Supplementary Material: Linear Spectral Estimators and an Application to Phase Retrieval

Ramina Ghods ${ }^{1}$ Andrew S. Lan ${ }^{2}$ Tom Goldstein ${ }^{3}$ Christoph Studer ${ }^{1}$

Abstract

This document includes additional proofs for the estimation error of spectral initializers, discusses the real-valued LSPE, and provides detailed derivations for each of the proposed LSPE.

D. Proof of Proposition 1

Our goal is to first evaluate the S-MSE of the unnormalized spectral initializer in (2)

$$
U S-M S E_{\mathrm{SI}}=\mathbb{E}\left[\left\|\beta \sum_{m=1}^{M} \mathcal{T}\left(y_{m}\right) \mathbf{a}_{m} \mathbf{a}_{m}^{H}-\mathbf{x x}^{H}\right\|_{F}^{2}\right]
$$

and then minimize the resulting expression over the parameter β. The unnormalized spectral MSE can be expanded into the following form:

$$
\begin{aligned}
& |\beta|^{2} \sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathcal{T}\left(y_{m^{\prime}}\right)\right] \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}} \mathbf{a}_{m^{\prime}}^{H}\right) \\
& -\beta^{*} \sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{x} \mathbf{x}^{H}\right]\right) \\
& -\beta \sum_{m=1}^{M} \operatorname{tr}\left(\mathbb{E}\left[\mathbf{x} \mathbf{x}^{H} \mathcal{T}\left(y_{m}\right)\right] \mathbf{a}_{m} \mathbf{a}_{m}^{H}\right) \\
& +\mathbb{E}\left[\left\|\mathbf{x} \mathbf{x}^{H}\right\|_{F}^{2}\right]
\end{aligned}
$$

By using the definitions

$$
\begin{aligned}
\widetilde{\mathbf{V}}_{m} & =\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{x} \mathbf{x}^{H}\right], m=1, \ldots, M \\
\widetilde{\mathbf{T}} & =\mathbb{E}\left[\mathcal{T}(\mathbf{y}) \mathcal{T}(\mathbf{y})^{T}\right]
\end{aligned}
$$

we can simplify the above expression into

$$
\begin{align*}
& |\beta|^{2} \sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}+\mathbb{E}\left[\left\|\mathbf{x} \mathbf{x}^{H}\right\|_{F}^{2}\right] \\
& -\beta^{*} \sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right)-\beta \sum_{m=1}^{M} \operatorname{tr}\left(\widetilde{\mathbf{V}}_{m}^{H} \mathbf{a}_{m} \mathbf{a}_{m}^{H}\right) . \tag{24}
\end{align*}
$$

We can now find the optimal parameter for β by taking the derivative with respect to β^{*} and setting the expression to zero. The resulting optimal scaling parameter is given by

$$
\hat{\beta}=\frac{\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \tilde{\mathbf{V}}_{m}\right)}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}}
$$

We now plug in $\hat{\beta}$ into the expression (24), which yields

$$
\begin{align*}
& S-M S E_{\mathrm{SI}}=\left|\frac{\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right)}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}}\right|^{2} \tag{25}\\
& \quad \times \sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2} \\
& -\frac{\sum_{m=1}^{M} \operatorname{tr}\left(\widetilde{\mathbf{V}}_{m}^{H} \mathbf{a}_{m} \mathbf{a}_{m}^{H}\right)}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}^{*}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}} \sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right) \\
& -\frac{\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right)}{\sum_{m=1}^{M} \sum_{m m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}} \sum_{m=1}^{M} \operatorname{tr}\left(\widetilde{\mathbf{V}}_{m}^{H} \mathbf{a}_{m} \mathbf{a}_{m}^{H}\right) \\
& +\mathbb{E}\left[\left\|\mathbf{x} \mathbf{x}^{H}\right\|_{F}^{2}\right] .
\end{align*}
$$

This expression can be simplified further to obtain:

$$
\begin{aligned}
S-M S E_{\mathrm{SI}}= & \frac{\left|\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \tilde{\mathbf{V}}_{m}\right)\right|^{2}}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}^{*}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}} \\
& -\frac{\left|\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right)\right|^{2}}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}^{*}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{\left.m^{\prime}\right|^{2}}\right|^{2}} \\
& -\frac{\left|\sum_{m=1}^{M} \operatorname{tr}\left(\mathbf{a}_{m} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m}\right)\right|^{2}}{\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}} \\
& +\mathbb{E}\left[\left\|\mathbf{x} \mathbf{x}^{H}\right\|_{F}^{2}\right], \\
& =R_{\mathbf{x x}^{H}}-\frac{\left|\sum_{m=1}^{M} \mathbf{a}_{m}^{H} \widetilde{\mathbf{V}}_{m} \mathbf{a}_{m}\right|^{2}}{\sum_{m=1}^{M} \sum_{m m^{\prime}=1}^{M} \widetilde{T}_{m, m^{\prime}}\left|\mathbf{a}_{m}^{H} \mathbf{a}_{m^{\prime}}\right|^{2}}
\end{aligned}
$$

which is what we wanted to show in (12).

E. Real-Valued Phase Retrieval

We now focus on the case where the signal vector \mathbf{x} to be recovered and the measurement matrix \mathbf{A} are both real-valued. We derive the LSPE by using the following assumptions, which are reasonable for phase retrieval problems.
Assumptions 3. Let $\mathcal{H}=\mathbb{R}$. Assume square measurements $f(z)=z^{2}$ and the identity preprocessing function $\mathcal{T}(y)=y$. Assume that the signal vector $\mathbf{x} \in \mathbb{R}^{N}$ is i.i.d. zero-mean Gaussian distributed with covariance matrix $\mathbf{C}_{\mathbf{x}}=\sigma_{x}^{2} \mathbf{I}_{N}$, i.e., $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}_{N \times 1}, \sigma_{x}^{2} \mathbf{I}_{N}\right)$; the parameter σ_{x}^{2} denotes the signal variance. Assume that the signal noise vector \mathbf{e}^{z} is zero-mean Gaussian with covariance matrix $\mathbf{C}_{\mathbf{e}^{z}}$, i.e., $\mathbf{e}^{z} \sim \mathcal{N}\left(\mathbf{0}_{M \times 1}, \mathbf{C}_{\mathbf{e}^{z}}\right)$, and the measurement noise vector \mathbf{e}^{y} is Gaussian with mean $\overline{\mathbf{e}}^{y}$ and covariance matrix $\mathbf{C}_{\mathbf{e}^{y}}$, i.e., $\mathbf{e}^{y} \sim \mathcal{N}\left(\overline{\mathbf{e}}^{y}, \mathbf{C}_{\mathbf{e}^{y}}\right)$. Furthermore assume that \mathbf{x}, \mathbf{e}^{z}, and \mathbf{e}^{y} are independent.

Under these assumptions, we can derive the following LSPE which we call LSPE-R ; the detailed derivations of this spectral estimator are given in Appendix F.
Estimator 3 (LSPE-R). Let Assumptions 3 hold. Then, the spectral estimation matrix is given by

$$
\begin{equation*}
\mathbf{D}_{\mathbf{y}}^{\mathbb{R}}=\mathbf{K}_{\mathbf{x}}+\sum_{m=1}^{M} t_{m} \mathbf{V}_{m} \tag{26}
\end{equation*}
$$

where $\mathbf{K}_{\mathbf{x}}=\sigma_{x}^{2} \mathbf{I}_{N}$, the vector $\mathbf{t} \in \mathbb{R}^{M}$ is given by the solution to the linear system $\mathbf{T} \mathbf{t}=\mathbf{y}-\overline{\mathbf{y}}$ with

$$
\begin{aligned}
\overline{\mathbf{y}} & =\operatorname{diag}\left(\mathbf{C}_{\mathbf{z}}\right)+\overline{\mathbf{e}}^{y} \\
\mathbf{C}_{\mathbf{z}} & =\sigma_{x}^{2} \mathbf{A} \mathbf{A}^{T}+\mathbf{C}_{\mathbf{e}^{z}} \\
\mathbf{T} & =2 \mathbf{C}_{\mathbf{z}} \odot \mathbf{C}_{\mathbf{z}}+\mathbf{C}_{\mathbf{e}^{y}}
\end{aligned}
$$

and $\mathbf{V}_{m}=2 \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{T}, m=1, \ldots, M$. The spectral estimate $\hat{\mathbf{x}}$ is given by the (scaled) leading eigenvector of $\mathbf{D}_{\mathbf{y}}^{\mathbb{R}}$ in (26). Furthermore, the S-MSE is given by Theorem 2.

F. Derivation of Estimator 3

We now use Theorem 1 to derive Estimator 3 under Assumptions 3 . To this end, we require the three quantities: $\overline{\mathcal{T}}(\mathbf{y})$, \mathbf{T}, and $\mathbf{V}_{m}, m=1, \ldots, M$, which we derive separately.

Computing $\overline{\mathcal{T}}(\mathbf{y})$ To compute the real-valued vector

$$
\begin{equation*}
\overline{\mathcal{T}}(\mathbf{y})=\mathbb{E}[\mathcal{T}(\mathbf{y})] \tag{27}
\end{equation*}
$$

we need the following result on the bivariate folded normal distribution developed in (Kan \& Robotti, 2017, Sec. 3.1).
Lemma 1. Let $\left[u_{1}, u_{2}\right] \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ be a pair of real-valued jointly Gaussian random variables with covariance matrix

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{1,2}^{2} \\
\sigma_{1,2}^{2} & \sigma_{2}^{2}
\end{array}\right]
$$

Then, for $m=1,2$, the pair of random variables $\left(\nu_{1}, \nu_{2}\right)$ with $\nu_{1}=u_{1}^{2}$ and $\nu_{2}=u_{2}^{2}$ follows the bivariate folded normal distribution with the following (centered) moments:

$$
\begin{aligned}
\bar{\nu}_{m} & =\mathbb{E}\left[u_{m}^{2}\right]=\sigma_{m}^{2}+\mu_{m}^{2} \\
{\left[\mathbf{C}_{\boldsymbol{\nu}}\right]_{1,2} } & =\mathbb{E}\left[\left(\nu_{1}-\overline{\nu_{1}}\right)\left(\nu_{2}-\overline{\nu_{2}}\right)\right] \\
& =4 \mu_{1} \mu_{2} \sigma_{1,2}^{2}+2 \sigma_{1,2}^{4} \\
{\left[\mathbf{C}_{\boldsymbol{\nu}}\right]_{1,1} } & =\mathbb{E}\left[\left(\nu_{1}-\overline{\nu_{1}}\right)^{2}\right]=2 \sigma_{1}^{4}+4 \mu_{1}^{2} \sigma_{1}^{2} .
\end{aligned}
$$

Let $\overline{\mathbf{z}}=\mathbb{E}[\mathbf{z}]$ denote the mean vector and $\mathbf{C}_{\mathbf{z}}=\mathbf{A} \mathbf{C}_{\mathbf{x}} \mathbf{A}^{H}+$ $\mathbf{C}_{\mathbf{e}^{z}}=\sigma_{x}^{2} \mathbf{A} \mathbf{A}^{H}+\mathbf{C}_{\mathbf{e}^{z}}$ the covariance matrix of the "phased" measurements $\mathbf{z}=\mathbf{A x}+\mathbf{e}^{z}$. Then, by defining $\sigma_{m}^{2}=\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}$, we can compute the m th entry $\overline{\mathcal{T}}\left(y_{m}\right)$ using Lemma 1 as follows:

$$
\begin{equation*}
\overline{\mathcal{T}}\left(y_{m}\right)=\bar{y}_{m}=\mathbb{E}\left[\left|z_{m}\right|^{2}+n_{m}^{y}\right]=\sigma_{m}^{2}+\bar{e}_{m}^{y} \tag{28}
\end{equation*}
$$

Hence, in compact vector notation we have

$$
\begin{equation*}
\overline{\mathcal{T}}(\mathbf{y})=\overline{\mathbf{y}}=\operatorname{diag}\left(\mathbf{C}_{\mathbf{z}}\right)+\overline{\mathbf{e}}^{y} \tag{29}
\end{equation*}
$$

Computing T To compute the real-valued matrix

$$
\begin{align*}
\mathbf{T} & =\mathbb{E}\left[(\mathcal{T}(\mathbf{y})-\overline{\mathcal{T}}(\mathbf{y}))(\mathcal{T}(\mathbf{y})-\overline{\mathcal{T}}(\mathbf{y}))^{T}\right] \\
& =\mathbb{E}\left[\mathcal{T}(\mathbf{y}) \mathcal{T}(\mathbf{y})^{T}\right]-\overline{\mathcal{T}}(\mathbf{y}) \overline{\mathcal{T}}(\mathbf{y})^{T} \tag{30}
\end{align*}
$$

we only need to compute the matrix $\mathbb{E}\left[\mathcal{T}(\mathbf{y}) \mathcal{T}(\mathbf{y})^{T}\right]$ as the vector $\overline{\mathcal{T}}(\mathbf{y})$ was computed in (29). We compute this matrix entry-wise as

$$
\begin{aligned}
T_{m, m^{\prime}}= & \mathbb{E}\left[\left(\mathcal{T}\left(y_{m}\right)-\overline{\mathcal{T}}\left(y_{m}\right)\right)\left(\mathcal{T}\left(y_{m^{\prime}}\right)-\overline{\mathcal{T}}\left(y_{m^{\prime}}\right)\right)\right] \\
= & \mathbb{E}\left[y_{m} y_{m^{\prime}}^{*}\right]-\bar{y}_{m} \bar{y}_{m^{\prime}}^{*} \\
\stackrel{(\mathrm{a})}{=} & \mathbb{E}\left[\left(\left|z_{m}\right|^{2}+e_{m}^{y}\right)\left(\left|z_{m^{\prime}}\right|^{2}+e_{m^{\prime}}^{y}\right)\right] \\
& -\left(\sigma_{m}^{2}+\bar{e}_{m}^{y}\right)\left(\sigma_{m^{\prime}}^{2}+\bar{e}_{m^{\prime}}^{y}\right) \\
= & \mathbb{E}\left[\left|z_{m}\right|^{2}\left|z_{m^{\prime}}\right|^{2}\right]-\sigma_{m^{\prime}}^{2} \sigma_{m}^{2}+\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m^{\prime}},
\end{aligned}
$$

where (a) follows from (28). The only unknown term in the above expression is $\mathbb{E}\left[\left|z_{m}\right|^{2}\left|z_{m^{\prime}}\right|^{2}\right]$. This term is the second moment of the random vector $\left[\left|z_{m}\right|^{2},\left|z_{m^{\prime}}\right|^{2}\right]$, which follows a bivariate folded normal distribution. For $m \neq m^{\prime}$, Lemma 1 yields

$$
\mathbb{E}\left[\left|z_{m}\right|^{2}\left|z_{m^{\prime}}\right|^{2}\right]=\sigma_{m}^{2} \sigma_{m^{\prime}}^{2}+2 \sigma_{m, m^{\prime}}^{4}
$$

with $\sigma_{m, m^{\prime}}^{2}=\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m^{\prime}}$. For $m=m^{\prime}$, Lemma 1 yields

$$
\mathbb{E}\left[\left|y_{m}\right|^{2}\right]=\mathbb{E}\left[\left|z_{m}\right|^{4}\right]=3 \sigma_{m}^{4} .
$$

Hence, we have

$$
T_{m, m^{\prime}}=\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m^{\prime}}+ \begin{cases}2 \sigma_{m, m^{\prime}}^{4} & \text { if } m \neq m^{\prime} \\ 2 \sigma_{m}^{4} & \text { if } m=m^{\prime}\end{cases}
$$

which can be written in compact matrix form as

$$
\mathbf{T}=2 \mathbf{C}_{\mathbf{z}} \odot \mathbf{C}_{\mathbf{z}}+\mathbf{C}_{\mathbf{e}^{y}}
$$

Computing \mathbf{V}_{m} To compute the matrices

$$
\begin{align*}
\mathbf{V}_{m} & =\mathbb{E}\left[\left(\mathcal{T}\left(y_{m}\right)-\overline{\mathcal{T}}\left(y_{m}\right)\right)\left(\mathbf{x x}^{H}-\mathbf{K}_{\mathbf{x}}\right)\right] \\
& =\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{\mathbf { x } ^ { H }}\right]-\overline{\mathcal{T}}\left(y_{m}\right) \mathbf{K}_{\mathbf{x}} \tag{31}
\end{align*}
$$

for $m=1, \ldots, M$, we only need to compute the complexvalued matrix $\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{x} \mathbf{x}^{H}\right]$ as the two other quantities $\mathbf{K}_{\mathbf{x}}=\mathbb{E}\left[\mathbf{x} \mathbf{x}^{H}\right]$ and $\overline{\mathcal{T}}\left(y_{m}\right)$ are known. We compute this matrix entry-wise as

$$
\begin{aligned}
{\left[\mathbf{V}_{m}\right]_{n, n^{\prime}} } & =\mathbb{E}\left[\left(\mathcal{T}\left(y_{m}\right)-\overline{\mathcal{T}}\left(y_{m}\right)\right) x_{n} x_{n^{\prime}}^{*}\right] \\
& =\mathbb{E}\left[y_{m} x_{n} x_{n^{\prime}}^{*}\right]-\bar{y}_{m}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n^{\prime}} .
\end{aligned}
$$

Since \bar{y}_{m} is known from (28), we focus on computing

$$
\begin{align*}
\mathbb{E} & {\left[y_{m} x_{n} x_{n^{\prime}}^{*}\right] } \\
= & \mathbb{E}\left[\left(\left(\sum_{j=1}^{N} A_{m, j}^{*} x_{j}^{*}+e_{m}^{z}\right)\right.\right. \\
& \left.\left.\times\left(\sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} x_{j^{\prime}}+e_{m}^{z}\right)+e_{m}^{y}\right) x_{n} x_{n^{\prime}}^{*}\right] \\
= & \mathbb{E}\left[\left(\sum_{j=1}^{N} A_{m, j}^{*} x_{j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} x_{j^{\prime}}\right) x_{n} x_{n^{\prime}}^{*}\right] \\
& +\mathbb{E}\left[\left|e_{m}^{z}\right|^{2} x_{n} x_{n^{\prime}}^{*}\right]+\mathbb{E}\left[e_{m}^{y} x_{n} x_{n^{\prime}}^{*}\right] \\
= & \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \tag{32}\\
& +\left(\left[\mathbf{C}_{\mathbf{e}^{z}}\right]_{m, m}+\bar{e}_{m}^{y}\right)\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n^{\prime}} .
\end{align*}
$$

The only unknown in the above expression is the double summation in (32). Since we assumed that the entries of the signal vector x are i.i.d., most of the terms in this summation are zero. For $n \neq n^{\prime}$, there are only two nonzero terms, corresponding to the cases of $\left(j, j^{\prime}\right)=\left(n, n^{\prime}\right)$ and $\left(j, j^{\prime}\right)=$ $\left(n^{\prime}, n\right)$. Thus, for $n \neq n^{\prime}$ we have

$$
\begin{align*}
& \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \\
&=2 A_{m, n}^{*} A_{m, n^{\prime}} \mathbb{E}\left[\left|x_{n}\right|^{2}\left|x_{n^{\prime}}\right|^{2}\right] \\
& \stackrel{(\text { b) }}{=} 2 A_{m, n}^{*} A_{m, n^{\prime}}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}\left[\mathbf{C}_{\mathbf{x}}\right]_{n^{\prime}, n^{\prime}}, \tag{33}
\end{align*}
$$

where (b) follows from Lemma 1. For $n=n^{\prime}$, we have

$$
\begin{aligned}
& \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n}^{*}\right] \\
& =\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n}\right|^{4}\right]+\sum_{j \neq n, j=1}^{N}\left|A_{m, j}\right|^{2} \mathbb{E}\left[\left|x_{j}\right|^{2}\left|x_{n}\right|^{2}\right] \\
& \stackrel{(c)}{=} 3\left|A_{m, n}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}^{2}+\sum_{j \neq n, j=1}^{N}\left|A_{m, j}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{j, j}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}
\end{aligned}
$$

$$
=2\left|A_{m, n}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}^{2}+\sum_{j=1}^{N}\left|A_{m, j}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{j, j}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}
$$

As for (33), (c) follows from Lemma 1. By combining the above results, we have

$$
\begin{aligned}
\mathbf{V}_{m}= & 2 \mathbf{C}_{\mathbf{x}}^{H} \mathbf{a}_{m} \mathbf{a}_{m}^{H} \mathbf{C}_{\mathbf{x}}+\left(\mathbf{a}_{m}^{H} \mathbf{C}_{\mathbf{x}} \mathbf{a}_{m}\right)\left(\mathbf{C}_{\mathbf{x}}^{H} \odot \mathbf{I}\right) \\
& +\left(\left[\mathbf{C}_{\mathbf{e}^{z}}\right]_{m, m}-\sigma_{m}^{2}\right) \mathbf{C}_{\mathbf{x}}=2 \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}
\end{aligned}
$$

where \mathbf{a}_{m}^{H} denotes the m th row of the matrix \mathbf{A}.

G. Derivation of Estimator 1

We now use Theorem 1 to derive Estimator 1 under Assumptions 1 . To this end, we require the three quantities: $\overline{\mathcal{T}}(\mathbf{y})$, \mathbf{T}, and $\mathbf{V}_{m}, m=1, \ldots, M$, which we derive separately.

Computing $\overline{\mathcal{T}}(\mathbf{y})$ To compute the real-valued vector $\overline{\mathcal{T}}(\mathbf{y})=\overline{\mathbf{y}}$ in (27), we need the following definitions. Let $\overline{\mathbf{z}}=\mathbb{E}[\mathbf{z}]$ denote the mean vector and $\mathbf{C}_{\mathbf{z}}=\mathbf{A} \mathbf{C}_{\mathbf{x}} \mathbf{A}^{H}+$ $\mathbf{C}_{\mathbf{e}^{z}}=\sigma_{x}^{2} \mathbf{A} \mathbf{A}^{H}+\mathbf{C}_{\mathbf{e}^{z}}$ the covariance matrix of the "phased" measurements $\mathbf{z}=\mathbf{A x}+\mathbf{e}^{z}$. Then, using Lemma 1 with the definitions $\overline{\mathbf{z}}$ and $\mathbf{C}_{\mathbf{z}}$, we have

$$
\begin{align*}
\bar{y}_{m} & =\mathbb{E}\left[\left|z_{m}\right|^{2}+\bar{e}_{m}^{y}\right]=\mathbb{E}\left[\left|z_{m, \mathcal{R}}\right|^{2}+\left|z_{m, \mathcal{I}}\right|^{2}+\bar{e}_{m}^{y}\right] \\
& =\sigma_{m}^{2}+\bar{e}_{m}^{y} \tag{34}
\end{align*}
$$

where we have used the definition $\sigma_{m}^{2}=\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}$. Hence, in compact vector notation we have

$$
\overline{\mathcal{T}}(\mathbf{y})=\overline{\mathbf{y}}=\operatorname{diag}\left(\mathbf{C}_{\mathbf{z}}\right)+\overline{\mathbf{e}}^{y}
$$

Computing \mathbf{T} To compute the real-valued matrix \mathbf{T} in (30), we will frequently use the following result. Since the vector \mathbf{z} is a complex circularly-symmetric jointly Gaussian vector, we can extract the covariance matrices of the real and imaginary parts separately as:

$$
\begin{align*}
& \mathbb{E}\left[\mathbf{z}_{\mathcal{I}} \mathbf{z}_{\mathcal{I}}^{H}\right] \stackrel{(\mathrm{a})}{=} \mathbb{E}\left[\mathbf{z}_{\mathcal{R}} \mathbf{z}_{\mathcal{R}}^{H}\right]=\frac{1}{2} \Re\left\{\mathbf{C}_{\mathbf{z}}\right\}=\frac{1}{2} \mathbf{C}_{\mathbf{z}, \mathcal{R}} \tag{35}\\
& \mathbb{E}\left[\mathbf{z}_{\mathcal{R}} \mathbf{z}_{\mathcal{I}}^{H}\right]=-\mathbb{E}\left[\mathbf{z}_{\mathcal{I}} \mathbf{z}_{\mathcal{R}}^{H}\right]=\frac{1}{2} \Im\left\{\mathbf{C}_{\mathbf{z}}\right\}=\frac{1}{2} \mathbf{C}_{\mathbf{z}, \mathcal{I}} \tag{36}
\end{align*}
$$

where (a) follows from circular symmetry of the random vector \mathbf{x}. We are now ready to compute the individual entries of $\mathbb{E}\left[\mathcal{T}(\mathbf{y}) \mathcal{T}(\mathbf{y})^{T}\right]$ as

$$
\begin{aligned}
T_{m, m^{\prime}} & =\mathbb{E}\left[\left(\mathcal{T}\left(y_{m}\right)-\overline{\mathcal{T}}\left(y_{m}\right)\right)\left(\mathcal{T}\left(y_{m^{\prime}}\right)-\overline{\mathcal{T}}\left(y_{m^{\prime}}\right)\right)\right] \\
& =\mathbb{E}\left[\left(y_{m}-\bar{y}_{m}\right)\left(y_{m^{\prime}}-\bar{y}_{m^{\prime}}\right)^{*}\right] \\
& =\mathbb{E}\left[y_{m} y_{m^{\prime}}^{*}\right]-\bar{y}_{m} \bar{y}_{m^{\prime}}^{*} .
\end{aligned}
$$

The quantity \bar{y}_{m} is given by (34). Hence, we now compute

$$
\mathbb{E}\left[y_{m} y_{m^{\prime}}^{*}\right]
$$

$$
\begin{aligned}
= & \mathbb{E}\left[\left(\left|z_{m}\right|^{2}+e_{m}^{y}\right)\left(\left|z_{m}^{\prime}\right|^{2}+e_{m^{\prime}}^{y}\right)^{*}\right] \\
= & \mathbb{E}\left[\left(\left|z_{m, \mathcal{R}}\right|^{2}+\left|z_{m, \mathcal{I}}\right|^{2}\right)\left(\left|z_{m^{\prime}, \mathcal{R}}\right|^{2}+\left|z_{m^{\prime}, \mathcal{I}}\right|^{2}\right)\right] \\
& +\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m} \\
= & 2 \mathbb{E}\left[\left|z_{m, \mathcal{R}}\right|^{2}\left|z_{m^{\prime}, \mathcal{R}}\right|^{2}\right]+2 \mathbb{E}\left[\left|z_{m, \mathcal{R}}\right|^{2}\left|z_{m^{\prime}, \mathcal{I}}\right|^{2}\right] \\
& +\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m}
\end{aligned}
$$

The first two terms above are a second moment of the variables $\left[\left|z_{m, \mathcal{R}}\right|^{2},\left|z_{m^{\prime}, \mathcal{R}}\right|^{2}\right]$ and $\left[\left|z_{m, \mathcal{R}}\right|^{2},\left|z_{m^{\prime}, \mathcal{I}}\right|^{2}\right]$, which follow a bivariate folded normal distributions. We first focus on $\left[\left|z_{m, \mathcal{R}}\right|^{2},\left|z_{m^{\prime}, \mathcal{R}}\right|^{2}\right]$. With Lemma 1 , we can calculate the moments using the covariance $\mathbb{E}\left[\mathbf{z}_{\mathcal{R}} \mathbf{z}_{\mathcal{R}}{ }^{H}\right]$ given in (35). To this end, define $\sigma_{m, m^{\prime}, \mathcal{R}}^{2}=\left[\mathbf{C}_{\mathbf{z}, \mathcal{R}}\right]_{m, m^{\prime}}$ and $\sigma_{m, \mathcal{R}}^{2}=\left[\mathbf{C}_{\mathbf{z}, \mathcal{R}}\right]_{m, m}$. Thus, we have
$\mathbb{E}\left[\left|z_{m, \mathcal{R}}\right|^{2}\left|z_{m^{\prime}, \mathcal{R}}\right|^{2}\right]= \begin{cases}\frac{\sigma_{m, \mathcal{R}}^{2}}{2} \frac{\sigma_{m^{\prime}, \mathcal{R}}^{2}}{2}+\frac{\sigma_{m, m^{\prime}, \mathcal{R}}^{4}}{2}, & m \neq m^{\prime} \\ 3 \frac{\sigma_{m, \mathcal{R}}^{4}}{4}, & m=m^{\prime} .\end{cases}$
Analogously, we can compute $\mathbb{E}\left[\mathbf{z}_{\mathcal{R}} \mathbf{z}_{\mathcal{I}}^{H}\right]$ in (36) from the covariance matrix of $\left[\left|z_{m, \mathcal{R}}\right|^{2},\left|z_{m^{\prime}, \mathcal{I}}\right|^{2}\right]$, with $\sigma_{m, m^{\prime}, \mathcal{I}}^{2}=$ $\left[\mathbf{C}_{\mathbf{z}, \mathcal{I}}\right]_{m, m^{\prime}}$ and noting that $\sigma_{m, \mathcal{I}}^{2}=\left[\mathbf{C}_{\mathbf{z}, \mathcal{I}}\right]_{m, m}=0$ as
$\mathbb{E}\left[\left|z_{m, \mathcal{R}}\right|^{2}\left|z_{m^{\prime}, \mathcal{I}}\right|^{2}\right]= \begin{cases}\frac{\sigma_{m, \mathcal{R}}^{2}}{2} \frac{\sigma_{m^{\prime}, \mathcal{R}}^{2}}{2}+2 \frac{\sigma_{m, m^{\prime}, \mathcal{I}}^{4}}{4}, & m \neq m^{\prime} \\ 3 \frac{\sigma_{m, \mathcal{R}}^{4}}{4}, & m=m^{\prime} .\end{cases}$ By combining the above results, we have

$$
\begin{aligned}
T_{m, m^{\prime}}= & \begin{cases}\sigma_{m, \mathcal{R}}^{2} \sigma_{m^{\prime}, \mathcal{R}}^{2}+\sigma_{m, m^{\prime}, \mathcal{R}}^{4}+\sigma_{m, m^{\prime}, \mathcal{I}}^{4}, & m \neq m^{\prime} \\
2 \sigma_{m, \mathcal{R}}^{4}, & m=m^{\prime}\end{cases} \\
& +\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m^{\prime}}-\bar{y}_{m} \bar{y}_{m^{\prime}}^{*} \\
= & {\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m^{\prime}}+ \begin{cases}\sigma_{m, m^{\prime}, \mathcal{R}}^{4}+\sigma_{m, m^{\prime}, \mathcal{I}}^{4}, & m \neq m^{\prime} \\
\sigma_{m, \mathcal{R}}^{4}, & m=m^{\prime}\end{cases} }
\end{aligned}
$$

which can be written in matrix form as

$$
\mathbf{T}=\mathbf{C}_{\mathbf{z}} \odot \mathbf{C}_{\mathbf{z}}^{*}+\mathbf{C}_{\mathbf{e}^{y}}
$$

Computing \mathbf{V}_{m} To compute the matrices $\mathbf{V}_{m}, m=$ $1, \ldots, M$, in (31), we need the complex-valued matrix $\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{x} \mathbf{x}^{H}\right]$. We compute this matrix entry-wise as

$$
\begin{aligned}
{\left[\mathbf{V}_{m}\right]_{n, n^{\prime}} } & =\mathbb{E}\left[\left(\mathcal{T}\left(y_{m}\right)-\overline{\mathcal{T}}\left(y_{m}\right)\right) x_{n} x_{n^{\prime}}^{*}\right] \\
& =\mathbb{E}\left[y_{m} x_{n} x_{n^{\prime}}^{*}\right]-\bar{y}_{m}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n^{\prime}} .
\end{aligned}
$$

Since \bar{y}_{m} is given by (34), we only need to compute

$$
\begin{aligned}
& \mathbb{E}\left[y_{m} x_{n} x_{n^{\prime}}^{*}\right] \\
& =\mathbb{E}\left[\left(\left(\sum_{j=1}^{N} A_{m, j}^{*} x_{j}^{*}+e_{m}^{z *}\right)\right.\right. \\
& \left.\left.\quad \times\left(\sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} x_{j^{\prime}}+e_{m}^{z}\right)+e_{m}^{y}\right) x_{n} x_{n^{\prime}}^{*}\right]
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \\
& +\mathbb{E}\left[\left|e_{m}^{z}\right|^{2} x_{n} x_{n^{\prime}}^{*}\right]+\mathbb{E}\left[e_{m}^{y} x_{n} x_{n^{\prime}}^{*}\right] \\
= & \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \tag{37}\\
& +\left(\left[\mathbf{C}_{\mathbf{e}^{z}}\right]_{m, m}+\bar{e}_{m}^{y}\right)\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n^{\prime}}
\end{align*}
$$

We will first simplify the term

$$
\sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right]
$$

Since we assumed that the signal vector \mathbf{x} has i.i.d. zeromean entries, most of the terms in this summation are zero. For $n \neq n^{\prime}$, there is only one non-zero term for $\left(j, j^{\prime}\right)=$ $\left(n, n^{\prime}\right)$. Thus, for $n \neq n^{\prime}$ we have

$$
\begin{aligned}
\sum_{j=1}^{N} A_{m, j}^{*} & \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \\
& =A_{m, n}^{*} A_{m, n^{\prime}}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}\left[\mathbf{C}_{\mathbf{x}}\right]_{n^{\prime}, n^{\prime}}
\end{aligned}
$$

since the term that corresponds to $\left(j, j^{\prime}\right)=\left(n^{\prime}, n\right)$, i.e. $A_{m, n^{\prime}}^{*} A_{m, n} \mathbb{E}\left[x_{n^{\prime}}^{*} x_{n^{\prime}}^{*}\right] \mathbb{E}\left[x_{n} x_{n}\right]$, is zero.
Next, for $n=n^{\prime}$, we have

$$
\begin{aligned}
& \sum_{j=1}^{N} A_{m, j}^{*} \sum_{j^{\prime}=1}^{N} A_{m, j^{\prime}} \mathbb{E}\left[x_{j}^{*} x_{j^{\prime}} x_{n} x_{n^{\prime}}^{*}\right] \\
& =\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n}\right|^{4}\right]+\sum_{j \neq k, j=1}^{N}\left|A_{m, j}\right|^{2} \mathbb{E}\left[\left|x_{j}\right|^{2}\left|x_{n}\right|^{2}\right] \\
& =\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n, \mathcal{R}}\right|^{4}\right]+\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n, \mathcal{I}}\right|^{4}\right] \\
& +2\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n, \mathcal{R}}\right|^{2}\left|x_{n, \mathcal{I}}\right|^{2}\right] \\
& +\sum_{j \neq n, j=1}^{N}\left|A_{m, j}\right|^{2} \\
& \times \mathbb{E}\left[\left(\left|x_{j, \mathcal{R}}\right|^{2}+\left|x_{j, \mathcal{I}}\right|^{2}\right)\left(\left|x_{n, \mathcal{R}}\right|^{2}+\left|x_{n, \mathcal{I}}\right|^{2}\right)\right] \\
& \stackrel{(\text { a) }}{=} 2\left|A_{m, n}\right|^{2} \mathbb{E}\left[\left|x_{n, \mathcal{R}}\right|^{4}\right] \\
& +2 \sum_{j=1}^{N}\left|A_{m, j}\right|^{2} \mathbb{E}\left[\left|x_{j, \mathcal{R}}\right|^{2}\left|x_{n, \mathcal{I}}\right|^{2}\right] \\
& +2 \sum_{j \neq n, j=1}^{N}\left|A_{m, j}\right|^{2} \mathbb{E}\left[\left|x_{j, \mathcal{R}}\right|^{2}\left|x_{n, \mathcal{R}}\right|^{2}\right] \\
& \stackrel{(\mathrm{b})}{=}\left|A_{m, n}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n}^{2}+\sum_{j=1}^{N}\left|A_{m, j}\right|^{2}\left[\mathbf{C}_{\mathbf{x}}\right]_{j, j}\left[\mathbf{C}_{\mathbf{x}}\right]_{n, n},
\end{aligned}
$$

where (a) follows from circular symmetry of \mathbf{x} and (b) from Lemma 1. By combining the above results, we have

$$
\mathbf{V}_{m}=\mathbf{C}_{\mathbf{x}}^{H} \mathbf{a}_{m} \mathbf{a}_{m}^{H} \mathbf{C}_{\mathbf{x}}+\left(\mathbf{a}_{m}^{H} \mathbf{C}_{\mathbf{x}} \mathbf{a}_{m}\right)\left(\mathbf{C}_{\mathbf{x}}^{H} \odot \mathbf{I}\right)
$$

$$
+\left(\left[\mathbf{C}_{\mathbf{e}^{z}}\right]_{m, m}-\sigma_{m}^{2}\right) \mathbf{C}_{\mathbf{x}}=\sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}
$$

H. Derivation of Estimator 2

We now use Theorem 1 to derive Estimator 2 under Assumptions 2. To this end, we require the three quantities: $\overline{\mathcal{T}}(\mathbf{y})$, \mathbf{T}, and $\mathbf{V}_{m}, m=1, \ldots, M$, which we derive separately.

Computing $\overline{\mathcal{T}}(\mathbf{y})$ To derive an expression for $\overline{\mathcal{T}}(\mathbf{y})$ in (27), we need the following two results.
Lemma 2. Let $\mathbf{u} \sim \mathcal{C N}\left(\mathbf{0}_{M \times 1}, \Sigma\right)$ be a complex-valued circularly-symmetric jointly Gaussian random vector with positive definite covariance matrix $\Sigma \in \mathbb{C}^{M \times M}$. Then, for the random variable $\nu=\exp \left(-\mathbf{u}^{H} \mathbf{G u}\right)$ with positive definite $\mathbf{G} \in \mathbb{C}^{M \times M}$ and $\mathbf{G}+\Sigma^{-1}$ positive definite, we have the following result:

$$
\mathbb{E}[\nu]=\frac{1}{\left|\mathbf{G} \Sigma+\mathbf{I}_{M}\right|}
$$

Proof. We first expand the expected value into

$$
\begin{aligned}
& \mathbb{E}[\nu]=\mathbb{E}\left[\exp \left(-\mathbf{u}^{H} \mathbf{G u}\right)\right]= \\
& \quad \int_{\mathbb{C}^{M}} \exp \left(-\mathbf{u}^{H} \mathbf{G} \mathbf{u}\right) \frac{1}{\pi^{M}|\Sigma|} \exp \left(-\mathbf{u}^{H} \Sigma^{-1} \mathbf{u}\right) \mathrm{d} \mathbf{u}
\end{aligned}
$$

where $|\Sigma|>0$ is the determinant of Σ. We can now simplify the above expression as follows:

$$
\begin{aligned}
& \int_{\mathbb{C}^{M}} \exp \left(-\mathbf{u}^{H} \mathbf{G} \mathbf{u}\right) \frac{1}{\pi^{M}|\Sigma|} \exp \left(-\mathbf{u}^{H} \Sigma^{-1} \mathbf{u}\right) \mathrm{d} \mathbf{u} \\
& =\int_{\mathbb{C}^{M}} \frac{1}{\pi^{M}|\Sigma|} \exp \left(-\mathbf{u}^{H}\left(\mathbf{G}+\Sigma^{-1}\right) \mathbf{u}\right) \mathrm{d} \mathbf{u} \\
& =\frac{\pi^{M}\left|\left(\mathbf{G}+\Sigma^{-1}\right)^{-1}\right|}{\pi^{M}|\Sigma|} \frac{1}{\pi^{M}\left|\left(\mathbf{G}+\Sigma^{-1}\right)^{-1}\right|} \\
& \quad \times \int_{\mathbb{C}^{M}} \exp \left(-\mathbf{u}^{H}\left(\mathbf{G}+\Sigma^{-1}\right) \mathbf{u}\right) \mathrm{d} \mathbf{u} \\
& =\frac{\left|\left(\mathbf{G}+\Sigma^{-1}\right)^{-1}\right|}{|\Sigma|}=\frac{1}{\left|\mathbf{G}+\Sigma^{-1}\right||\Sigma|}=\frac{1}{|\mathbf{G} \Sigma+\mathbf{I}|}
\end{aligned}
$$

where we also required that $\mathbf{G}+\Sigma^{-1}$ is positive definite.
Lemma 3. Let $\mathbf{u} \sim \mathcal{N}(\overline{\mathbf{u}}, \Sigma)$ be a real-valued Gaussian random vector with mean $\overline{\mathbf{u}}$ and covariance Σ, and $\gamma \in \mathbb{R}^{N}$ be a given vector. Then, we have

$$
\mathbb{E}\left[\exp \left(-\boldsymbol{\gamma}^{T} \mathbf{u}\right)\right]=\exp \left(-\boldsymbol{\gamma}^{T} \overline{\mathbf{u}}+\frac{1}{2} \boldsymbol{\gamma}^{T} \Sigma \gamma\right)
$$

Proof. The proof is an immediate consequence of the moment generating function of a Gaussian random vector.

By considering Lemma 2 and Lemma 3 for scalar random variables, the m th entry of the preprocessed phaseless measurement is given by
$\overline{\mathcal{T}}\left(y_{m}\right)=\mathbb{E}\left[\mathcal{T}\left(y_{m}\right)\right]=\mathbb{E}\left[\exp \left(-\gamma\left|z_{m}\right|^{2}-\gamma\left[\mathbf{e}^{y}\right]_{m}\right)\right]$

$$
=\frac{1}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1} \exp \left(-\gamma\left[\overline{\mathbf{e}}^{y}\right]_{m}+\frac{1}{2} \gamma^{2}\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m}\right)
$$

We define the following auxiliary vectors

$$
\begin{align*}
& \mathbf{q}_{\gamma}=\gamma \operatorname{diag}\left(\mathbf{C}_{\mathbf{z}}\right)+\mathbf{1}_{M \times 1} \tag{38}\\
& \mathbf{p}_{\gamma}=\exp \left(-\gamma \overline{\mathbf{e}}^{y}+\frac{1}{2} \gamma^{2} \operatorname{diag}\left(\mathbf{C}_{\mathbf{e}^{y}}\right)\right) \tag{39}
\end{align*}
$$

which enable us to rewrite the above expression in compact vector form as

$$
\overline{\mathcal{T}}(\mathbf{y})=\mathbf{p}_{\gamma} \oslash \mathbf{q}_{\gamma}
$$

Computing T To compute the matrix \mathbf{T} in (30), we only need to compute $\mathbb{E}\left[\mathcal{T}(\mathbf{y}) \mathcal{T}(\mathbf{y})^{T}\right]$, which we will compute entry-wise and in two separate steps. Concretely, we have

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathcal{T}\left(y_{m^{\prime}}\right)\right]= & \mathbb{E}\left[\exp \left(-\gamma\left(\left|z_{m}\right|^{2}+\left|z_{m^{\prime}}\right|^{2}\right)\right)\right] \\
& \times \mathbb{E}\left[\exp \left(-\gamma\left(\left[\mathbf{e}^{y}\right]_{m}+\left[\mathbf{e}^{y}\right]_{m^{\prime}}\right)\right)\right]
\end{aligned}
$$

where we compute both expected values separately. In the first step, we compute

$$
\left.\mathbb{E}\left[\exp \left(-\gamma\left(\left|z_{m}\right|^{2}+\left|z_{m^{\prime}}\right|^{2}\right)\right)\right]=\mathbb{E}\left[\exp \left(-\mathbf{u}^{H} \mathbf{G} \mathbf{u}\right)\right)\right]
$$

with $\mathbf{u}=\left[z_{m}, z_{m^{\prime}}\right]^{T}$ and $\mathbf{G}=\mathbf{I}_{2} \gamma$. By invoking Lemma 2 with $[\Sigma]_{m, m^{\prime}}=\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m^{\prime}}$, we obtain

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left(\left|z_{m}\right|^{2}+\left|z_{m^{\prime}}\right|^{2}\right)\right)\right]=\frac{1}{\left|\gamma \Sigma+\mathbf{I}_{2}\right|} \\
& =\frac{1}{\left(\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1\right)\left(\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m^{\prime}, m^{\prime}}+1\right)-\gamma^{2}\left|\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m^{\prime}}\right|^{2}}
\end{aligned}
$$

With the definition of \mathbf{q}_{γ} in (38), we can rewrite the above expression in vector form as

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(-\gamma|\mathbf{z}|^{2}\right)\right. & \left.\exp \left(-\gamma|\mathbf{z}|^{2}\right)^{T}\right] \\
& =\mathbf{1}_{M \times M} \oslash\left(\mathbf{q}_{\gamma} \mathbf{q}_{\gamma}^{T}-\gamma^{2} \mathbf{C}_{\mathbf{z}} \odot \mathbf{C}_{\mathbf{z}}^{*}\right)
\end{aligned}
$$

In the second step, we compute

$$
\mathbb{E}\left[\exp \left(-\gamma\left(\left[\mathbf{e}^{y}\right]_{m}+\left[\mathbf{e}^{y}\right]_{m^{\prime}}\right)\right)\right]=\mathbb{E}\left[\exp \left(-\gamma^{T} \mathbf{u}\right)\right]
$$

with $\mathbf{u}=\left[\left[\mathbf{e}^{y}\right]_{m},\left[\mathbf{e}^{y}\right]_{m^{\prime}}\right]^{T}$ and $\gamma^{T}=[\gamma, \gamma]$. By invoking Lemma 3 with mean $\left.\overline{\mathbf{u}}=\left[\overline{\mathbf{e}^{y}}\right]_{m},\left[\overline{\mathbf{e}}^{y}\right]_{m^{\prime}}\right]$ and covariance Σ given by the entries of the covariance matrix $\mathbf{C}_{\mathbf{e}^{y}}$ associated to the indices m and m^{\prime}, we obtain

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left(\left[\mathbf{e}^{y}\right]_{m}+\left[\mathbf{e}^{y}\right]_{m^{\prime}}\right)\right)\right]=\exp \left(-\gamma\left(\left[\overline{\mathbf{e}}^{y}\right]_{m}+\left[\overline{\mathbf{e}}^{y}\right]_{m^{\prime}}\right)\right) \\
& \quad \times \exp \left(\frac{1}{2} \gamma^{2}\left(\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m}+\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m^{\prime}, m^{\prime}}+2\left[\mathbf{C}_{\mathbf{e}^{y}}\right]_{m, m^{\prime}}\right)\right)
\end{aligned}
$$

With the definition of \mathbf{p}_{γ} in (39), we can rewrite the above expression in vector form as

$$
\mathbb{E}\left[\exp \left(-\gamma \mathbf{e}^{y}\right) \exp \left(-\gamma \mathbf{e}^{y}\right)^{T}\right]=\left(\mathbf{p}_{\gamma} \mathbf{p}_{\gamma}^{T}\right) \odot \exp \left(\gamma^{2} \mathbf{C}_{\mathbf{e}^{y}}\right)
$$

We furthermore have

$$
\overline{\mathcal{T}}(\mathbf{y}) \overline{\mathcal{T}}(\mathbf{y})^{T}=\left(\mathbf{p}_{\gamma} \mathbf{p}_{\gamma}^{T}\right) \oslash\left(\mathbf{q}_{\gamma} \mathbf{q}_{\gamma}^{T}\right)
$$

By combining the two steps with the above results, we have

$$
\begin{aligned}
\mathbf{T}= & \left(\mathbf{p}_{\gamma} \mathbf{p}_{\gamma}^{T}\right) \odot\left(\exp \left(\gamma^{2} \mathbf{C}_{\mathbf{e}^{y}}\right) \oslash\left(\mathbf{q}_{\gamma} \mathbf{q}_{\gamma}^{T}-\gamma^{2} \mathbf{C}_{\mathbf{z}} \odot \mathbf{C}_{\mathbf{z}}^{*}\right)\right. \\
& \left.-\mathbf{1}_{M \times M} \oslash\left(\mathbf{q}_{\gamma} \mathbf{q}_{\gamma}^{T}\right)\right)
\end{aligned}
$$

Computing \mathbf{V}_{m} To compute the matrices $\mathbf{V}_{m}, m=$ $1, \ldots, M$, in (31), we only need $\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) \mathbf{x} \mathbf{x}^{H}\right]$ which we will compute entry-wise and in two steps. We have

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{T}\left(y_{m}\right) x_{n} x_{n^{\prime}}^{*}\right]= & \mathbb{E}\left[\exp \left(-\gamma\left|\mathbf{a}_{m}^{H} \mathbf{x}+\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right) x_{n} x_{n^{\prime}}^{*}\right] \\
& \times \mathbb{E}\left[\exp \left(-\gamma\left[\mathbf{e}^{y}\right]_{m}\right)\right]
\end{aligned}
$$

where we next compute both expected values separately. As a first step, we use direct integration to compute the following expected value:

$$
\begin{aligned}
& =\frac{|\widetilde{\mathbf{K}}|}{\left|\mathbf{C}_{\tilde{\mathbf{x}}}\right|}[\tilde{\mathbf{K}}]_{n, n^{\prime}}=\frac{1}{\left|\widetilde{\mathbf{K}}^{-1}\right|\left|\mathbf{C}_{\tilde{\mathbf{x}}}\right|}[\tilde{\mathbf{K}}]_{n, n^{\prime}} \\
& =\frac{1}{\left|\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H}+\mathbf{C}_{\tilde{\mathbf{x}}}^{-1}\right|\left|\mathbf{C}_{\tilde{\mathbf{x}}}\right|}[\mathbf{K}]_{n, n^{\prime}} \\
& =\frac{1}{\left|\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}+\mathbf{I}_{N+1}\right|}[\tilde{\mathbf{K}}]_{n, n^{\prime}}
\end{aligned}
$$

We can now use the matrix-determinant lemma to simplify

$$
\left|\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}+\mathbf{I}_{N+1}\right|=\gamma \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}} \tilde{\mathbf{a}}_{m}+1
$$

$$
\mathbb{E}\left[\exp \left(-\gamma\left|\mathbf{a}_{m}^{H} \mathbf{x}+\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right) x_{n} x_{n^{\prime}}^{*}\right]=\int_{\mathbb{C}^{N+1}} \exp \left(-\gamma\left|\mathbf{a}_{m}^{H} \mathbf{x}+\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right) \quad=\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1
$$

$$
\times \frac{1}{\left(\pi \sigma_{x}^{2}\right)^{N}} \exp \left(-\frac{\|\mathbf{x}\|^{2}}{\sigma_{x}^{2}}\right)
$$

$$
\times \frac{1}{\pi \sigma_{n}^{2}} \exp \left(-\frac{\left|\left[\mathbf{e}^{z}\right]_{m}\right|^{2}}{\sigma_{n}^{2}}\right) x_{n} x_{n^{\prime}}^{*} \mathrm{~d} \mathbf{x d}\left[\mathbf{e}^{z}\right]_{m}
$$

We define the following auxiliary quantities:

$$
\begin{aligned}
\tilde{\mathbf{a}}_{m}^{H} & =\left[\mathbf{a}_{m}^{H}, 1\right] \\
\tilde{\mathbf{x}}^{T} & =\left[\mathbf{x}^{T},\left[\mathbf{e}^{z}\right]_{m}\right] \\
\mathbf{C}_{\tilde{\mathbf{x}}} & =\left[\begin{array}{cc}
\sigma_{x}^{2} \mathbf{I}_{N} & \mathbf{0}_{N \times 1} \\
\mathbf{0}_{1 \times N} & \sigma_{m}^{2}
\end{array}\right] \\
\widetilde{\mathbf{K}}^{-1} & =\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H}+\mathbf{C}_{\tilde{\mathbf{x}}}^{-1},
\end{aligned}
$$

where $\sigma_{m}^{2}=\mathbb{E}\left[\left|\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right]=\left[\mathbf{C}_{\mathbf{n}^{z}}\right]_{m, m}$. We now derive the above expectation in compact form as

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left|\tilde{\mathbf{a}}_{m}^{H} \tilde{\mathbf{x}}\right|^{2}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*}\right]= \\
& =\frac{1}{\left(\pi \sigma_{x}^{2}\right)^{N}} \frac{1}{\pi \sigma_{n}^{2}} \int_{\mathbb{C}^{N+1}} \exp \left(-\gamma\left|\tilde{\mathbf{a}}^{H} \tilde{\mathbf{x}}\right|^{2}-\tilde{\mathbf{x}}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}^{-1} \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}} \\
& =\frac{1}{\left|\pi \mathbf{C}_{\tilde{\mathbf{x}}}\right|} \int_{\mathbb{C}^{N+1}} \exp \left(-\tilde{\mathbf{x}}^{H}\left(\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H}+\mathbf{C}_{\tilde{\mathbf{x}}}^{-1}\right) \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}} \\
& =\frac{1}{\left|\pi \mathbf{C}_{\tilde{\mathbf{x}}}\right|} \int_{\mathbb{C}^{N+1}} \exp \left(-\tilde{\mathbf{x}}^{H} \widetilde{\mathbf{K}}^{-1} \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}}
\end{aligned}
$$

where $n=1, \ldots, N+1, n^{\prime}=1, \ldots, N+1$. We can further rewrite this expression as

$$
\begin{aligned}
& \frac{1}{\left|\pi \mathbf{C}_{\tilde{\mathbf{x}}}\right|} \int_{\mathbb{C}^{N+1}} \exp \left(-\tilde{\mathbf{x}}^{H} \widetilde{\mathbf{K}}^{-1} \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}} \\
& \quad=\frac{|\pi \widetilde{\mathbf{K}}|}{|\pi \widetilde{\mathbf{K}}|\left|\pi \mathbf{C}_{\tilde{\mathbf{x}}}\right|} \int_{\mathbb{C}^{N+1}} \exp \left(-\tilde{\mathbf{x}}^{H} \widetilde{\mathbf{K}}^{-1} \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}}
\end{aligned}
$$

It is now key to realize that

$$
\begin{gathered}
\frac{1}{|\pi \widetilde{\mathbf{K}}|} \int_{\mathbb{C}^{N+1}} \exp \left(-\tilde{\mathbf{x}}^{H} \widetilde{\mathbf{K}}^{-1} \tilde{\mathbf{x}}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*} \mathrm{~d} \tilde{\mathbf{x}} \\
=\mathbb{E}\left[\tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*}\right]=[\widetilde{\mathbf{K}}]_{n, n^{\prime}}
\end{gathered}
$$

and hence we have

$$
\mathbb{E}\left[\exp \left(-\gamma\left|\tilde{\mathbf{a}}_{m}^{H} \tilde{\mathbf{x}}\right|^{2}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*}\right]
$$

and the matrix inversion lemma to simplify

$$
\begin{aligned}
\widetilde{\mathbf{K}} & =\left(\gamma \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H}+\mathbf{C}_{\tilde{\mathbf{x}}}^{-1}\right)^{-1} \\
& =\mathbf{C}_{\tilde{\mathbf{x}}}-\frac{\gamma \mathbf{C}_{\tilde{\mathbf{x}}} \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}}{\gamma \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}} \tilde{\mathbf{a}}_{m}+1} \\
& =\mathbf{C}_{\tilde{\mathbf{x}}}-\frac{\gamma \mathbf{C}_{\tilde{\mathbf{x}}} \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}}{\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1}
\end{aligned}
$$

By using these two simplifications, we have

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left|\tilde{\mathbf{a}}_{m}^{H} \tilde{\mathbf{x}}\right|^{2}\right) \tilde{x}_{n} \tilde{x}_{n^{\prime}}^{*}\right] \\
& =\frac{1}{\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1} \\
& \quad \times\left[\mathbf{C}_{\tilde{\mathbf{x}}}-\frac{\gamma \mathbf{C}_{\tilde{\mathbf{x}}} \tilde{\mathbf{a}}_{m} \tilde{\mathbf{a}}_{m}^{H} \mathbf{C}_{\tilde{\mathbf{x}}}}{\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1}\right]_{n, n^{\prime}}
\end{aligned}
$$

and since we are only interested in the upper $N \times N$ part of the matrix $\widetilde{\mathbf{K}}$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left|\mathbf{a}_{m}^{H} \mathbf{x}+\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right) x_{n} x_{n^{\prime}}^{*}\right] \\
& =\frac{1}{\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1} \\
& \quad \times\left[\sigma_{x}^{2} \mathbf{I}_{N}-\frac{\gamma \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}}{\gamma\left(\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}\right)+1}\right]_{n, n^{\prime}} \\
& =\frac{1}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\left[\sigma_{x}^{2} \mathbf{I}_{N}-\frac{\gamma \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\right]_{n, n^{\prime}}
\end{aligned}
$$

since for our assumptions

$$
\sigma_{x}^{2}\left\|\mathbf{a}_{m}\right\|^{2}+\sigma_{m}^{2}=\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}
$$

In compact matrix form, we have

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-\gamma\left|\mathbf{a}_{m}^{H} \mathbf{x}+\left[\mathbf{e}^{z}\right]_{m}\right|^{2}\right) \mathbf{x} \mathbf{x}^{H}\right] \\
& \quad=\frac{1}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\left(\sigma_{x}^{2} \mathbf{I}_{N}-\frac{\gamma \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\right) .
\end{aligned}
$$

As a second step, we use definition (39) and obtain

$$
\mathbb{E}\left[\exp \left(-\gamma\left[\mathbf{e}^{y}\right]_{m}\right)\right]=\left[\mathbf{p}_{\gamma}\right]_{m}
$$

By combining both steps, we obtain

$$
\begin{aligned}
\mathbf{V}_{m}= & \frac{\left[\mathbf{p}_{\gamma}\right]_{m}}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\left(\sigma_{x}^{2} \mathbf{I}_{N}-\frac{\gamma \sigma_{x}^{4} \mathbf{a}_{m} \mathbf{a}_{m}^{H}}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1}\right) \\
& -\frac{\left[\mathbf{p}_{\gamma}\right]_{m}}{\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1} \sigma_{x}^{2} \mathbf{I}_{N}
\end{aligned}
$$

$$
=-\frac{\gamma \sigma_{x}^{4}\left[\mathbf{p}_{\gamma}\right]_{m}}{\left(\gamma\left[\mathbf{C}_{\mathbf{z}}\right]_{m, m}+1\right)^{2}} \mathbf{a}_{m} \mathbf{a}_{m}^{H}
$$

which is what we desperately wanted to show.

