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Abstract
This document includes additional proofs for
the estimation error of spectral initializers, dis-
cusses the real-valued LSPE, and provides de-
tailed derivations for each of the proposed LSPE.

D. Proof of Proposition 1
Our goal is to first evaluate the S-MSE of the unnormalized
spectral initializer in (2)
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and then minimize the resulting expression over the param-
eter �. The unnormalized spectral MSE can be expanded
into the following form:
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we can simplify the above expression into
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We can now find the optimal parameter for � by taking the
derivative with respect to �

⇤ and setting the expression to
zero. The resulting optimal scaling parameter is given by
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We now plug in ˆ

� into the expression (24), which yields
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This expression can be simplified further to obtain:
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which is what we wanted to show in (12).
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E. Real-Valued Phase Retrieval
We now focus on the case where the signal vector x to be re-
covered and the measurement matrix A are both real-valued.
We derive the LSPE by using the following assumptions,
which are reasonable for phase retrieval problems.
Assumptions 3. Let H = R. Assume square measure-
ments f(z) = z

2 and the identity preprocessing function
T (y) = y. Assume that the signal vector x 2 RN is i.i.d.
zero-mean Gaussian distributed with covariance matrix
C
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Under these assumptions, we can derive the following LSPE
which we call LSPE-R; the detailed derivations of this spec-
tral estimator are given in Appendix F.
Estimator 3 (LSPE-R). Let Assumptions 3 hold. Then, the
spectral estimation matrix is given by
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in (26). Furthermore, the S-MSE is given by Theorem 2.

F. Derivation of Estimator 3
We now use Theorem 1 to derive Estimator 3 under Assump-
tions 3. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To compute the real-valued vector

T (y) = E[T (y)] , (27)

we need the following result on the bivariate folded normal
distribution developed in (Kan & Robotti, 2017, Sec. 3.1).
Lemma 1. Let [u1, u2] ⇠ N (µ,⌃) be a pair of real-valued
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where (a) follows from (28). The only unknown term in
the above expression is E
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second moment of the random vector [|zm|2, |zm0 |2], which
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Computing Vm To compute the matrices
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Since ȳm is known from (28), we focus on computing

E[ymxnx
⇤
n0 ]

= E
" ✓ NX

j=1

A

⇤
m,jx

⇤
j + e

z
m

◆

⇥
✓ NX

j0=1

Am,j0xj0+e

z
m

◆
+ e

y
m

!
xnx

⇤
n0

#

= E
"✓ NX

j=1

A

⇤
m,jx

⇤
j

NX

j0=1

Am,j0xj0

◆
xnx

⇤
n0

#

+ E
⇥|ezm|2xnx

⇤
n0
⇤
+ E[eymxnx

⇤
n0 ]

=

NX

j=1

A

⇤
m,j

NX

j0=1

Am,j0 E
⇥
x

⇤
jxj0xnx

⇤
n0
⇤

(32)

+ ([C

e

z
]m,m + ē
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The only unknown in the above expression is the double
summation in (32). Since we assumed that the entries of the
signal vector x are i.i.d., most of the terms in this summation
are zero. For n 6= n
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m denotes the mth row of the matrix A.

G. Derivation of Estimator 1
We now use Theorem 1 to derive Estimator 1 under Assump-
tions 1. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To compute the real-valued vector
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y
m, (34)

where we have used the definition �

2
m = [C

z

]m,m. Hence,
in compact vector notation we have

T (y) =

¯

y = diag(C

z

) +

¯

e

y
.

Computing T To compute the real-valued matrix T

in (30), we will frequently use the following result. Since
the vector z is a complex circularly-symmetric jointly Gaus-
sian vector, we can extract the covariance matrices of the
real and imaginary parts separately as:

E
⇥
zIzHI

⇤ (a)
= E

⇥
zRz

H
R
⇤
=

1

2

<{C
z

} =

1

2

C

z,R (35)

E
⇥
zRz

H
I
⇤
= �E

⇥
zIzHR

⇤
=

1

2

={C
z

} =

1

2

C

z,I , (36)

where (a) follows from circular symmetry of the random
vector x. We are now ready to compute the individual
entries of E

⇥T (y)T (y)

T
⇤

as

Tm,m0
= E

⇥
(T (ym)� T (ym))(T (ym0

)� T (ym0
))

⇤

= E[(ym � ȳm)(ym0 � ȳm0
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H. Derivation of Estimator 2
We now use Theorem 1 to derive Estimator 2 under Assump-
tions 2. To this end, we require the three quantities: T (y),
T, and Vm, m = 1, . . . ,M , which we derive separately.

Computing T (y) To derive an expression for T (y)

in (27), we need the following two results.
Lemma 2. Let u ⇠ CN (0M⇥1,⌃) be a complex-valued
circularly-symmetric jointly Gaussian random vector with
positive definite covariance matrix ⌃ 2 CM⇥M . Then,
for the random variable ⌫ = exp(�u

H
Gu) with positive

definite G 2 CM⇥M and G + ⌃�1 positive definite, we
have the following result:

E[⌫] = 1

|G⌃+ IM | .

Proof. We first expand the expected value into

E[⌫] = E
⇥
exp(�u

H
Gu)

⇤
=

Z

CM

exp(�u

H
Gu)

1

⇡

M |⌃| exp(�u

H⌃�1
u)du,

where |⌃| > 0 is the determinant of ⌃. We can now simplify
the above expression as follows:

Z

CM

exp(�u

H
Gu)

1

⇡

M |⌃| exp(�u

H⌃�1
u)du

=

Z

CM

1

⇡

M |⌃| exp
�� u

H
(G+ ⌃�1

)u

�
du

=

⇡

M |(G+ ⌃�1
)

�1|
⇡

M |⌃|
1

⇡

M |(G+ ⌃�1
)

�1|
⇥
Z

CM

exp

�� u

H
(G+ ⌃�1

)u

�
du

=

|(G+ ⌃�1
)

�1|
|⌃| =

1

|G+ ⌃�1||⌃| =
1

|G⌃+ I| ,

where we also required that G+⌃�1 is positive definite. ⌅
Lemma 3. Let u ⇠ N (

¯

u,⌃) be a real-valued Gaussian
random vector with mean ¯

u and covariance ⌃, and � 2 RN

be a given vector. Then, we have

E
⇥
exp(��T

u)

⇤
= exp

���T
¯

u+

1
2�

T⌃�
�
.

Proof. The proof is an immediate consequence of the mo-
ment generating function of a Gaussian random vector. ⌅

By considering Lemma 2 and Lemma 3 for scalar random
variables, the mth entry of the preprocessed phaseless mea-
surement is given by

T (ym) = E[T (ym)] = E
⇥
exp(��|zm|2 � �[e

y
]m)

⇤

=

1

�[C

z

]m,m + 1

exp

���[

¯

e

y
]m +

1
2�

2
[C

e

y
]m,m

�
.

We define the following auxiliary vectors

q� = � diag(C

z

) + 1M⇥1 (38)

p� = exp

���

¯

e

y
+

1
2�

2
diag(C

e

y
)

�
, (39)

which enable us to rewrite the above expression in compact
vector form as

T (y) = p� ↵ q� .

Computing T To compute the matrix T in (30), we only
need to compute E

⇥T (y)T (y)

T
⇤
, which we will compute

entry-wise and in two separate steps. Concretely, we have

E[T (ym)T (ym0
)] = E

⇥
exp(��(|zm|2 + |zm0 |2))⇤

⇥ E[exp(��([e

y
]m + [e

y
]m0

))],

where we compute both expected values separately. In the
first step, we compute

E
⇥
exp(��(|zm|2 + |zm0 |2))⇤ = E

⇥
exp(�u

H
Gu))

⇤
,

with u = [zm, zm0
]

T and G = I2�. By invoking Lemma 2
with [⌃]m,m0

= [C

z

]m,m0 , we obtain

E
⇥
exp(��(|zm|2 + |zm0 |2))⇤ = 1

|�⌃+ I2|
=

1

(�[C

z

]m,m + 1)(�[C

z

]m0,m0
+ 1)� �

2|[C
z

]m,m0 |2 .

With the definition of q� in (38), we can rewrite the above
expression in vector form as

E
⇥
exp(��|z|2) exp(��|z|2)T ⇤

= 1M⇥M ↵ (q�q
T
� � �

2
C

z

�C

⇤
z

).

In the second step, we compute

E[exp(��([e

y
]m + [e

y
]m0

))] = E
⇥
exp(��T

u)

⇤

with u = [[e

y
]m, [e

y
]m0

]

T and �T
= [�, �]. By invoking

Lemma 3 with mean ¯

u = [

¯

[e

y
]m, [

¯

e

y
]m0

] and covariance ⌃
given by the entries of the covariance matrix C

e

y associated
to the indices m and m

0, we obtain

E[exp(��([e

y
]m + [e

y
]m0

))] = exp(��([

¯

e

y
]m + [

¯

e

y
]m0

))

⇥ exp(

1
2�

2
([C

e

y
]m,m + [C

e

y
]m0,m0

+ 2[C

e

y
]m,m0

)).

With the definition of p� in (39), we can rewrite the above
expression in vector form as

E
⇥
exp(��e

y
) exp(��e

y
)

T
⇤
= (p�p

T
� )� exp(�

2
C

e

y
)

We furthermore have

T (y)T (y)

T
= (p�p

T
� )↵ (q�q

T
� ).

By combining the two steps with the above results, we have

T =(p�p
T
� )�

�
exp(�

2
C

e

y
)↵ (q�q

T
� � �

2
C

z

�C

⇤
z

)

� 1M⇥M ↵ (q�q
T
� )
�
.
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Computing Vm To compute the matrices Vm, m =

1, . . . ,M , in (31), we only need E
⇥T (ym)xx

H
⇤

which we
will compute entry-wise and in two steps. We have

E[T (ym)xnx
⇤
n0 ] = E

⇥
exp(��|aHmx+ [e

z
]m|2)xnx

⇤
n0
⇤

⇥ E[exp(��[e

y
]m)] ,

where we next compute both expected values separately.
As a first step, we use direct integration to compute the
following expected value:

E
⇥
exp(��|aHmx+ [e

z
]m|2)xnx

⇤
n0
⇤
=

Z

CN+1

exp(��|aHmx+ [e

z
]m|2)

⇥ 1

(⇡�

2
x)

N
exp

✓
�kxk2

�

2
x

◆

⇥ 1

⇡�

2
n

exp

✓
� |[ez]m|2

�

2
n

◆
xnx

⇤
n0dxd[ez]m.

We define the following auxiliary quantities:

˜

a

H
m = [a

H
m, 1 ]

˜

x

T
= [x

T
, [e

z
]m ]

C

x̃

=


�

2
xIN 0N⇥1

01⇥N �

2
m

�

e
K

�1
= �

˜

am˜

a

H
m +C

�1
x̃

,

where �

2
m = E

⇥|[ez]m|2⇤ = [C

n

z
]m,m. We now derive the

above expectation in compact form as

E
⇥
exp(��|˜aHm˜

x|2)x̃nx̃
⇤
n0
⇤
=

=

1

(⇡�

2
x)

N

1

⇡�

2
n

Z

CN+1

exp(��|˜aH ˜

x|2� ˜

x

H
C

�1
x̃

˜

x)x̃nx̃
⇤
n0d˜x

=

1

|⇡C
x̃

|
Z

CN+1

exp(�˜

x

H
(�

˜

am˜

a

H
m +C

�1
x̃

)

˜

x)x̃nx̃
⇤
n0d˜x

=

1

|⇡C
x̃

|
Z

CN+1

exp(�˜

x

H e
K

�1
˜

x)x̃nx̃
⇤
n0d˜x,

where n = 1, . . . , N+1, n0
= 1, . . . , N+1. We can further

rewrite this expression as

1

|⇡C
x̃

|
Z

CN+1

exp(�˜

x

H e
K

�1
˜

x)x̃nx̃
⇤
n0d˜x

=

|⇡ eK|
|⇡ eK||⇡C

x̃

|

Z

CN+1

exp(�˜

x

H e
K

�1
˜

x)x̃nx̃
⇤
n0d˜x.

It is now key to realize that

1

|⇡ eK|

Z

CN+1

exp(�˜

x

H e
K

�1
˜

x)x̃nx̃
⇤
n0d˜x

= E[x̃nx̃
⇤
n0 ] = [

e
K]n,n0

and hence we have

E
⇥
exp(��|˜aHm˜

x|2)x̃nx̃
⇤
n0
⇤

=

| eK|
|C

x̃

| [
e
K]n,n0

=

1

| eK�1||C
x̃

|
[

e
K]n,n0

=

1

|�˜am˜

a

H
m +C

�1
x̃

||C
x̃

| [
e
K]n,n0

=

1

|�˜am˜

a

H
mC

x̃

+ IN+1| [
e
K]n,n0

.

We can now use the matrix-determinant lemma to simplify

|�˜am˜

a

H
mC

x̃

+ IN+1| = �

˜

a

H
mC

x̃

˜

am + 1

= �(�

2
xkamk2 + �

2
m) + 1

and the matrix inversion lemma to simplify

e
K = (�

˜

am˜

a

H
m +C

�1
x̃

)

�1

= C

x̃

� �C

x̃

˜

am˜

a

H
mC

x̃

�

˜

a

H
mC

x̃

˜

am + 1

= C

x̃

� �C

x̃

˜

am˜

a

H
mC

x̃

�(�

2
xkamk2 + �

2
m) + 1

.

By using these two simplifications, we have

E
⇥
exp(��|˜aHm˜

x|2)x̃nx̃
⇤
n0
⇤

=

1

�(�

2
xkamk2 + �

2
m) + 1

⇥

C

x̃

� �C

x̃

˜

am˜

a

H
mC

x̃

�(�

2
xkamk2 + �

2
m) + 1

�

n,n0

and since we are only interested in the upper N ⇥N part of
the matrix eK, we have

E
⇥
exp(��|aHmx+ [e

z
]m|2)xnx

⇤
n0
⇤

=

1

�(�

2
xkamk2 + �

2
m) + 1

⇥

�

2
xIN � ��

4
xama

H
m

�(�

2
xkamk2 + �

2
m) + 1

�

n,n0

=

1

�[C

z

]m,m + 1


�

2
xIN � ��

4
xama

H
m

�[C

z

]m,m + 1

�

n,n0

since for our assumptions

�

2
xkamk2 + �

2
m = [C

z

]m,m.

In compact matrix form, we have

E
⇥
exp(��|aHmx+ [e

z
]m|2)xxH

⇤

=

1

�[C

z

]m,m + 1

✓
�

2
xIN � ��

4
xama

H
m

�[C

z

]m,m + 1

◆
.

As a second step, we use definition (39) and obtain

E[exp(��[e

y
]m)] = [p� ]m.
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By combining both steps, we obtain

Vm =

[p� ]m

�[C

z

]m,m + 1

✓
�

2
xIN � ��

4
xama

H
m

�[C

z

]m,m + 1

◆

� [p� ]m

�[C

z

]m,m + 1

�

2
xIN

= � ��

4
x[p� ]m

(�[C

z

]m,m + 1)

2
ama

H
m,

which is what we desperately wanted to show.


