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D. Proof of Proposition 1 We now plug in 3 into the expression (24), which yields

Our goal is to first evaluate the S-MSE of the unnormalized

~ 2
spectral initializer in (2) Z%Zl tr (amag Vm)
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US-MSEs; = E ’ B T(ym)amay: — xx M M
m=1 o X Z Z mm/|agam/‘2
m=1m’'=1
and then minimize the resulting expression over the param- = u
eter 8. The unnormalized spectral MSE can be expanded Zm L i (Vm amam> Hy
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m=1 This expression can be simplified further to obtain:
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By using the definitions
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Vo = E[T(ym)xxH} ,m=1,..., M, Zm 1 Zm, VT 2B |2
T=E[Ty)TK)'], 2 i (anafiV,,)|
we can simplify the above expression into Zf\le %:1 fmym/ |ada,, |2
M M +E[[xx"|%]
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m=1 m=1 which is what we wanted to show in (12).
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E. Real-Valued Phase Retrieval

We now focus on the case where the signal vector x to be re-
covered and the measurement matrix A are both real-valued.
We derive the LSPE by using the following assumptions,
which are reasonable for phase retrieval problems.

Assumptions 3. Let H = R. Assume square measure-
ments f(z) = 22 and the identity preprocessing function
T (y) = y. Assume that the signal vector x € R" is i.i.d.
zero-mean Gaussian distributed with covariance matrix
Cy = U%IN, ie, X~ ./\/(Ole, O'?CIN),' the parameter of,
denotes the signal variance. Assume that the signal noise
vector € is zero-mean Gaussian with covariance matrix
Ce:, i.e., € ~ N (0prx1, Ce=), and the measurement noise
vector €Y is Gaussian with mean €Y and covariance matrix
Coy, i.e., € ~ N (&Y, Cqoy). Furthermore assume that x,
e?, and €Y are independent.

Under these assumptions, we can derive the following LSPE
which we call LSPE-R; the detailed derivations of this spec-
tral estimator are given in Appendix F.

Estimator 3 (LSPE-R). Let Assumptions 3 hold. Then, the
spectral estimation matrix is given by

M
DY =Kx+ Y tm Vi, (26)

m=1

where Ky = 021y, the vector t € RM is given by the
solution to the linear system Tt =y —y with
y = diag(cz) + &Y
C, = d2AAT 1 C.-
T=2C,©C, + Cgy
and V,, = 20ta,,al, m = 1,..., M. The spectral esti-
mate X is given by the (scaled) leading eigenvector of Dﬂ‘s
in (26). Furthermore, the S-MSE is given by Theorem 2.

F. Derivation of Estimator 3

We now use Theorem 1 to derive Estimator 3 under Assump-
tions 3. To this end, we require the three quantities: 7 (y),
T,and V,,, m = 1,..., M, which we derive separately.

To compute the real-valued vector
T(y) =E[T(y)], 27

we need the following result on the bivariate folded normal
distribution developed in (Kan & Robotti, 2017, Sec. 3.1).

Lemma 1. Let [uy, us] ~ N (u, X) be a pair of real-valued
Jjointly Gaussian random variables with covariance matrix

Computing 7 (y)

“phased” measurements z =

Then, for m = 1,2, the pair of random variables (v, v5)
with vy = u? and vy = u3 follows the bivariate folded
normal distribution with the following (centered) moments:
Upn :E[ufn] :crfnJru?n
[Culi2 =E[(1 — 1) (v2 — 12)]
= 41207 5 + 207 5
[Culii=E[(nn —1n)?] = 201 + 4pio?.

Let zZ = [E[z] denote the mean vector and C, = AC, A +
Co- = 02AAH + C,: the covariance matrix of the
Ax + e*. Then, by defin-
ing 02, = [Cy]m,m, we can compute the mth entry T (Ym)
using Lemma 1 as follows:

T _ 2 2 _
T(y’m) =Ym = E [|Z’rn| + n?fn] =0, + engn_ (28)
Hence, in compact vector notation we have

T(y) =y = diag(C,) + &*. (29)

Computing T To compute the real-valued matrix

T=E[T)-Tu)NT ) -TE)"]
=E[TMTW'] -TETH)", (30)
we only need to compute the matrix E [T (y)7 (y)”] as the

vector 7 (y) was computed in (29). We compute this matrix
entry-wise as

[ymym/] Um Y
= E [(|2m|* + €%) (|2m |* + €2)]
—(op, + &%) (o0, + b))

= E[|zm\ |2/ | ] — 02,02 + [Cev]m,m?

where (a) follows from (28). The only unknown term in
the above expression is E[|2y,|?| 2 |?]. This term is the
second moment of the random vector [|2,,, |2, |z |?], which
follows a bivariate folded normal distribution. For m # m/,

Lemma 1 yields
E[|zm|*|zm )] = 02,02 + 207,

with o2 [Czlm,m/- Form = m/, Lemma 1 yields

E[lym|2] =

Hence, we have

mm/_

E[|zm|*] = 30y,

4 : /
205, o Im#m

T = [Covlmm + { 208 ifm=m,

which can be written in compact matrix form as

TZQCZQCZ'FCe'L/
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Computing V,, To compute the matrices

Vi = E[(T(ym) = T (ym)) (xx" — Ky )]
- ]E [T(ym,)XXH] - 77-(3/7n)]£<x (31)

form =1,..., M, we only need to compute the complex-
valued matrix E[7 (y,,)xx"] as the two other quantities

Ky = E[xx"] and T (y,,) are known. We compute this
matrix entry-wise as

[Vm]n,n’ =K [(T(ym) - T(ym)) n’]
- ym [Cx}n,n/ .

Since ¥, is known from (28), we focus on computing

= E[ymxnx:’}

E[ymxnx* ]

N

X <2Am7]‘/l’j/ —‘y—@f,rl) + e%’n> xnx;/]

=1

N
E[ ’mJ ] Z AmJ/xJ )xﬂxn]
j'=1

+E[|6fn\2xnx ]JrE[egnxnx:,}
N N
ZA:R Z Ay E[m (T T Ty, ,] (32)

Jj=1 J'=1

+ ([CesJmm + %) [Cxlnn-

)

The only unknown in the above expression is the double
summation in (32). Since we assumed that the entries of the
signal vector x are i.i.d., most of the terms in this summation
are zero. For n # n’, there are only two nonzero terms,
corresponding to the cases of (j, ") = (n,n’) and (4, j') =

(n/,n). Thus, for n # n' we have
N
Z A Z Ap o E [:v;xj/xnxz/]
j=1 j'=1
= 2A:n,nAm”ﬂ' E [|xn|2|xn’ |2]
(b *
= 2Am,nAm,n’ [Cx]n,n[cx]n’,n’7 (33)

N

where (b) follows from Lemma 1. For n = n/, we have

N N
* * *
E Am7j E Ap i E [xjszxnxn]
j=1 =1
N

Z |Am,j 2

j;én j=1

nn+ Z |A ,J| [ ] n,n

Jj#n,j=1

= A E[lz,|"] +

E [Jaj[*n]?]

=2|A.)%[C

nn+Z|A m,j

As for (33), (c) follows from Lemma 1. By combining the
above results, we have

7,7 [CX]’I’L,N'

V., =2CHa,alC,y + (all Cya,,) (CE 0 1)

+ ([Co#]mm — J%)Cx = 2oiamag,

where a’l denotes the mth row of the matrix A.

G. Derivation of Estimator 1

We now use Theorem 1 to derive Estimator 1 under Assump-
tions 1. To this end, we require the three quantities: 7 (y),
T,and V,,,, m = 1,..., M, which we derive separately.

Computing 7 (y) To compute the real-valued vector
T(y) = ¥ in (27), we need the following definitions. Let
z = E|z] denote the mean vector and C, = AC,AH +
Ce: = J?CAAH + Ce: the covariance matrix of the
“phased” measurements z = Ax+e?. Then, using Lemma 1
with the definitions z and C,, we have

gm = Ellzm[* + &) = E[lzmr|* + |2m 2[* + 7]
=05, + &, (34)

where we have used the definition 02, =
in compact vector notation we have

T(y)

[C2]m.m. Hence,

=y = diag(C,) + €".

Computing T To compute the real-valued matrix T
in (30), we will frequently use the following result. Since
the vector z is a complex circularly-symmetric jointly Gaus-
sian vector, we can extract the covariance matrices of the
real and imaginary parts separately as:

E[zzzg] (:a)]E[szR] = %{C }==-C,r (35

E[znzg] = —E[zzzg] = 53{Cz} = icz’z, (36)
where (a) follows from circular symmetry of the random
vector x. We are now ready to compute the individual

entries of E[T (y)7 (y)”] as

T = E[(T (Ym) = T W) )T Yr) = T (yomr))]
= E[(ym - gm)(ym' - gm’)*}
= E[ymym] — In¥-

The quantity ¥, is given by (34). Hence, we now compute

E[Ym Y]
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E [|Zm,72|2|zm’,7€|2] +2E [|Zm,72‘2|zm’,1|2]
+ [Cev]m,m-

The first two terms above are a second moment of the vari-
ables [|zm |2, [2m =[] and [| 2 = |%, 2], which fol-
low a bivariate folded normal distributions. We first fo-
cus on [|zm | |2m/ =|?]. With Lemma 1, we can cal-
culate the moments using the covariance E [zrz% ] given
in (35). To this end, define 7, ., x = [CzR]mm and
07, = = [CzR]m,m- Thus, we have

o R "Zm'.R "fn, m/
: = + T M FE M
E[|Zm,72‘2|zm’,7€|2] = 024 2 2 #
3, m=m'.

Analogously, we can compute E [ZRZI } in (36) from the

covariance matrix of (|2, z|?, [2m: z|?], With 02, ./ 7 =

[C2.z]m.m’ and noting that 072n,I = [Cyzlm.m = 0as
2 2
Tm,R Gm/ R O rn,m/
B[ Pl 2P = | 2 2 m
ohn m=m.

By combining the above results, we have

2 2 4 4 /
T { amfom,’n + Ot R Oy 70 M F M
m.,m
20
m, R’

m=m,
- —x
+ [Cey]m,m’ —YmUpy
4 4 /
~ [Co] - UT’m/’R + 0z M *m
- ev|m,m _ /
Om R m=m,

which can be written in matrix form as

T=C,0C] + Cg.

Computing V,,, To compute the matrices V,,, m =
1,..., M, in (31), we need the complex-valued matrix
E [T (ym)xxT]. We compute this matrix entry-wise as

= E[ymxnle] — Ym [Cx]n,n’

Since ¥, is given by (34), we only need to compute

Elymznzy,/]

[((ZAM ren)
X (J; Ap iy + ein) + e?{n> xnx:,l

I
Mz

N
Z m]/IE[x (L T Xy, ,]
1

E[leZ, \anm ] + Eledznz;]
N

1 7'=1

([Cez]m’m + égz)[CX]n,n“
We will first simplify the term

ZA

Since we assumed that the signal vector x has i.i.d. zero-
mean entries, most of the terms in this summation are zero.
For n # n’, there is only one non-zero term for (j, ;) =
(n,n’). Thus, for n # n' we have

<.
Il
<.

+

I
™M=

_|_

Z A i E [a: :rj/xnmn/].

j'=1

N

N
D Ay D Amy Elzjay ]
=1 j'=1
= A:n,nAmm’ [Cx]n,n[cx]n’,n’,
since the term that corresponds to (j,5') = (n/,n), i.e.
Ay Ao Blay, ) Elznz,], is zero.

Next, for n = n’, we have

N N
DAY Ay Elzfagma]
= =1

= |Am,n|2 ‘mn| Z |Am7]|2 |x]| |y ]
J#k,j=1
= A" E[Jonr|"] + Al B[z z]"]

+ 2‘Am,n|2 E [|mn72|2‘xn1|2]

N
+ Z |Am,j|2

j#n.j=1
X E[(|zj=[* + |25z (|zn,r]? +

® 2\Amn|2 (|20 2]"]

+2Z|Am|2
+2 Z |Am ;| E[

J#n,j=1

where (a) follows from circular symmetry of x and (b) from
Lemma 1. By combining the above results, we have

m=CHa, allC, + (allCya,,)(CI & 1)

Jnz1%)]

[z, *|zn,z]?]
[z, *|2n,r |°]

b |Am n|

x]n,na
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+ ([Cezlm,m — Urzn,)cx = UiamaH

m*

H. Derivation of Estimator 2

We now use Theorem 1 to derive Estimator 2 under Assump-
tions 2. To this end, we require the three quantities: T (y),
T,and V,,,, m = 1,..., M, which we derive separately.

Computing 7 (y) To derive an expression for 7 (y)
in (27), we need the following two results.

Lemma 2. Let u ~ CN(Opx1, L) be a complex-valued
circularly-symmetric jointly Gaussian random vector with
positive definite covariance matrix £ € CM*M_ Thep,
for the random variable v = exp(—u* Gu) with positive
definite G € CM*M gnd G + L~ positive definite, we
have the following result:

1

Ep|= ——
V] S

Proof. We first expand the expected value into

E[v] = E [exp(—u”Gu)] =

1
/(CM exp(—uf’Gu) T exp(—u’Z71u)du,

where |Z| > 0 is the determinant of . We can now simplify
the above expression as follows:

1
/(CM exp(—uf Gu) ] exp(—uf Z7u)du

1 _
_/CM7TM|Z|eXp(—uH(G—|—Z Yu)du

MG+ )T 1
B ™|z ™™[(G + 1)

X / exp (—u" (G +Z7")u)du
cM

(G+Z7H7 1 1
1| G |G HT)

where we also required that G+ ! is positive definite. W

Lemma 3. Ler u ~ N(u,X) be a real-valued Gaussian
random vector with mean 0 and covariance ¥, and v € RN
be a given vector. Then, we have

E[exp(—y"u)] = exp(—y"u + 147 Ly).

Proof. The proof is an immediate consequence of the mo-
ment generating function of a Gaussian random vector. W

By considering Lemma 2 and Lemma 3 for scalar random
variables, the mth entry of the preprocessed phaseless mea-
surement is given by

T (ym) = E[T (ym)] = E [exp(—7|2m|* — 7[€’]m)]

1
= -7 —_ e 1,2 C Yimm)-
’Y[Cz]m,m + 1 exp( ’Y[e ]m + 2’}/ [ ¢ ] ’ )
We define the following auxiliary vectors
q, = 7diag(Cyz) + Lamx1 (38)

p, = exp(—7e” + 37 diag(Cev)),  (39)
which enable us to rewrite the above expression in compact
vector form as

T(y) =py0q,.

Computing T To compute the matrix T in (30), we only
need to compute E [T (y)7 (y)*], which we will compute
entry-wise and in two separate steps. Concretely, we have

EIT (ym)T (ym:)] = E [exp(=y(|zm|* + |2m[*))]
x Elexp(—y([€¥]m + [€']m'))],

where we compute both expected values separately. In the
first step, we compute

E[exp(=y(|2m|* + |2m[?))] = E [exp(—u” Gu))],
with u = [2,,, zv]T and G = Iyy. By invoking Lemma 2
with [Z]'rn,m’ = [Cz]m,'m’, we obtain
1
]E €. — 2 —+ / 2 - —_—
B 1

(V[Calmm + D) (V[Calmm + 1) = V2|[Calm,m/ 2

With the definition of q, in (38), we can rewrite the above
expression in vector form as

E[exp(—7/2|) exp(—z|*)"]
= Larxnm @ (a9 —7°C, © C;).
In the second step, we compute
E[exp(—([']m + [€”]m))] = E[exp(—y"w)]

with u = [[€Y],, [€Y],]T and ¥T = [7,4]. By invoking
Lemma 3 with mean @ = [[€Y],,, [€Y],n/] and covariance &
given by the entries of the covariance matrix Cgv associated
to the indices m and m’, we obtain

Elexp(—v([*]n + [€*]mn))] = exp(—v([€"]m + [€"]im/))
X eXp(%Vz([Cey]m,m + [Cevlm’,m' + 2[Cev]m,m’))-

With the definition of p., in (39), we can rewrite the above
expression in vector form as

E [exp(—ye") exp(—7e¥)"] = (p,p]) © exp(7*Cer)
We furthermore have
TOTy)" = (Pp)) @ (a,al).
By combining the two steps with the above results, we have
T = (p,p2) © (exp(¥’Cev) @ (ayq} — 7*C. © Cj)
— Laxm @ (ayal)).
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Computing V,,, To compute the matrices V,,,

, M= _ K] Rl . = 1 K
., M, in (31), we only need]E['T(ym)xxH] which we B |C,~(|[ I = ‘R—l”ci‘[ ]
will compute entry-wise and in two steps. We have 1 ~
== - K]
E[T (ym)znzs] = Elexp(—vlalix + [e*]n|*)znz ] vanmall + C3'||Cx|
x Efexp(—y[e"]m)], - : K], -
[vamaZ Cx + In 41| [Kln,
where we next compute both expected values separately

As a first step, we use direct integration to compute the

We can now use the matrix-determinant lemma to simplify
following expected value:

"Yémégci + IN+1| = ’Yégcfcém +1
exp(—7lagmx + %] [*)

E[exp(—vlafix [ [P)na] = /

=v(0zllam|® +07,) +1
CN+1
( [|x]|? ) and the matrix inversion lemma to simplify
X
1 e |2 K= (757715*7};{ + le)_l
X o? exp ( > zpxy, dxd[e®],,. o ~Cxanal Cx
. y a5 Cxan + 1
We define the following auxiliary quantities e +Cianal Cy
a, = [ay,1] T oq@lanl? +ok) + 1
x! = [XT7 [€*]m ] By using these two simplifications, we have
o2In Onxi L.
Cx = [ Ofo o2, E [exp(—v[allx|?*)Z, 2} |
~ 1
-1 _ .z zH —1
K™ =~vapa,, +C; v(o2|lam|2 + 02) + 1
where 02, = E|[|[e*];n]2] = [Cn=]m,m. We now derive the

above expectation in compact form as

’}/(O'wHamH + Um) +1 n,n’
E [eXP(—ﬂégiF)fni;/] = and since we are only interested in the upper N x N part of
1 1 th trix K, we h,
- / exp(—y]af %2 — xH C1%)F, a0, dx o WERAVE
(mo2)N wo2 Joni . o i}
1 E [exp(—v|alix + [€7]n]*)znayy ]
= exp(—x (va,,all + C1%)7, 4%, dx 1
|7TC§(| CN+1 —
1 _ v(oFaml® + o7,) + 1
= exp(—xTK™'%)%,25, dx, 4, o H
|7T'C§(| CN+1 " x I:O'QI _ ’yaxamam :|
N 2 2 2
! 7(0z||a7n|‘ +Um)+1 n,n’
wheren=1,..., N+1,n' =1,..., N+1. We can further
rewrite this expression as

1 O_QIN _ 0o amam
1 V[CZ]m,m +1 07 ’Y[CZ]m»m +1 n.n’
— exp(—xP K 1%)7,5*,d%
| C ‘ n
TCOx| JoN+1

since for our assumptions
[mK]|

= xp(—x"TK~'%) i, 5, dx. o2llamll® + 02, = [Celmm-
|7K||mCx| Jon+1

. . I t matrix form, we h

It is now key to realize that i compact matrix fofm, we hiave

X o E [exp(—lax + e} 2"
ﬁ v eXp( K™ X)mn /dX

= E[jnj:y] = [K]n,n’

VCalmm +1 7 VCelmm +1

and hence we have As a second step, we use definition (39) and obtain

E [exp(—|aL%[%) 5]

Elexp(—v[e¥]m)] = [Py]m
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By combining both steps, we obtain _ V03[P~ ]m H
=— 5 Ama,,,
D] < ) vola,all (V[Calm,m +1)
V,, = . Wylm JmI N — Wn)
Y[Calmm + 1 Y[Calm,m + 1 which is what we desperately wanted to show.
S

'V[Cz]m,m +1 *



