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Abstract
Phase retrieval refers to the problem of recovering
real- or complex-valued vectors from magnitude
measurements. The best-known algorithms for
this problem are iterative in nature and rely on
so-called spectral initializers that provide accu-
rate initialization vectors. We propose a novel
class of estimators suitable for general nonlinear
measurement systems, called linear spectral esti-
mators (LSPEs), which can be used to compute
accurate initialization vectors for phase retrieval
problems. The proposed LSPEs not only provide
accurate initialization vectors for noisy phase re-
trieval systems with structured or random mea-
surement matrices, but also enable the derivation
of sharp and nonasymptotic mean-squared error
bounds. We demonstrate the efficacy of LSPEs
on synthetic and real-world phase retrieval prob-
lems, and show that our estimators significantly
outperform existing methods for structured mea-
surement systems that arise in practice.

1. Introduction
Phase retrieval refers to the problem of recovering an un-
known N -dimensional signal vector x 2 HN , with H being
the set of either real (R) or complex (C) numbers, from the
following nonlinear measurement process:

y = f(Ax+ e

z
) + e

y
. (1)

Here, the measurement vector y 2 RM contains M real-
valued observations, for example measured through the non-
linear function f(z) = |z|2 that operates element-wise on
vectors, A 2 HM⇥N is a given measurement matrix, and
the vectors ez 2 HM and e

y 2 RN model signal and mea-
surement noises, respectively. In contrast to the majority of
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existing results on phase retrieval that assume randomness
in the measurement matrix A, we focus on the practical sce-
nario in which the measurement matrix A is deterministic,
but the signal vector x to be recovered as well as the two
noise sources ez and e

y are random.

1.1. Phase Retrieval

Phase retrieval has been studied extensively over the last
decades (Gerchberg & Saxton, 1972; Fienup, 1982) and
finds use in a range of applications, including imaging (Fo-
gel et al., 2016; Yeh et al., 2015; Holloway et al., 2016), mi-
croscopy (Kou et al., 2010; Faulkner & Rodenburg, 2004),
and X-ray crystallography (Harrison, 1993; Miao et al.,
2008; Pfeiffer et al., 2006). Phase retrieval problems were
solved traditionally using alternating projection methods,
such as the Gerchberg-Saxton (Gerchberg & Saxton, 1972)
and Fienup (Fienup, 1982) algorithms. More recent results
have shown that semidefinite programming enables the de-
sign of algorithms with performance guarantees (Candès
et al., 2013; Candès & Li, 2014; Candès et al., 2015a; Wald-
spurger et al., 2015). These methods lift the problem to
a higher dimension, resulting in excessive complexity and
memory requirements. To perform phase retrieval for high-
dimensional problems with performance guarantees, a range
of convex (Bahmani & Romberg, 2017; Goldstein & Studer,
2017; Hand & Voroninski, 2016; Dhifallah et al., 2017; Dhi-
fallah & Lu, 2017; Yuan & Wang, 2017; Salehi et al., 2018)
and nonconvex methods (Netrapalli et al., 2013; Schniter &
Rangan, 2015; Candès et al., 2015b; Chen & Candès, 2015;
Zhang & Liang, 2016; Wang et al., 2017a; Zhang et al.,
2016; Wei, 2015; Sun et al., 2016; Zeng & So, 2017; Lu &
Li, 2017; Ma et al., 2018) have been proposed recently.

1.2. Spectral Initializers

All of the above non-lifting-based phase retrieval methods
rely on accurate initial estimates of the signal vector to be
recovered. Such estimates are typically obtained by means
of so-called spectral initializers put forward in (Netrapalli
et al., 2013). Spectral initializers first compute a Hermitian
matrix of the following form:

D� = �

MX

m=1

T (ym)ama

H
m, (2)
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where � > 0 is a suitably-chosen scaling factor, ym denotes
the mth measurement, aHm corresponds to the mth row of
the measurement matrix A and T : R ! R is a (possi-
bly nonlinear) preprocessing function. While the identity
T (y) = y was used originally in (Netrapalli et al., 2013),
recent results revealed that carefully crafted preprocessing
functions yield more accurate estimates (Chen & Candès,
2015; Chen et al., 2015; Wang et al., 2017a;b; Lu & Li,
2017; Mondelli & Montanari, 2017). From the matrix D�

in (2), one then extracts the (scaled) eigenvector ˆx associ-
ated with the largest eigenvalue, which serves as an initial
estimate of the solution to the phase retrieval problem.

As shown in (Netrapalli et al., 2013; Chen & Candès, 2015;
Chen et al., 2015; Wang et al., 2017a;b; Lu & Li, 2017;
Mondelli & Montanari, 2017), for i.i.d. Gaussian measure-
ment matrices A, sufficiently large measurement ratios
� = M/N , and carefully crafted preprocessing functions T ,
spectral initializers provide accurate initialization vectors.
In fact, the results in (Mondelli & Montanari, 2017) for
the large-system limit with � fixed and M ! 1 show that
spectral initializers in combination with an optimal prepro-
cessing function T achieve the fundamental information-
theoretic limits of phase retrieval. However, the assump-
tion of having i.i.d. Gaussian measurement matrices A is
impractical—it is more natural to assume that the signal
vector x is random and the measurement matrix A is deter-
ministic and structured (Bendory & Eldar, 2017).

1.3. Contributions

We propose a novel class of estimators, called linear spec-
tral estimators (LSPEs), that provide accurate estimates for
general nonlinear measurement systems of the form (1) and
enable a nonasymptotic mean-squared error (MSE) analysis.
We showcase the efficacy of LSPEs by applying them to
phase retrieval problems, where we compute initialization
vectors for real- and complex-valued systems with deter-
ministic and finite-dimensional measurement matrices. For
the proposed LSPEs, we derive nonasymptotic and sharp
bounds on the MSE for signal estimation from phaseless
measurements. We use synthetic and real-world phase re-
trieval problems to demonstrate that LSPEs are able to sig-
nificantly outperform existing spectral initializers on sys-
tems that acquire structured measurements. We furthermore
show that preprocessing the phaseless measurements en-
ables LSPEs to generate improved initialization vectors for
an even broader class of measurement systems.

1.4. Notation

Lowercase and uppercase boldface letters represent column
vectors and matrices, respectively. For a matrix A, its trans-
pose and Hermitian conjugate is AT and A

H , respectively,
and the kth row and `th column entry is [A]k,` = Ak,`. For

a vector a, the kth entry is [a]k = ak. The `2-norm of a is
denoted by kak2 and the Frobenius norm of A by kAkF .
The Kronecker product is ⌦, the Hadamard product is �,
the Hadamard division is ↵, and the trace operator is tr(·).
The N ⇥N identity matrix is denoted by IN ; the M ⇥N

all-zeros and all-ones matrices are denoted by 0M⇥N and
1M⇥N , respectively. For a vector a, diag(a) is a square ma-
trix with a on the main diagonal; for a matrix A, diag(A)

is a column vector containing the diagonal elements of A.

2. Linear Spectral Estimators
We start by reviewing the essentials of spectral initializers
and then, introduce linear spectral estimators (LSPEs) for
measurement systems of the form (1) with general nonlinear-
ities f . We furthermore provide nonasymptotic expressions
for the associated estimation error, and we compare our
analytical results to that of conventional spectral initializers
in (2). In Section 3, we will apply LSPEs to phase retrieval.

2.1. Spectral Estimation and Initializers

One of the key issues of the phase retrieval problem is
the fact that if x is a solution to (1), then e

j�
x for any

� 2 [0, 2⇡) is also a valid solution (assuming H = C). Put
simply, the solution is nonunique up to a global phase shift.
One way of combating this issue is to directly recover the
outer product xxH instead of x, which is unaffected by
phase shifts; this insight is the key underlying lifting-based
phase retrieval methods (Candès et al., 2013; Candès & Li,
2014; Candès et al., 2015a; Waldspurger et al., 2015). With
this in mind, one could envision the design of an estimator
that directly minimizes the conditional MSE:

˙

x = arg min

x̃2HN

E
⇥kxxH � ˜

x

˜

x

Hk2F | y⇤. (3)

Here, expectation is with respect to the signal vector x and
the two noise sources ez and e

y . This optimization problem
resembles that of a posterior mean estimator (PME) which
is, in general, difficult to derive, even for simple observation
models—for phase retrieval, we have two additional chal-
lenges: (i) nonlinear phaseless measurements as in (1) and
(ii) the quantity ˜

x

˜

x

H has rank-1.

Spectral initializers avoid the issues of the estimator in (3)
by first replacing the true outer product xxH with a so-
called spectral estimator matrix D� as in (2) that depends
on the measurement vector y. In a second step, one then
computes the best rank-1 approximation as follows:

ˆ

x = arg min

x̃2HN

kD� � ˜

x

˜

x

Hk2F (4)

from which the estimate ˆ

x can be extracted. By perform-
ing an eigenvalue decomposition D� = U⇤U

H with
U

H
U = IM and the eigenvalues in the diagonal matrix
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⇤ = diag([�1, . . . ,�M ]

T
) are sorted in descending order

of their magnitudes, a spectral initializer is given by the
scaled leading eigenvector ˆ

x =

p
�1u1. In practice, one

can use power iterations to efficiently compute ˆ

x.

2.2. Linear Spectral Estimators

We now propose a novel class of estimators, which we call
linear spectral estimators (LSPEs), that provide accurate
estimates for general nonlinear measurement systems of the
form (1). To this end, we borrow ideas from the spectral
initializer, the PME in (3), and the linear phase retrieval
algorithm put forward in (Ghods et al., 2018). In the first
step, LSPEs apply a linear estimator to the nonlinear obser-
vations in T (y) to construct a spectral estimator matrix D

y

for which the spectral MSE (or matrix MSE) defined as

S-MSE = E
h��

D

y

� xx

H
��2
F

i
(5)

is minimal. We restrict ourselves to spectral estimator ma-
trices D

y

that are affine in T (y), i.e., are of the form

D

y

= W0 +

MX

m=1

T (ym)Wm (6)

with Wm 2 HN⇥N , m = 0, . . . ,M . In the second step,
we use the spectral estimator matrix D

y

to extract a (scaled)
leading eigenvector as in (3), which is the linear spectral es-
timate of the signal vector x. Intuitively, if we can construct
a matrix D

y

from the preprocessed measurements in T (y)

for which the S-MSE in (5) is minimal, then we expect that
computing its best rank-1 approximation would yield an
accurate estimate of the signal vector x up to a global phase
shift. We will justify this claim in Section 2.3.

Mathematically, we wish to compute a matrix D

y

of the
form (6) that is the solution to the following problem:

minimize

f
Wm2HN⇥N

m=0,...,M

E

2

4
�����
f
W0 +

MX

m=1

T (ym)

f
Wm� xx

H

�����

2

F

3

5
. (7)

Clearly, the spectral estimator matrix D

y

will depend on
the measurement matrix A, the statistics of the signal to
be estimated x and the two noise sources e

z and e

y, the
nonlinearity f , as well as the preprocessing function T . For
this setting, we have the following general result which
summarizes the LSPE; the proof is given in Appendix A.

Theorem 1 (Linear Spectral Estimator). Let the measure-
ment vector y be a result of the general measurement model
in (1) and select a preprocessing function T . Define the
vector T (y) = E[T (y)] and assume the matrix

T = E
⇥
(T (y)� T (y))(T (y)� T (y))

T
⇤

is full rank. Let t 2 RM satisfy Tt = T (y)� T (y) and

Vm = E
⇥
(T (ym)� T (ym))(xx

H �K

x

)

⇤

for m = 1, . . . ,M with K

x

= E
⇥
xx

H
⇤
. Then, the LSPE

matrix that minimizes the S-MSE in (5) is given by

D

y

= K

x

+

MX

m=1

tmVm. (8)

The linear spectral estimate ˆ

x is then given by the scaled
leading eigenvector of the matrix D

y

in (8).

The vector t is the only quantity in Theorem 1 that depends
on the actual (nonlinear) observations contained in the mea-
surement vector y. All other quantities depend only on the
first two moments of xxH as well as the considered signal,
noise, and measurement models. The key features of the
LSPE are as follows: (i) the involved quantities can often be
computed in closed form (see Section 3 for two applications
to phase retrieval) and (ii) LSPEs enable a nonasymptotic
and sharp analysis of the associated estimation error.
Remark 1. Theorem 1 requires the matrix T to be invert-
ible. This condition is satisfied in most practical situations
with nondegenerate measurement matrices A or in situa-
tions with nonzero measurement noise.

2.3. Estimation Error Analysis of LSPEs

The remaining piece of the proposed LSPE is to show that
the result of this two-step estimation procedure indeed yields
a vector that is close to the signal vector x. We start with
the following result; the proof is given in Appendix B.
Theorem 2 (S-MSE of the LSPE). Let the assumptions of
Theorem 1 hold. Then, the S-MSE in (5) for the LSPE matrix
in (8) is given by

S-MSELSPE = C

xx

H �
MX

m=1

MX

m0=1

[T

�1
]m,m0

tr

�
V

H
mVm0

�

(9)

with C

xx

H = E
h��

xx

H �K

x

��2
F

i
.

With this result, we are ready to establish a bound on the
estimation error of the LSPE. The proof of the following
result follows from Theorem 2 and is given in Appendix C.
Corollary 1 (LSPE Estimation Error). Let the assumptions
of Theorem 1 hold. Then, the estimation error (EER) of the
LSPE satisfies the following inequality:

EERLSPE = E
⇥kˆxˆxH � xx

Hk2F
⇤  4 S-MSELSPE. (10)

This result implies that by minimizing the S-MSE in (5)
via (7), we are also reducing the EER of the LSPE. In other
words, if the spectral error E = D

y

� ˆ

x

ˆ

x

H is small, then
the EER of the LSPE (10) will be small.
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Remark 2. Corollary 1 is nonasymptotic and depends on
the instance of measurement matrix A. This result is in
stark contrast to existing performance bounds for spectral
initializers (Netrapalli et al., 2013; Chen & Candès, 2015;
Chen et al., 2015; Wang et al., 2017a;b) that strongly rely
on randomness in the measurement matrix. In addition to
randomness, the sharp performance guarantees in (Lu & Li,
2017; Mondelli & Montanari, 2017) focus on the asymptotic
regime for which � = M/N is fixed and M ! 1.

2.4. S-MSE of Spectral Initializers

We can also derive an exact expression for the S-MSE of the
conventional spectral initializer in (2). We assume optimal
scaling, i.e., the parameter � is set to minimize the S-MSE.
The following result characterizes the S-MSE of such a
scaled spectral initializer; the proof is given in Appendix D.
Proposition 1 (S-MSE of the Spectral Initializer). Let D�

be the conventional spectral initializer matrix in (2). Then,
the optimally-scaled S-MSE defined as

S-MSESI = min

�2H
E
⇥kD� � xx

Hk2F
⇤

(11)

is given by

S-MSESI = R

xx

H �

���
PM

m=1 a
H
m
e
Vmam

���
2

PM
m=1

PM
m0=1

e
Tm,m0 |aHmam0 |2

,

(12)

where R

xx

H = E
⇥kxxHk2F

⇤
, e
Vm = E

⇥T (ym)xx

H
⇤
,

m = 1, . . . ,M , and e
T = E

⇥T (y)T (y)

T
⇤
.

Since the matrix in (2) is a special case of the LSPE matrix
in (6), we have the following simple yet important property:

S-MSELSPE  S-MSESI.

In words, the spectral MSE of the LSPE cannot be worse
than that of a spectral initializer. As we will show in Sec-
tion 4, LSPEs are able to outperform spectral initializers
on both synthetic and real-world phase retrieval problems
given that the same preprocessing function T is used.

3. LSPEs for Phase Retrieval Problems
The LSPE provides a framework for estimating signal vec-
tors from the general observation model in (1). To make
the concept of LSPEs explicit and to demonstrate their effi-
cacy in practice, we now show two application examples to
phase retrieval in complex-valued systems. The LSPE for
real-valued phase retrieval can be found in Appendix E.

3.1. Phase Retrieval without Preprocessing

We first focus on the case where the signal vector x to be
estimated and the measurement matrix A are both complex-

valued. The phaseless measurements y, however, remain
real-valued. We need the following assumptions.

Assumptions 1. Let H = C. Assume square absolute
measurements f(z) = |z|2 and the identity preprocessing
function T (y) = y. Assume that the signal vector x 2 CN

is i.i.d. circularly-symmetric complex Gaussian with covari-
ance matrix C

x

= �

2
xIN , i.e., x ⇠ CN (0N⇥1,�

2
xIN ). As-

sume that the signal noise vector ez is circularly-symmetric
complex Gaussian with covariance matrix C

e

z , i.e., ez ⇠
CN (0M⇥1,Ce

z
), and the measurement noise vector ey is a

real-valued Gaussian vector with mean ¯

e

y and covariance
matrix C

e

y , i.e., ey ⇠ N (

¯

e

y
,C

e

y
). Furthermore assume

that x, ez , and e

y are independent.

Under these assumptions, we can derive the following LSPE
which we call LSPE-C; the detailed derivations of this spec-
tral estimator are given in Appendix G.

Estimator 1 (LSPE-C). Let Assumptions 1 hold. Then, the
spectral estimation matrix is given by

D

C
y

= K

x

+

MX

m=1

tmVm, (13)

where K

x

= �

2
xIN , the vector t 2 RM is given by the

solution to the linear system Tt = y � y with

y = diag(C

z

) +

¯

e

y

C

z

= �

2
xAA

H
+C

e

z

T = C

z

�C

⇤
z

+C

e

y

and Vm = �

4
xama

H
m, m = 1, . . . ,M . The spectral esti-

mate ˆ

x is given by the (scaled) leading eigenvector of DC
y

in (13). Furthermore, the S-MSE is given by Theorem 2.

We emphasize that the spectral estimator matrix in (13)
resembles that of the conventional spectral initializer ma-
trix (2) with the following key differences. First and fore-
most, each outer product contained in Vm = �

4
xama

H
m

in Estimator 1 is weighted by tm, which is a function of
all phaseless measurements in y and of the covariance ma-
trix C

x

. In contrast, each outer product in the conventional
spectral initializer matrix in (2) is only weighted by the asso-
ciated measurement ym. This difference enables the LSPE
to weight each outer product depending on correlations in
the phaseless measurements caused by structure in the ma-
trix A. Second, the spectral estimator matrix includes a
mean term K

x

, which is absent in the spectral initializer
matrix. As we will show in Section 4, for the same pre-
processing function T , Estimator 1 is able to outperform
spectral initializers for systems with structured measurement
matrices A. For large i.i.d. Gaussian measurement matrices,
there is no particular correlation structure to exploit and
LSPEs perform on par with spectral initializers.
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3.2. Phase Retrieval with Exponential Preprocessing

To demonstrate the flexibility and generality of our frame-
work, we now design an LSPE with an exponential prepro-
cessing function for complex-valued phase retrieval. We
derive the LSPE under the following assumptions.
Assumptions 2. Let H = C. Assume square absolute mea-
surements f(z) = |z|2 and the exponential preprocessing
function T (y) = exp(��y) with � > 0, i.e., we consider

T (y) = exp

���(|z|2 + e

y
)

�
and z = Ax+ e

z
,

where the exponential function is applied element-wise to
vectors. The remaining assumptions are the same as in
Assumptions 1.

We now derive the following LSPE called LSPE-Exp; the
derivation of this spectral estimator is given in Appendix H.
Estimator 2 (LSPE-Exp). Let Assumptions 2 hold. Then,
the spectral estimation matrix is given by

D

Exp
y

= K

x

+

MX

m=1

tmVm, (14)

where K

x

= �

2
xIN , the vector t 2 RM is given by the

solution to the linear system Tt = T (y)� T (y) with

T (y) = p� ↵ q�

T = (p�p
T
� )�exp(�

2
C

e

y
)↵(q�q

T
� � �

2
C

z

�C

⇤
z

)

� (p�p
T
� )↵ (q�q

T
� )

Vm = � ��

4
x[p� ]m

(�[C

z

]m,m + 1)

2
ama

H
m, m = 1, . . . ,M,

where we use the following definitions:

q� = � diag(C

z

) + 1M⇥1

p� = exp

���

¯

e

y
+ �

2 1
2 diag(Ce

y
)

�

C

z

= �

2
xAA

H
+C

e

z
.

The spectral estimate ˆ

x is given by the (scaled) leading
eigenvector of DExp

y

in (14). Furthermore, the S-MSE of this
estimator is given by Theorem 2.

At first sight, the choice of the exponential preprocessing
function used in Estimator 2 seems to be arbitrary. We em-
phasize, however, that this particular function is inspired
by the asymptotically-optimal preprocessing function for
properly-normalized Gaussian measurement ensembles pro-
posed in (Mondelli & Montanari, 2017) which is given by

Topt(y) =
y � 1

y +

p
� � 1

. (15)

As it turns out, we can scale, negate, and shift the exponen-
tial preprocessing function T (y) = exp(��y) to make it

take a similar shape as the function in (15). More concretely,
exponential preprocessing as well as Topt(y) enables one to
attenuate the effect of measurements with large magnitude,
which is also the idea underlying the class of orthogonal
spectral initializers, as proposed in (Chen et al., 2015; Wang
et al., 2017a;b), that perform well in practice.

4. Numerical Results
We now compare the performance of our LSPEs against
existing spectral initializers proposed for phase retrieval
on synthetic and real image data. All our results use the
spectral initializers and experimental setups provided by
PhasePack (Chandra et al., 2017).

4.1. Impact of Measurement Ensemble

We start by comparing the normalized MSE (N-MSE) de-
fined as (Chandra et al., 2017)

N-MSE =

min↵2H kx� ↵

ˆ

xk2
kxk2

for a range of spectral initializers on different measurement
ensembles. Specifically, we focus on the complex-valued
case and consider (i) an i.i.d. Gaussian measurement ma-
trix with signal dimension N = 16, (ii) an i.i.d. Gaussian
measurement matrix with N = 256, and (iii) the structured
“transmission matrix” used for image recovery through mul-
tiple scattering media as detailed in (Metzler et al., 2017).
We vary the oversampling ratio � = M/N and compare the
N-MSE of the proposed complex-valued LSPEs, LSPE-C
(Estimator 1) and LSPE-Exp (Estimator 2 with � = 0.001),
to the following spectral initializers: the original spectral ini-
tializer (Netrapalli et al., 2013; Candès et al., 2015a) called
“spectral,” truncated spectral initializer (Chen & Candès,
2015) called “truncated,” weighted spectral initializer (Wang
et al., 2017b) called “weighted,” amplitude spectral initial-
izer (Wang et al., 2017a) called “amplitude,” orthogonal
spectral initializer (Chen et al., 2015) called “orthogonal,”
and the asymptotically-optimal spectral initializer (Mondelli
& Montanari, 2017) called “optimal.” For the following syn-
thetic experiments, we generate the signals to be recovered
according to Assumptions 1 and Assumptions 2 for LSPE-C
and LSPE-Exp, respectively.

Figure 1a shows that the proposed LSPEs significantly out-
perform all existing spectral initializers for small problem
dimensions with Gaussian measurements; this improvement
is even more pronounced for large oversampling ratios. The
reason is that since we randomly generate a low-dimensional
sensing matrix, the system will exhibit strong correlations
among the measurements that can be exploited by LSPEs.
For larger dimensions with Gaussian measurements, we see
in Figure 1b that the proposed LSPEs do not provide an
advantage over other methods. In fact, only LSPE-Exp is
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(a) Gaussian measurements, N = 16.
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(b) Gaussian measurements, N = 256.
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(c) Transmission measurements, N = 256.

Figure 1: Comparison of normalized MSE (N-MSE) as a function of the oversampling ratio � = M/N for complex-valued
phase retrieval with different spectral initializers and with different measurement matrices. The proposed LSPEs perform
well on low-dimensional problems, for structured measurement ensembles, or at high oversampling ratios �.

able to perform as well as the orthogonal spectral initial-
izer, which achieves the best performance in this scenario.
This behavior can be attributed to the facts that (i) for large
random matrices there is no particular correlation structure
among the measurements to exploit and (ii) ignoring mea-
surements associated to large values in ym is increasingly
important. For structured measurements, as it is the case for
the transmission matrix from (Metzler et al., 2017), we see
in Figure 1c that LSPEs significantly outperform existing
methods that are designed for random measurement ensem-
bles. In this scenario, exponential preprocessing does not
improve performance since correlations in the transmission
matrix are dominating the performance.

4.2. S-MSE Expressions and Approximation Error

We now validate our theoretical S-MSE expressions in The-
orem 2 and Proposition 1, and confirm the accuracy of the
EER bound given in Corollary 1. In the following exper-
iment, we set M = 8N and vary the dimension N from
8 to 64. For each pair (M,N), we randomly generate one
instance of an i.i.d. circularly symmetric complex Gaus-
sian measurement matrix and average the different errors
(S-MSE and EER) over 10, 000 Monte-Carlo trials. We con-
sider a noiseless setting and assume identity preprocessing,
i.e., T (y) = y. The signal vectors are generated accord-
ing to an i.i.d. circularly complex Gaussian random vector.
From Figure 2, we see that our analytical S-MSE expres-
sions for the LSPE-C and spectral initializers match their
empirical values. We furthermore see that the empirical EER
is only about 6 dB to 10 dB lower than our non-asymptotic
upper bound given in Corollary 1.

4.3. Real-World Image Recovery

We finally illustrate the efficacy of LSPEs in a more realistic
scenario. In particular, we show results for a real image
reconstruction task by using LSPEs and spectral initializers
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Figure 2: Comparison of the analytical and empirical spec-
tral MSE (S-MSE) and estimation error (EER) for LSPEs
and spectral initializers (SI) at oversampling ratio � = 8.
Our analytical expressions in Theorem 2 and Proposition 1
match the empirical S-MSE; the upper bound in Corollary 1
accurately characterizes the empirical EER.

only, i.e., we are not using any additional phase retrieval al-
gorithm. Our goal is to recover a 16⇥16-pixel and a 40⇥40-
pixel image that was captured through a multiple scattering
media using the deterministic and highly-structured trans-
mission matrix as detailed in (Metzler et al., 2017). We
compare the proposed LSPEs to the same set of spectral
initializers as in Section 4.1. The signal priors are as in
Assumptions 1 (LSPE-C) and Assumptions 2 (LSPE-Exp).

Figures 3 and 4 show the recovered images along with the
N-MSE values. The proposed LSPEs (often significantly)
outperform all spectral initializers in terms of visual quality
as well as the N-MSE. This result confirms the observations
made in Figure 1c that LSPEs outperform existing spec-
tral initializers for structured measurement matrices. We
note that exponential preprocessing for LSPEs does not no-
ticeably improve the N-MSE (over LSPE-C) in this setting
since correlations in the transmission measurement matrix
are dominating the recovery performance.
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(a) original (b) amplitude
N-MSE = 0.4927

(c) optimal
N-MSE = 0.4833

(d) orthogonal
N-MSE = 0.6850

(e) spectral
N-MSE = 0.4764

(f) truncated
N-MSE = 0.4764

(g) weighted
N-MSE = 0.4797

(h) LSPE-C
N-MSE = 0.3377

(i) LSPE-Exp
N-MSE = 0.2928

Figure 3: Recovery of a 16⇥ 16 image from with M = 5N

measurements captured through a scattering medium with-
out the use of a phase retrieval algorithm. LSPEs outper-
form all initializers for structured measurements.

5. Conclusions
We have proposed a novel class of estimators, called lin-
ear spectral estimators (LSPEs), which are suitable for the
recovery of signals from general nonlinear measurement
systems. We have developed nonasymptotic and determinis-
tic performance guarantees for LSPEs that provide accurate
bounds on the estimation error, especially for structured
or low-dimensional measurement systems. To demonstrate
the efficacy of LSPEs in practice, we have applied them to
complex-valued phase retrieval problems, in which LSPEs
can be used to compute accurate signal estimates or ini-
tialization vectors for other convex or nonconvex phase
retrieval algorithms. We have shown that properly prepro-
cessing the nonlinear measurements can further improve the
performance of LSPEs in practical scenarios. Our simula-
tions with synthetic and real data have shown that LSPEs are
able to significantly outperform existing spectral initializ-
ers, especially for low-dimensional problems, for structured
measurement matrices, or for large oversampling ratios.

There are many avenues for future work. First, one could
derive LSPEs for the asymptotically-optimal preprocess-
ing function in (15) or for other commonly used functions,
which may lead to further performance improvements. Sec-
ond, the proposed error analysis could be used to generate
improved measurement matrices. Third, an exploration of
LSPEs for other nonlinearities that arise in machine learning
and signal processing applications is left for future work.

(a) original (b) amplitude
N-MSE = 0.7010

(c) optimal
N-MSE = 0.5849

(d) orthogonal
N-MSE = 0.7028

(e) spectral
N-MSE = 0.7016

(f) truncated
N-MSE = 0.7020

(g) weighted
N-MSE = 0.7013

(h) LSPE-C
N-MSE = 0.4920

(i) LSPE-Exp
N-MSE = 0.4896

Figure 4: Recovery of a 40⇥40 image from with M = 10N

measurements captured through a scattering medium with-
out the use of a phase retrieval algorithm. LSPEs outper-
form all initializers for structured measurements.
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A. Proof of Theorem 1
The proof proceeds in two steps detailed as follows.

Mean Matrix We first compute the mean matrix W0.
Since (7) is a quadratic form, we can take the derivative
in f

W

H
0 and set it to zero, i.e.,

d

d

f
W

H
0

E

2

4
�����
f
W0 +

MX

m=1

T (ym)

f
Wm � xx

H

�����

2

F

3

5
= 0.

Basic matrix calculus yields

f
W0 = K

x

�PM
m=1 T (ym)

f
Wm (16)

with T (ym) = E[T (ym)] and K

x

= E
⇥
xx

H
⇤
.

Linear Estimation Matrix With (16) and the fact that (7)
is a quadratic form in the matrices Wm, m = 1, . . . ,M ,
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we take the derivatives in W

H
m and setting them to zero:

d

dfWH
m

E
"����

MX

m=1

(T (ym)�T (ym))

f
Wm�(xx

H�K

x

)

����
2

F

#
=0.

By interchanging the derivative with expectation and with
basic manipulations, we obtain the following set of optimal-
ity conditions for Wm for m = 1, . . . ,M :
PM

m0=1
f
Wm0 E

⇥
(T (ym)� T (ym))(T (ym0

)� T (ym0
))

⇤

= E
⇥
(T (ym)� T (ym))(xx

H �K

x

)

⇤
. (17)

In compact matrix form, the above condition reads

(T⌦ IN⇥N )W = V, (18)

where we used the following shortcuts:

T = E
⇥
(T (y)� T (y))(T (y)� T (y))

T
⇤

W = [

f
W

T
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x
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,m = 1, . . . ,M
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T
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T
m, . . . ,V

T
M ]

T
.

The condition in (18) can be solved for the estimation ma-
trices in W leading to W = (T

�1 ⌦ IN⇥N )V, where we
require the matrix T to be full rank. To obtain the linear
spectral estimator matrix, we simplify as

D

y

= K

x

+ ((T (y)� T (y))

T ⌦ IN⇥N )W

= K

x

+

PM
m=1 tmVm,

where we define the vector t = T

�1
(T (y)� T (y)).

B. Proof of Theorem 2
To compute the spectral MSE in (5), we simplify

S-MSE = E
���

PM
m=1 tmVm � (xx

H �K

x

)

���
2

F

�
.

We expand this expression into four terms
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and simplify each expression individually. We start with (19)
and use the fact that

PM
m=1 tmVm = ((T (y)� T (y))

T
T

�1 ⌦ IN⇥N )V

and rewrite the quantity within expectation as follows:
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We now evaluate the expectation which leads to
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or, equivalently, to
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We next will simplify (20). Recall that

tm =
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which enables us to write (20) as
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Seeing as (21) is the Hermitian conjugate of (20), we have
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Combining all these terms yield the spectral MSE
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C. Proof of Corollary 1
We bound the estimation error with the spectral MSE of the
LSPE as follows. For a given instance, we have

kˆxˆxH � xx
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y

+D

y

� xx
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where (a) follows from the squared triangle inequality and
(b) because ˆ

x

ˆ

x

H is the best rank-1 approximation of D
y

.
Averaging over all instances finally yields

E
⇥kˆxˆxH � xx

Hk2F
⇤  4 S-MSELSPE.
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