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Supplement - Structured Variational Learning of Bayesian Neural Networks
with Horseshoe Priors

1. Conditional variational pre-activations
Recall from Section 4.2, that the variational pre-activation distribution is given by q(b | a, νl, φβl) = N (b | µb,Σb) = N (b |
MT
βl|νla, (a

TUβl|νla)V ), where U = Ψ + hh′, and V is diagonal. To equation requires Mβl|νl and Uβl|νl . The expressions
for these follow directly from the properties of partitioned Gaussians.

For a particular layer l, we drop the explicit dependency on l from the notation. Recall thatB =

[
β
νT

]
, and letB ∈ Rm×n,

β ∈ Rm−1×n, and ν ∈ Rn×1 q(B | φB) = MN (B | M,U, V ). From properties of the Matrix normal distribution, we
know that a column-wise vectorization of B, ~B ∼ N ( ~M, V ⊗ U). From this and Gaussian marginalization properties it
follows that the jth column tj = [βj ; νj ] of B is distributed as tj ∼ N (mj , VjjU), where mj is the appropriate column of
M . Conditioning on νj then yields, q(βj | νj) = N (βj | µβj |νj ,Σβj |νj ), where

Σβj |νj = Vjj(Ψβ +
Ψν

Ψν + h2
ν

hβh
T
β )

µβj |νj = µβj +
hν(νj − µνj )

Ψν + h2
ν

hβ

(1)

Rearranging, we can see that, Mβ|ν is made up of the columns µβj |νj and Uβ|ν = Ψβ + Ψν
Ψν+h2

ν
hβh

T
β .

2. Algorithmic details
The ELBO corresponding to the non-centered regularized HS model is,

L(φ) = E[ln Inv-Gamma(c | ca, cb)] + E[ln Inv-Gamma(κ | 1/2, 1/ρκ)] + E[ln Inv-Gamma(ρκ | 1/2, 1/b2κ)]

+
∑
n

E[ln p(yn | β, T , κ, xn)]

+

L−1∑
l=1

KL∑
k=1

E[ln Inv-Gamma(λkl | 1/2, 1/b20)]

+

L−1∑
l=1

E[ln Inv-Gamma(υl | 1/2, 1/ϑl)] + E[ln Inv-Gamma(ϑl | 1/2, 1/b2g)]

+

L−1∑
l=1

Eq(Bl)[ln N (βl | 0, I) + ln Inv-Gamma(τl | 1/2, 1/λl)] +

KL∑
k=1

E[ln N (βkL | 0, I)] + H[q(θ | φ)].

(2)

We rely on a Monte-Carlo estimates to evaluate the expectation involving the likelihood E[ln p(yn | β, T , κ, xn)].

Efficient computation of the Matrix Normal Entropy The entropy of q(B) = MN (B | M,U, V ) is given by
mn
2 ln (2πe) + 1

2 ln |V ⊗ U |. We can exploit the structure of U and V to compute this efficiently. We note that
ln |V ⊗ U | = mln |V | + nln |U |. Since V is diagonal ln |V | =

∑
j ln Vjj . Using the matrix determinant lemma we

can efficiently compute |U | = (1 + h′Ψ−1h)|Ψ|. Owing to the diagonal structure of Ψ, computing it’s determinant and
inverse is particularly efficient.
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Fixed point updates The auxiliary variables ρκ, ϑl and ϑl all follow inverse Gamma distributions. Here we derive for
λkl, the others follow analogously. Consider,

ln q(λkl) ∝ E−qλkl [ln Inv-Gamma(τkl | 1/2, 1/λkl)] + E−qλkl [ln Inv-Gamma(λkl | 1/2, 1/b20)],

∝ (−1/2− 1/2− 1)ln λkl − (E[1/τkl] + 1/b20)(1/λkl),
(3)

from which we see that,

q(λkl) = Inv-Gamma(λkl | c, d),

c = 1, d = E[
1

τkl
] +

1

b20
.

(4)

Since, q(τkl) = ln N (µτkl , σ
2
τkl

), it follows that E[ 1
τkl

] = exp{−µτkl + 0.5 ∗ σ2
τkl
}. We can thus calculate the necessary

fixed point updates for λkl conditioned on µτkl and σ2
τkl

. Our algorithm uses these fixed point updates given estimates of
µτkl and σ2

τkl
after each Adam step.

3. Algorithm
Algorithm 1 provides pseudocode summarizing the overall algorithm for training regularized HSBNN (with strictured
variational approximations).

Algorithm 1 Regularized HS-BNN Training
1: Input Model p(D, θ), variational approximation q(θ | φ), number of iterations T.
2: Output: Variational parameters φ
3: Initialize variational parameters φ.
4: for T iterations do
5: Update φc, φκ, φγ , {φBl}l, {φυl}l ← ADAM(L(φ)).
6: for all hidden layers l do
7: Conditioned on φBl , φυl update φϑl , φλkl using fixed point updates (Equation 4).
8: end for
9: Conditioned on φκ update φρκ via the corresponding fixed point update.

10: end for

4. Experimental details
For regression problems we use Gaussian likelihoods with an unknown precision γ, p(yn | f(W,xn), γ) = N (yn |
f(W,xn), γ−1). We place a vague prior on the precision,γ ∼ Gamma(6, 6) and approximate the posterior over γ using
another variational distribution q(γ | φγ). The corresponding variational parameters are learned via a gradient update during
learning.

Regression Experiments For comparing the reg-HS and HS models we followed the protocol of (Hernandez-Lobato &
Adams, 2015) and trained a single hidden layer network with 50 rectified linear units for all but the larger “Protein” and
“Year” datasets for which we train a 100 unit network. For the smaller datasets we train on a randomly subsampled 90%
subset and evaluate on the remainder and repeat this process 20 times. For “Protein” we perform 5 replications and for
“Year” we evaluate on a single split. For, VMG we used 10 pseudo-inputs, a learning rate of 0.001 and a batch size of 128.

Reinforcement learning Experiments We used a learning rate of 2e− 4. For the 2D map domain we trained for 1500
epochs and for acrobot we trained for 2000 epochs.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Supplement - Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors

5. Additional Experimental results
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Figure 1. Structured variational approximations consistently recover solutions that exhibit stronger shrinkage. We plot the 50 smallest
||wkl||2 recovered by the two approximations on five random trials on a number of UCI datasets.

In Figure 1 we provide further shrinkage results from the experiments described in the main text comparing regularized
Horseshoe models utilizing factorized and structured approximations.

Shrinkage provided by fully factorized Horseshoe BNNs on UCI benchmarks Figure 2 illustrates the shrinkage
afforded by 50 unit HS-BNNs using fully factorized approximations. Similar to factorized regularized Horseshoe BNNs
limited compression is achieved. Figures On some datasets, we do not achieve much compression and all 50 units are used.
A consequence of the fully factorized approximations providing weaker shrinkage as well as 50 units not being large enough
to model the complexity of the dataset.
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Figure 2. We plot ||wkl||2 recovered by the HS-BNN using the fully factorized variational approximation on a number of UCI datasets.
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6. Prior samples from networks with HS and regularized Horseshoe priors
To provide further intuition into the behavior of networks with Horseshoe and regularized Horseshoe priors we provide
functions drawn from networks endowed with these priors. Figure 3 plots five random functions sampled from one
layer networks with varying widths. Observe that the regularized horseshoe distribution leads to smoother functions,
thus affording stronger regularization. As demonstrated in the main paper, this stronger regularization leads to improved
predictive performance when the amount of training data is limited.
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Figure 3. Each row displays five random samples drawn from a single layer network with TANH non-linearities. The top row contains
samples from a 50 unit network, the middle row contains samples from a 500 unit network and the bottom row displays samples from a
5000 unit network. Matched samples from the regularized HS and HS priors were generated by sharing βkl samples between the two.
The hyper-parameters used were b0 = bg = 1, ca = 2 and cb = 6.


