having multiple
agents working early in the algorithm, when there is little
knowledge to share, versus increased savings due to subset
inference later in the algorithm. These later benefits are
as follows: First, more query history becomes available
since sets are queried at a faster rate. In particular, the early
discovery of a large MB becomes more likely, especially
if agents are exploring different parts of the graph. Fur-
thermore, Proposition 2 relies only on results available at
the end of arun of ParallelLocalLearn, specifically
Lemma 4. But since agents also update the graph G and
query history H throughout ParallelLocalLearn, it
becomes possible to exploit subset inference immediately
as knowledge becomes available, thus yielding additional
savings.

3.3.2. SUPERSET INFERENCE

The following result applies to all target selection strategies
and to the single-agent and multi-agent settings.

Proposition 3. Assume that the query order for a target T is
determined by the function orderQueries. Then query
superset inference within ParallelLocalLearn saves

at least |{i € O : Gp; = 0}| calls to BNStructLearn
compared to LocalLearn, where G is the current graph
adjacency matrix.

Proof. Let T play the role of X in Lemma 3 and S = {i €
O : Gr; = 0}, i.e,, nodes currently known to be non-
adjacent to T'. orderQueries places the set S first in the
query order. Hence during step 1 (PC step) of Algorithm 3,
as long as the query variable ¢ € S, Lemma 3 can be repeat-
edly invoked to avoid calls to BNSt ructLearn. O

According to Proposition 3, calls to BNSt ruct Learn can
be avoided whenever nodes are known to not be adjacent
to a target. In the most conservative case, such nodes are
guaranteed to be identified if ParallellLocallLearn is
run with each such node as the target. This is because
ParallelLocalLearn finds all and only the MB nodes
of its target, and by extension, all non-adjacent nodes as
well. It is not necessary however to wait for multiple runs
of ParallelLocalLearn to benefit from superset infer-
ence; in fact, it is possible to do so after a single run. Accord-
ing to Lemma 4.3, by the end of ParallelLocallLearn
and for each non-PC X of the target T, there is at least
one query set containing X and all the PCs of 7". From the
results of BNSt ruct Learn on these query sets, it is possi-
ble that some X are found to be non-adjacent to one or more
PCs of T in addition to 7" itself. Choosing as new target the
X that is non-adjacent to the most PCs of 7" may then lead
to significant savings. It is difficult however to guarantee
that any nodes non-adjacent to PCs of 1" will be found be-
cause, unlike for 7" itself, ParallellLocalLearn does
not guarantee anything regarding the learned local structure
around PCs of the target.

With multiple agents, there is the same trade-off as with
subset inference between more work done early in the al-
gorithm versus greater savings later. In particular, more
agents means that ParallelLocalLearn definitively
learns the non-adjacencies of more target nodes, which en-
ables more superset inference later. The rate at which.non-
adjacencies in general are learned also increases, i.e. those
that are more a by-product of ParallelLocalLearn as
discussed above.

Note that keeping the history H of queried subsets requires
additional memory. The memory size can become big for
large networks. But since it is guided by the query set learn-
ing, if the variable size becomes big, the memory require-
ment for BNSt ruct Learn would be exponential anyway.
Hence we believe BNSt rucLearn subroutines would be
the dominating memory limiting factor in large BNs. In ad-
dition, If needed, the algorithm could use multiple machines
(even with limited memory) as different learning agents in-
stead of using one single machine, which is natural for the
parallel algorithm.
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4. Experiments

We test the proposed PSL algorithm with different num-
bers K of agents and compare to the baseline GGSL (Gao
et al., 2017) algorithm on the benchmark ALARM dataset.
For additional results on other datasets, please refer to
supplementary material. Both algorithms do not utilize
segsets used in GGSL. We use an existing Dynamic Pro-
gramming algorithm (Silander & Myllymaki, 2006) as the
BNStructLearn subroutine for all experiments. Similar
performance should be obtained with other structure learn-
ing subroutines. We use 1000 samples from the dataset and
perform structure learning with different algorithms. We use
the BDeu score of the learned DAG over the 1000 samples
as a metric for accuracy, and show the differences in BDeu
scores with respect to GGSL. In addition, we also show the
total number of function calls to BNStructLearn and
the mean number of calls for each agent, as proxies for
“total agent time” and the actual “running time” (time to
completion) respectively. The differences between GGSL
and PSL for K = 1 agent show the pure efficiency gain due
to query subset and superset inference during the learning
process. For K > 1 agents, the parallelism gain can be
seen in the mean number of function calls. The experiments
are conducted on a machine with a 2.3GHz Intel i5-5300U
processor.

Table 1. BDeu Scores and Numbers of Queries for Different Paral-
lel Algorithms on ALARM dataset.

SYNCHRONOUS
k AGENT BDEU CHANGE MEANFC ToOTALFC
GGSL +0.0 1418 1418
1 +0.0 369 369
2 +305.3 205.5 411
3 +51.5 154.0 462
4 +7.4 112.0 448
5 +225.7 100.6 503
ASYNCHRONOUS
k AGENT BDEU CHANGE MEANFC TOTALFC
2 +95.9 258.5 517
3 +12.4 142.3 427
4 +2.2 122.3 489
5 +193.0 106.2 531

For the first set of experiments, we evaluate the performance
of the algorithms with respect to the number of learning
agents. We test using both synchronous learning, where
the central agent waits for all learning agents to finish one
round of queries before starting the next round, and asyn-
chronous learning, where learning agents run continuously
without waiting. We fix p = 0.7 for target selection func-
tion chooseTarget. The results are shown in Table 4.
BDeu scores fluctuates but change only minorly (~ 1%
original score in GGSL). We can see from the K = 1 case

that the use of subset and superset inference reduces the
total number of function calls by around 3 to 4 times. For
K > 1, the parallelism gain also increases significantly with
K, although the speed-up is not quite % The overhead is
likely due to having only limited information in the early
stages of PSL. For K > 4, PSL reduces the learning time
by one order of magnitude compared to GGSL. If the total
number of function calls is a more important metric than
the learning time, it may also be possible to further reduce
the former by not starting the agents all at the same time but
rather in stages. For example, the second agent may start
after the first finishes one run of ParallellLocallearn,
the third agent waits for the previous two to finish another,
and so on. This may reduce overhead in the beginning but
still increase savings later.

Table 2. BDeu Scores and Numbers of Queries on ALARM dataset
for 2-Agent PSL Algorithms with Different p.

SYNCHRONOUS
P BDEU CHANGE MEANFC  TOTALFC
0.1 +20.8 249.5 499
0.3 +143.5 230 460
0.5 +123.5 211.5 423
0.7 +305.3 205.5 411
0.9 -385.8 195.5 393

In addition, we also tested the effect of the exploitation
probability p on the performance of the PSL algorithm with
K = 2 agents. As shown in Table 2, for this particular
ALARM dataset, the higher the probability of exploitation,
the more gain in efficiency. We suspect the reason is that
ALARM could be a relatively densely connected graph. For
different graph sparsities or clique sizes, the performance
may change accordingly.

5. Discussion and Conclusion

‘We have proposed a parallel structure learning (PSL) algo-
rithm for Bayesian networks that employs multiple agents.
Novel query subset and superset inference rules were de-
veloped to reduce the number of sets for which structure
learning must be performed. Target selection and query
order strategies were also proposed to promote such savings.
Experiments indicate that both the inference rules as well
as parallelism itself contribute to significant savings in the
number of structure learning queries and the time to learn
the global structure.

For future work, as mentioned in Section 4, agent staging
strategies could be developed to further optimize the to-
tal number of queries rather than the time to completion.
This work also suggests extensions to the more difficult dis-
tributed setting in which agents have access to only a subset
of the variables and may also be limited in communication.
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