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8. Appendix
We prove Theorem 1 in this section. Since the proof is technical and lengthy, for the clarity of presentation, we organize the
proof as follows. To begin with, in Section 8.1, we review two standard concentration inequalities, the Chernoff inequality
and the Hoeffding inequality, which will be used to prove some technical lemmas. We then present and prove these technical
lemmas in Section 8.2. These technical lemmas are subsequently used to validate some auxiliary results, which are presented
in Section 8.3. Finally, we prove Theorem 1 based on these auxiliary results.

8.1. Concentration Inequalities

Lemma 1 (Hoeffding Inequality). Let X1, X2, · · · , Xn be n i.i.d. random variables drawn from the distribution D, with
0 ≤ Xi ≤ a, ∀i ∈ {1, 2, · · · , n}. Let X̄ := 1

n

∑n
i=1Xi. Then, for any t > 0,

P(
∣∣X̄ − E[X̄]

∣∣ ≥ t) ≤ 2 exp

(
−2nt2

a2

)
.

Lemma 2 (Chernoff Inequality). Let X1, X2, · · · , Xn be n random variables and let X :=
∑n
i=1Xi. Then, for any t > 0,

P(X ≥ ε) ≤ exp(−tε)E

[
exp

(
n∑
i=1

tXi

)]
. (14)

Furthermore, if Xi’s are independent, then

P(X ≥ ε) ≤ min
t>0

exp(−tε)
n∏
i=1

E [exp(tXi)] . (15)

8.2. Technical Lemmas

We use ‖·‖max to represent the max norm of a matrix, which is equal to the maximum of the absolute value of all the
elements in the matrix.

Lemma 3. Let X be given. Suppose that 0 < maxi,i′∈{1,2,···,n}‖xix>i′ ‖max < ε2. Then,

P

(
max

j 6=j′,j 6=j′,j,j′∈{1,2,···,p}
|EX[XjXj′ ]− E[XjXj′ ]| ≥ ε2

√
log p

n

)
≤ 2 exp(−2 log p).

Proof. Since 0 < maxi,i′∈{1,2,···,n}‖xix>i′ ‖max < ε2, we let a = ε2 and t = ε2
√

log p
n in Lemma 1 to yield the result.

Lemma 4. Let X be given. Suppose that 0 < maxi∈{1,2,···,n}‖xi‖∞ < ε. Then,

P

(
max

j∈{1,2,···,p}
|EX[Xj ]− E[Xj ]| ≥ ε

√
log p

n

)
≤ 2 exp(−2 log p).

Proof. Since 0 < maxi∈{1,2,···,n}‖xi‖∞ < ε, we let a = ε and t = ε
√

log p
n in Lemma 1 to yield the result.

Lemma 5. Let X be given. Suppose that 0 < maxi∈{1,2,···,n}‖xi‖∞ < ε. Then,

P

(
max

j,j′∈{1,2,···,p}
|EX[E[XjXj′ |X−j ]]− E[E[XjXj′ |X−j ]]| ≥ C3ε

√
log p

n

)
≤ 2 exp(−2 log p).

Proof. Since 0 < maxi∈{1,2,···,n}‖xi‖∞ < ε and E[Xj |xi,−j ] ≤ C3 by Assumption 2, we have that 0 < E[XjXj′ |xi,−j ] ≤

C3ε. Therefore, we let a = C3ε and t = C3ε
√

log p
n in Lemma 1 to yield the result.
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Remark

The subtlety of the definitions of C3 and C4 in Assumption 2, as well as the notion of ε in Lemma 3, Lemma 4, and Lemma 5
should be noted. Formally, the n data points x1, x2, · · ·, xn in X can be viewed as assignments to the corresponding random
variables X(1), X(2), · · ·, X(n) following the PSQR parameterized by Θ∗. In Assumption 2, we are interested in a set
X ⊆ Np, such that ∀i ∈ {1, 2, · · · , n} and ∀j ∈ {1, 2, · · · , p},

max
X(i)∈X

E
[
Xj |X(i)

−j

]
≤ C3 and max

X(i)∈X

∣∣∣λ∗ij − E
[
Xj |X(i)

−j

]∣∣∣ ≤ C4.

In Lemma 3, Lemma 4, and Lemma 5, we are interested in a set X ⊆ Np, such that ∀i, i′ ∈ {1, 2, · · · , n}, where i 6= i′,

0 < max
X(i),X(i′)∈X

‖X(i)X(i′)>‖max < ε2 and 0 < max
X(i)∈X

‖X(i)‖∞ < ε.

Also, implicitly, we have that xi ∈ X , ∀i ∈ {1, 2, · · · , n}.
Lemma 6. Let X be given. Then,

P

(
max

j∈{1,2,···,p}
|EX[E[Xj |X−j ]]− E[E[Xj |X−j ]]| ≥ C3

√
log p

n

)
≤ 2 exp(−2 log p).

Proof. Since E[Xj | xi,−j ] ≤ C3 by Assumption 2, we have that 0 < E[Xj | xi,−j ] ≤ C3. Therefore, we let a = C3 and

t = C3

√
log p
n in Lemma 1 to yield the result.

Lemma 7. Let X be a random vector drawn from a PSQR distribution parameterized by Θ∗. Suppose that {x1,x2, · · ·xn}>

is the set of n i.i.d. samples of X. Given j ∈ {1, 2, · · · , p}, ε1 := 3 log p+ log n, and ε2 := C1 +
√

2 log p
n ,

P (Xj ≥ ε1) ≤ exp(C1 + C2/2− ε1), and P

(
1

n

n∑
i=1

xij ≥ ε2

)
≤ exp

[
−n(ε2 − C1)2

2C2

]
.

Proof. We start with proving the first inequality. To this end, consider the following equation due to Taylor expansion:

logE [exp(Xj)] =B(Θ∗,0 + ej)−B(Θ∗,0) = ∇>B(Θ∗,0)ej +
1

2
e>j ∇2B(Θ∗, kej)ej

=E[Xj ] +
1

2

∂2

∂b2j
B(Θ∗,0 + kej) ≤ C1 + C2/2,

(16)

where k ∈ [0, 1], ej is a vector whose jth component is one and zeros elsewhere, and the last inequality is due to
Assumption 1. Then, let t = 1 and X = Xj in Lemma 2,

P (Xj ≥ ε1) = exp(−ε1)E [exp(Xj)] ≤ exp(C1 + C2/2− ε1).

Now, we prove the second bound. For any 0 < a < 1 and some k ∈ [0, 1], with Taylor expansion,

logE [exp(aXi)] =B(Θ∗,0 + aej)−B(Θ∗,0) = a∇>B(Θ∗,0)ej +
a2

2
e>j ∇2B(Θ∗,0 + akej)ej

=aE(Xj) +
a2

2

∂2

∂b2j
B(Θ∗,0 + akej) ≤ aC1 +

a2

2
C2,

(17)

where the last inequality is due to Assumption 1. Then, following the proof technique above, we have

P

(
1

n

n∑
i=1

Xi ≥ ε2

)
=P

(
n∑
i=1

Xi ≥ nε2

)
≤ min

t>0
exp(−tnε2)

n∏
i=1

E [exp (tXi)]
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≤min
t>0

exp(−tnε2)

n∏
i=1

exp

(
C1t+

C2

2
t2
)

= min
t>0

exp

[
(C1 − ε2)nt+

nC2

2
t2
]
≤ exp

[
−n(ε2 − C1)2

2C2

]
,

where the minimum is obtained when t = ε2−C1

C2
, and we have used the fact that ε2 > C1.

8.3. Auxiliary Results

Lemma 8. Let r := 4C5λ. Then with probability of at least 1 −
(
(exp (C1 + C2/2) + 8) p−2 + p−1/C2

)
, the following

two inequalities simultaneously hold:

‖∇F (Θ∗)‖∞ ≤ 2
[
C3(3 log p+ log n) + (3 log p+ log n)2

]√ log p

n
+ 2C4

(
C1 +

√
2 log p

n

)
, (18)

‖Θ̃S −Θ∗S‖∞ ≤ r. (19)

Proof. We prove (18) and (19) in turn.

PROOF OF (18)

To begin with, we prove (18). By the definition of F in (13), for j < j′, the derivative of F (Θ∗) is:

∂F (Θ∗)

∂θjj′
=

1

n

n∑
i=1

[
−xij′xij + λ∗ijxij′ − xijxij′ + λ∗ij′xij

]
= −2EX[XjXj′ ] +

1

n

n∑
i=1

λ∗ijxij′ +
1

n

n∑
i=1

λ∗ij′xij . (20)

and
∂

∂θjj
F (Θ∗) =

1

n

n∑
i=1

[
−xij + λ∗ij

]
= −EX[Xj ] +

1

n

n∑
i=1

λ∗ij , (21)

where EX[XjXj′ ] := 1
n

∑n
i=1 xijxij′ and EX[Xj ] := 1

n

∑n
i=1 xij are the expectations of XjXj′ and Xj over the empirical

distribution given by the dataset X.

Then, by defining E[XjXj′ ] as the expectation of the multiplication of two components of an multivariate square root
Poisson random vector whose distribution is parameterized by Θ∗, and by Assumption 2, (20) can be controlled via∣∣∣∣ ∂

∂θjj′
F (Θ∗)

∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

λ∗ijxij′ − E[XjXj′ ] +
1

n

n∑
i=1

λ∗ij′xij − E[XjXj′ ] + 2E[XjXj′ ]− 2EX[XjXj′ ]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

λ∗ijxij′ − E[XjXj′ ]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

λ∗ij′xij − E[XjXj′ ]

∣∣∣∣∣+ 2|EX[XjXj′ ]− E[XjXj′ ]|

=

∣∣∣∣∣ 1n
n∑
i=1

(
E[Xj |X−j = xi,−j ] + λ∗ij − E[Xj |X−j = xi,−j ]

)
xij′ − E[XjXj′ ]

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(
E[Xj′ |X−j′ = xi,−j′ ] + λ∗ij′ − E[Xj′ |X−j′ = xi,−j′ ]

)
xij − E[XjXj′ ]

∣∣∣∣∣
+2|EX[XjXj′ ]− E[XjXj′ ]|

≤

∣∣∣∣∣ 1n
n∑
i=1

(E[Xj |X−j = xi,−j ])xij′ − E[XjXj′ ]

∣∣∣∣∣+
1

n

n∑
i=1

∣∣λ∗ij − E[Xj |X−j = xi,−j ]
∣∣xij′

+

∣∣∣∣∣ 1n
n∑
i=1

(E[Xj′ |X−j′ = xi,−j′ ])xij − E[XjXj′ ]

∣∣∣∣∣+
1

n

n∑
i=1

∣∣λ∗ij′ − E[Xj′ |X−j′ = xi,−j′ ]
∣∣xij

+2|EX[XjXj′ ]− E[XjXj′ ]|
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≤

∣∣∣∣∣ 1n
n∑
i=1

E[Xj |X−j = xi,−j ]xij′ − E[XjXj′ ]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

E[Xj′ |X−j′ = xi,−j′ ]xij − E[XjXj′ ]

∣∣∣∣∣
+2|EX[XjXj′ ]− E[XjXj′ ]|+ C4(EX[Xj ] + EX[Xj′ ])

=

∣∣∣∣∣ 1n
n∑
i=1

E[XjXj′ |X−j = xi,−j ]− E[XjXj′ ]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

E[XjXj′ |X−j′ = xi,−j′ ]− E[XjXj′ ]

∣∣∣∣∣
+2|EX[XjXj′ ]− E[XjXj′ ]|+ C4(EX[Xj ] + EX[Xj′ ])

=2|EX[E[XjXj′ |X−j ]]− E[XjXj′ ]|+ 2|EX[XjXj′ ]− E[XjXj′ ]|+ C4(EX[Xj ] + EX[Xj′ ])

=2|EX[E[XjXj′ |X−j ]]− E[E[XjXj′ |X−j ]]|+ 2|EX[XjXj′ ]− E[XjXj′ ]|+ C4(EX[Xj ] + EX[Xj′ ]),

where we have used the law of total expectation in the last equality.

Similarly, (21) can be controlled via∣∣∣∣ ∂

∂θjj
F (Θ∗)

∣∣∣∣ =

∣∣∣∣∣−EX[Xj ] +
1

n

n∑
i=1

λ∗ij

∣∣∣∣∣ =

∣∣∣∣∣−EX[Xj ] +
1

n

n∑
i=1

(
E[Xj |X−j = xi,−j ] + λ∗ij − E[Xj |X−j = xi,−j ]

)∣∣∣∣∣
=

∣∣∣∣∣−EX[Xj ] + E[Xj ]− E[Xj ] + EX[E[Xj |X−j ]] +
1

n

n∑
i=1

(
λ∗ij − E[Xj |X−j = xi,−j ]

)∣∣∣∣∣
≤|EX[E[Xj |X−j ]]− E[Xj ]|+ |EX[Xj ]− E[Xj ]|+ C4

=|EX[E[Xj |X−j ]]− E[E[Xj |X−j ]]|+ |EX[Xj ]− E[Xj ]|+ C4.

We define four events:

E1 :=

{
max

j 6=j′,j,j′∈{1,2,···,p}

∣∣∣∣ ∂

∂θjj′
F (Θ∗)

∣∣∣∣ ≥ 2(C3ε1 + ε21)

√
log p

n
+ 2C4ε2

}
,

E2 :=

{
max

j∈{1,2,···,p}

∣∣∣∣ ∂

∂θjj
F (Θ∗)

∣∣∣∣ ≥ (C3 + ε1)

√
log p

n
+ C4/n

}
,

E3 :=

{
0 < max

i∈{1,2,···,n}
‖xi‖∞ < ε1

}
, and E4 :=

{
0 < max

j∈{1,2,···,p}
EX[Xj ] < ε2

}
,

where ε1 := 3 log p + log n and ε2 := C1 +
√

2 log p
n are defined in Lemma 7. By Lemma 3, Lemma 4, Lemma 5 and

Lemma 6, it follows that

P(E1 | E3, E4) ≤ 4 exp(−2 log p) and P(E2 | E3, E4) ≤ 4 exp(−2 log p). (22)

Therefore,

P(E1 ∪ E2) =P(E1 ∪ E2 | E3, E4)P(E3, E4) + P(E1 ∪ E2 | Ec3, E4)P(Ec3, E4)

+P(E1 ∪ E2 | E3, E
c
4)P(E3, E

c
4) + P(E1 ∪ E2 | Ec3, Ec4)P(Ec3, E

c
4)

≤P(E1 | E3, E4) + P(E2 | E3, E4) + P(Ec3, E4) + P(E3, E
c
4) + P(EC3 , E

c
4)

≤P(E1 | E3, E4) + P(E2 | E3, E4) + P(Ec3) + P(Ec4)

≤8 exp(−2 log p) + exp(C1 + C2/2− ε1)np+ exp

[
−n(ε2 − C1)2

2C2

]
=8 exp(−2 log p) +

exp(C1 + C2/2)

p2
+ p−

1
C2 ,

(23)

where the superscript c over an event represents the complement of that event, and the last inequality is due to (22) and
Lemma 7. Also notice that by the definitions of E1 and E2,

2(C3ε1 + ε21)

√
log p

n
+ 2C4ε2 > (C3 + ε1)

√
log p

n
+ C4/n.
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Therefore, with probability of 1− P(E1 ∪ E2) ≥ 1−
(
(exp (C1 + C2/2) + 8) p−2 + p−1/C2

)
, neither E1 nor E2 occurs,

and hence

‖∇F (Θ∗)‖∞ ≤2(C3ε1 + ε21)

√
log p

n
+ 2C4ε2

=2
[
C3(3 log p+ log n) + (3 log p+ log n)2

]√ log p

n
+ 2C4

(
C1 +

√
2 log p

n

)
.

PROOF OF (19)

Then, we study (19). We consider a map defined as G(∆S) := −H−1SS

[
∇SF (Θ∗ + ∆S) + λẐS

]
+ ∆S . If ‖∆‖∞ ≤ r,

by Taylor expansion of ∇SF (Θ∗ + ∆) centered at ∇SF (Θ∗),

‖G(∆S)‖∞=
∥∥∥−H−1SS

[
∇SF (Θ∗) + HSS∆S +RS(∆) + λẐS

]
+∆S

∥∥∥
∞

=
∥∥∥−H−1SS

(
∇SF (Θ∗) +RS(∆) + λẐS

)∥∥∥
∞

≤
∥∥H−1SS∥∥∞ (‖∇SF (Θ∗)‖∞ + ‖RS(∆)‖∞ + λ‖ẐS‖∞) ≤ (C5(λ+ C6r

2 + λ) = C5C6r
2 + 2C5λ,

where the inequality is due to ‖∇SF (Θ∗)‖∞ ≤ λ conditioning on Ec1 ∩ Ec2 and according to (18). Then, based on the
definition of r, we can derive the upper bound of ‖G(∆S)‖∞ as ‖G(∆S)‖∞ ≤ r/2 + r/2 = r.

Therefore, according to the fixed point theorem (Ortega and Rheinboldt, 2000; Yang and Ravikumar, 2011), there exists
∆S satisfying G(∆S) = ∆S , which indicates ∇SF (Θ∗ + ∆) + λẐS = 0. Considering that the optimal solution
to (25) is unique, ∆̃S = ∆S , whose infinite norm is bounded by ‖∆̃S‖∞ ≤ r , with probability larger than 1 −(
(exp (C1 + C2/2) + 8) p−2 + p−1/C2

)
.

Lemma 9. Let Θ̂ be an optimal solution to (12), and Ẑ be the corresponding dual solution. If Ẑ satisfies ‖ẐI‖∞ < 1, then
any given optimal solution to (12) Θ̃ satisfies Θ̃I = 0. Moreover, if HSS is positive definite, then the solution to (12) is
unique.

Proof. Specifically, following the same rationale as Lemma 1 in Wainwright 2009, Lemma 1 in Ravikumar et al. 2010, and
Lemma 2 in Yang and Ravikumar 2011, we can derive Lemma 9 characterizing the optimal solution of (12).

8.4. Proof of Theorem 1

The proof follows the primal-dual witness (PDW) technique, which is widely used in this line of research (Wainwright,
2009; Ravikumar et al., 2010; Yang and Ravikumar, 2011; Yang et al., 2015a). Specifically, by Lemma 9, we can prove the
sparsistency by building an optimal solution to (12) satisfying ‖ẐI‖∞ < 1, which is summarized as strict dual feasibility
(SDF). To this end, we apply PDW to build a qualified optimal solution with the assumption that HSS is positively definite.

SOLVE A RESTRICTED PROBLEM

First of all, we derive the KKT condition of (12):

∇F (Θ̂) + λẐ = 0. (24)

To construct an optimal optimal primal-dual pair solution, we define Θ̃ as an optimal solution to the restricted problem:

Θ̃ := min
Θ

F (Θ) + λ‖Θ‖1, (25)

with ΘI = 0, where Θ̃ is unique according to Lemma 9 with the assumption that HSS � 0. Denote the subgradient
corresponding to Θ̃ as Z̃. Then (Θ̃, Z̃) is optimal for the restricted problem (25). Therefore, Z̃S can be determined
according to the values of Θ̃S via the KKT conditions of (25). As a result,

∇SF (Θ̃) + λZ̃S = 0, (26)

where ∇S represents the gradient components with respect to S. Furthermore, by letting Θ̂ = Θ̃, we determine Z̃I
according to (24). It remains to show that Z̃I satisfies SDF.
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CHECK SDF

Now, we demonstrate that Θ̃ and Z̃ satisfy SDF. By (26), and by the Taylor expansion of ∇SF (Θ̃), we have that

HSS∆̃S + ∇SF (Θ∗) +RS(∆̃) + λZ̃S = 0⇒ ∆̃S = H−1SS

[
−∇SF (Θ∗)−RS(∆̃)− λZ̃S

]
, (27)

where ∆̃ := Θ̃ −Θ∗, RS(∆̃) represents the components of R(∆) corresponding to S, and we have used the fact that
HSS is positive definite and hence invertible. By the definition of Θ̃ and Z̃,

∇F (Θ̃) + λZ̃ = 0⇒∇F (Θ∗) + H∆̃ +R(∆̃) + λZ̃ = 0⇒∇IF (Θ̃) + HIS∆̃S +RI(∆̃) + λZ̃I = 0, (28)

where RI(∆̃) represents the components of R(∆) corresponding to I , and we have used the fact that ∆̃I = 0 because
Θ̃I = Θ∗ = 0. As a result,

λ‖Z̃I‖∞ =‖−HIS∆̃S −∇IF (Θ∗)−RI(∆̃)‖∞

≤
∥∥∥HISH−1SS

[
−∇SF (Θ∗)−RS(∆̃)− λZ̃S

]∥∥∥
∞

+ ‖∇IF (Θ∗) +RI(∆̃)‖∞

≤
∥∥HISH−1SS

∥∥
∞

∥∥∥∇SF (Θ∗) +RS(∆̃)
∥∥∥
∞

+
∥∥HISH−1SS

∥∥
∞

∥∥∥λZ̃S

∥∥∥
∞

+ ‖∇IF (Θ∗) +RI(∆̃)‖∞

≤(1− α)
(
‖∇SF (Θ∗)‖∞ + ‖RS(∆̃)‖∞

)
+ (1− α)λ+

(
‖∇IF (Θ∗)‖∞ + ‖RI(∆̃)‖∞

)
≤(2− α)

(
‖∇F (Θ∗)‖∞ + ‖R(∆̃)‖∞

)
+ (1− α)λ, (29)

where we have used (27) in the first inequality, and the third inequality is due to Assumption 3.

With (29), it remains to control ‖∇F (Θ∗)‖∞ and ‖R(∆̃)‖∞. On one hand, according to Lemma 8 and the assumption on

λ in Theorem 1, ‖∇F (Θ∗)‖∞ ≤ 2
[
3C3 log p+ C3 log n+ (3 log p+ log n)2

]√
log p
n + 2C4

(
C1 +

√
2 log p
n

)
≤ αλ

4 ,

with probability larger than 1−
(
(exp (C1 + C2/2) + 8) p−2 + p−1/C2

)
.

On the other hand, according to Assumption 4 and Lemma 8,

‖R(∆̃)‖∞ ≤ C6‖∆‖2∞ ≤ C6r
2 ≤ C6(4C5λ)2 = λ

64C2
5C6

α

αλ

4
≤

C7

√
log5 p

n

 64C2
5C6

α

αλ

4
, (30)

where in the last inequality we have used the assumption λ ∝
√

log5 p
n in Theorem 1, and hence there exists C7 satisfying

λ ≤ C7

√
log5 p
n . Therefore, when we choose n ≥

(
64C7C

2
5C6/α

)2
log5 p as assumed in Theorem 1, then from (30), we

can conclude that ‖R(∆̃)‖∞ ≤ αλ
4 . As a result, λ‖ẐI‖∞ can be bounded by λ‖Z̃I‖∞ < αλ/2 + αλ/2 + (1− α)λ = λ.

Combined with Lemma 9, we demonstrate that any optimal solution of (12) satisfies Θ̃I = 0. Furthermore, (19) controls
the difference between the optimal solution of (12) and the real parameter by ‖∆̃S‖∞ ≤ r, by the fact that r ≤ ‖Θ∗S‖∞ in
Theorem 1, Θ̂S shares the same sign with Θ∗S .


