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Abstract
Bayesian Neural Networks (BNNs) have recently
received increasing attention for their ability to
provide well-calibrated posterior uncertainties.
However, model selection—even choosing the
number of nodes—remains an open question. Re-
cent work has proposed the use of a horseshoe
prior over node pre-activations of a Bayesian neu-
ral network, which effectively turns off nodes
that do not help explain the data. In this work,
we propose several modeling and inference ad-
vances that consistently improve the compact-
ness of the model learned while maintaining
predictive performance, especially in smaller-
sample settings including reinforcement learn-
ing.

1. Introduction
Bayesian Neural Networks (BNNs) are increasingly the de-
facto approach for modeling stochastic functions. By treat-
ing the weights in a neural network as random variables,
and performing posterior inference on these weights, BNNs
can avoid overfitting in the regime of small data, provide
well-calibrated posterior uncertainty estimates, and model
a large class of stochastic functions with heteroskedastic
and multi-modal noise. These properties have resulted in
BNNs being adopted in applications ranging from active
learning (Hernández-Lobato & Adams, 2015; Gal et al.,
2016a) and reinforcement learning (Blundell et al., 2015;
Depeweg et al., 2017).

While there have been many recent advances in training
BNNs (Hernández-Lobato & Adams, 2015; Blundell et al.,
2015; Rezende et al., 2014; Louizos & Welling, 2016;
Hernandez-Lobato et al., 2016), model-selection in BNNs
has received relatively less attention. Unfortunately, the
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Figure 1. Predictive distributions from a single layer BNN with
N (0, 1) priors over weights, containing 10, 100, and 1000 units,
trained on noisy samples (in black) from a smooth 1 dimensional
function shown in black. With fixed data increasing BNN capacity
leads to over-inflated uncertainty.

consequences for a poor choice of architecture are severe:
too few nodes, and the BNN will not be flexible enough
to model the function of interest; too many nodes, and the
BNN predictions will have large variance. We note that
these Bayesian model selection concerns are subtlely dif-
ferent from overfitting and underfitting concerns that arise
from maximum likelihood training: here, more expressive
models (e.g. those with more nodes) require more data to
concentrate the posterior. When there is insufficent data,
the posterior uncertainty over the BNN weights will re-
main large, resulting in large variances in the BNN’s pre-
dictions. We illustrate this issue in Figure 1, where we see
a BNN trained with too many parameters has higher vari-
ance around its predictions than one with fewer. Thus, the
core concern of Bayesian model selection is to identify a
model class expressive enough that it can explain the ob-
served data set, but not so expressive that it can explain
everything (Rasmussen & Ghahramani, 2001; Murray &
Ghahramani, 2005).

Model selection in BNNs is challenging because the num-
ber of nodes in a layer is a discrete quantity. Re-
cently, (Ghosh & Doshi-Velez, 2017; Louizos et al.,
2017) independently proposed performing model selection
in Bayesian neural networks by placing Horseshoe pri-
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ors (Carvalho et al., 2009) over the weights incident to each
node in the network. This prior can be interpreted as a con-
tinuous relaxation of a spike-and-slab approach that would
assign a discrete on-off variable to each node, allowing for
computationally-efficient optimization via variational infer-
ence.

In this work, we expand upon this idea with several innova-
tions and careful experiments. Via a combination of using
regularized horseshoe priors for the node-specific weights
and variational approximations that retain critical posterior
structure, we both improve upon the statistical properties
of the earlier works and provide improved generalization,
especially for smaller data sets and in sample-limited set-
tings such as reinforcement learning. We also present a new
thresholding rule for pruning away nodes. Unlike previous
work our rule does not require computing a point summary
of the inferred posteriors. We compare the various model
and inference combinations on a diverse set of regression
and reinforcement learning tasks. We find that the pro-
posed innovations consistently improve upon the compact-
ness of the models learned without sacrificing predictive
performance.

2. Bayesian Neural Networks
A Bayesian neural network endows the parameters W of a
neural network with distributions W ∼ p(W). When com-
bined with inference algorithms that infer posterior distribu-
tions over weights, they are able to capture posterior as well
as predictive uncertainties. For the following, consider a
fully connected deep neural network with L−1 hidden lay-
ers, parameterized by a set of weight matrices W = {Wl}L1 ,
where Wl is of size RKl−1+1×Kl , and Kl is the number of
units in layer l. The network maps an input x ∈ RD to a re-
sponse f(W, x) by recursively applying the transformation
h(WT

l [zTl , 1]
T ), where zl ∈ RKl×1 is the input into layer l,

the initial input z0 is x, and h is a point-wise non-linearity
such as the rectified-linear function, h(a) = max(0, a).

Given N observation response pairs D = {xn, yn}Nn=1

and p(W), we are interested in the posterior distribution
p(W | D) ∝

∏N
n=1 p(yn | f(W, xn))p(W), and in using

it for predicting responses to unseen data x∗, p(y∗ | x∗) =∫
p(y∗ | f(W, x∗))p(W | D)dW. The prior p(W) allows

one to encode problem-specific beliefs as well as general
properties about weights.

3. Bayesian Neural Networks with
Regularized Horseshoe Priors

Let wkl ∈ RKl−1+1×1 denote the set of all weights incident
into unit k of hidden layer l. Ghosh & Doshi-Velez (2017);
Louizos et al. (2017) introduce a prior such that each unit’s
weight vector wkl is conditionally independent and follow

a group Horseshoe prior (Carvalho et al., 2009),

wkl | τkl, υl ∼ N (0, (τ2klυ
2
l )I),

τkl ∼ C+(0, b0), υl ∼ C+(0, bg). (1)

Here, I is an identity matrix, a ∼ C+(0, b) is the Half-
Cauchy distribution with density p(a|b) = 2/πb(1 +
(a2/b2)) for a > 0, τkl is a unit specific scale parameter,
while the scale parameter υl is shared across the layer. This
horseshoe prior exhibits Cauchy-like flat, heavy tails while
maintaining an infinitely tall spike at zero. As a result, it
allows sufficiently large unit weight vectors wkl to escape
un-shrunk—by having a large scale parameter—while pro-
viding severe shrinkage to small weights. By forcing all
weights incident on a unit to share scale parameters, we are
able to induce sparsity at the unit level, turning off units that
are unnecessary for explaining the data well. Intuitively,
the shared layer wide scale υl pulls all units in layer l to
zero, while the heavy tailed unit specific τkl scales allow
some of the units to escape the shrinkage.

Regularized Horseshoe Priors While the horseshoe
prior has some good properties, when the amount of train-
ing data is limited, units with essentially no shrinkage can
produce large weights can adversely affect generalization
performance of HS-BNNs, with minor perturbations of
the data leading to vastly different predictions. To deal
with this issue, here we consider the regularized horseshoe
prior (Piironen & Vehtari, 2017). Under this prior wkl is
drawn from,

wkl | τkl, υl, c ∼ N (0, (τ̃2klυ
2
l )I), τ̃2kl =

c2τ2kl
c2 + τ2klυ

2
l

. (2)

Note that for the weight node vectors that are strongly
shrunk to zero, we will have tiny τ2klυ

2
l . When, τ2klυ

2
l ≪

c2, τ̃2kl → τ2klυ
2
l , recovering the original horseshoe prior.

On the other hand, for the un-shrunk weights τ2klυ
2
l will

be large, and when τ2klυ
2
l ≫ c2, τ̃2kl → c2. Thus,

these weights under the regularized Horseshoe prior fol-
low wkl ∼ N (0, c2I) and c acts as a weight decay hyper-
parameter. We place a Inv-Gamma(ca, cb) prior on c2. In
the experimental section, we find that the regularized HS-
BNN does indeed improve generalization over HS-BNN.
Below, we describe two essential parametrization consider-
ations essential for using the regularized horseshoe in prac-
tice.

Half-Cauchy re-parameterization for variational learning.
Instead of directly parameterizing the Half-Cauchy ran-
dom variables in Equations 1 and 2, we use a convenient
auxiliary variable parameterization (Wand et al., 2011)
of the distribution, a ∼ C+(0, b) ⇐⇒ a2 | λ ∼
Inv-Gamma( 12 ,

1
λ );λ ∼ Inv-Gamma( 12 ,

1
b2 ), where v ∼

Inv-Gamma(a, b) is the Inverse Gamma distribution with
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density p(v) ∝ v−a−1exp{−b/v} for v > 0. This avoids
the challenges posed by the direct approximation during
variational learning — standard exponential family varia-
tional approximations struggle to capture the thick Cauchy
tails, while a Cauchy approximating family leads to high
variance gradients.

Since the number of output units is fixed by the prob-
lem at hand, a sparsity inducing prior is not appropriate
for the output layer. Instead, we place independent Gaus-
sian priors, wkL ∼ N (0, κ2I) with vague hyper-priors
κ ∼ C+(0, bκ = 5) on the output layer weights. The joint
distribution of the regularized Horseshoe Bayesian neural
network is then given by,

p(D, θ) = p(c | ca, cb)r(κ, ρκ | bκ)
KL∏
k=1

N (wkL | 0, κI)

L∏
l=1

r(υl, ϑl | bg)
Kl∏
k=1

r(τkl, λkl | b0)N (wkl | 0, (τ̃2
klυ

2
l )I)

N∏
n=1

p(yn | f(W, xn)),

(3)

where p(yn|f(W, xn)) is the likelihood function and
r(a, λ|b) = Inv-Gamma(a2| 12 ,

1
λ )Inv-Gamma(λ| 12 ,

1
b2 ),

with θ = {W, T , κ, ρκ, c}, T =

{{τkl}K,L
k=1,l=1, {υl}Ll=1, {λkl}K,L

k=1,l=1, {ϑl}Ll=1}.

Non-Centered Parameterization The regularized horseshoe
(and the horseshoe) prior both exhibit strong correlations
between the weights wkl and the scales τklυl. While their
favorable sparsity inducing properties stem from this cou-
pling, it also gives rise to coupled posteriors that exhibit
pathological funnel shaped geometries (Betancourt & Giro-
lami, 2015; Ingraham & Marks, 2016) that are difficult to
reliably sample or approximate.

Adopting non-centered parameterizations (Ingraham &
Marks, 2016), helps alleviate the issue. Consider a refor-
mulation of Equation 2,

βkl ∼ N (0, I), wkl = τ̃klυlβkl, (4)

where the distribution on the scales are left unchanged.
Since the scales and weights are sampled from independent
prior distributions and are marginally uncorrelated, such a
parameterization is referred to as non-centered. The like-
lihood is now responsible for introducing the coupling be-
tween the two, when conditioning on observed data. Non-
centered parameterizations are known to lead to simpler
posterior geometries (Betancourt & Girolami, 2015). Em-
pirically (Ghosh & Doshi-Velez, 2017) have shown that
adopting a non-centered parameterization significantly im-
proves the quality of the posterior approximation for BNNs
with Horseshoe priors. Thus, we also adopt non-centered
parameterizations for the regularized Horseshoe BNNs.

4. Structured Variational Learning of
Regularized Horseshoe BNNs

We approximate the intractable posterior p(θ | D) with
a computationally convenient family. We exploit recently
proposed stochastic extensions to scale to both large archi-
tectures and datasets, and use black-box variants to deal
with non-conjugacy. We begin by selecting a tractable
family of distributions q(θ | ϕ), with free variational pa-
rameters ϕ. Learning involves optimizing ϕ such that the
Kullback-Liebler divergence between the approximation
and the true posterior, KL(q(θ | ϕ)||p(θ | D)) is minimized.
This is equivalent to maximizing the lower bound to the
marginal likelihood (or evidence) p(D), p(D) ≥ L(ϕ) =
Eqϕ [ln p(D, θ)] + H[q(θ | ϕ)]. The choice of the approxi-
mating family governs the quality of inference.

4.1. Variational Approximation Choices

The more flexible the approximating family the better it
approximates the true posterior. Below, we first describe
a straight-forward fully-factored approximation and then
a more sophisticated structured approximation that we
demonstrate has better statistical properties.

Fully Factorized Approximations The simplest possi-
bility is to use a fully factorized variational family,

q(θ | ϕ) =
∏

a∈{c,κ,ρκ}

q(a | ϕa)
∏
i,j,l

q(βij,l | ϕβij,l)∏
k,l

q(τkl | ϕτkl)q(λkl | ϕλkl)
∏
l

q(υl | ϕυl)q(ϑl | ϕϑl).
(5)

Restricting the variational distribution for the non-centered
weight βij,l between units i in layer l − 1 and j in layer l,
q(βij,l | ϕβijl

) to the Gaussian family N (βij,l | µij,l, σ
2
ij,l),

and the non-negative scale parameters τ2kl and υ2
l and the

variance of the output layer weights to the log-Normal
family, q(ln τ2kl | ϕτkl

) = N (µτkl
, σ2

τkl
), q(ln υ2

l |
ϕυl

) = N (µυl
, σ2

υl
), and q(ln κ2 | ϕκ) = N (µκ, σ

2
κ), al-

lows for the development of straightforward inference algo-
rithms (Ghosh & Doshi-Velez, 2017; Louizos et al., 2017).
It is not necessary to impose distributional constraints on
the variational approximations of the auxiliary variables ϑl,
λkl, or ρκ. Conditioned on the other variables the optimal
variational family for these latent variables follow inverse
Gamma distributions. We refer to this approximation as the
factorized approximation.

Parameter-tied factorized approximation. The conditional
variational distribution on wkl implied by Equations 5
and 7 is q(wkl | τkl, υl) = N (wkl | τklυlµkl, (τklυl)

2Ψ),
where Ψ is a diagonal matrix with elements populated
by σ2

ij,l and µkl consists of the corresponding variational
means µij,l. The distributions of weights incident into
a unit are thus coupled through τklυl while all weights
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in a layer are coupled through the layer wise scale υl.
This view suggests that using a simpler approximating
family q(βij,l | ϕβijl

) = N (βij,l | µij,l, 1) results in
an isotropic Gaussian approximation q(wkl | τkl, υl) =
N (wkl | τklυlµkl, (τklυl)

2I). Crucially, the scale param-
eters τklυl still allow for pruning of units when the scales
approach zero. Moreover, by tying the variances of the non-
centered weights together this approximation effectively
halves the number of variational parameters and speeds up
training (Ghosh & Doshi-Velez, 2017). We call this the
tied-factorized approximation.

Structured Variational Approximations Although
computationally convenient, the factorized approximations
fail to capture posterior correlations among the network
weights, and more pertinently, between weights and scales.

We take a step towards a more structured variational ap-
proximation by using a layer-wise matrix variate Gaussian
variational distribution for the non-centered weights and re-
taining the form of all the other factors from Equation 5.
Let βl ∈ RKl−1+1×Kl denote the set of weights betweens
layers l − 1 and l, then under this variational approxima-
tion we have q(βl | ϕβl

) = MN (βl | Mβl
, Uβl

, Vβl
),

where Mβl
∈ RKl−1+1×Kl is the mean, Vβl

∈ RKl×Kl and
Uβl

∈ RKl−1+1×Kl−1+1 capture the covariances among
the columns and rows of βl, thereby modeling dependen-
cies among the variational approximation to the weights
in a layer. Louizos & Welling (2016) demonstrated that
even when Uβl

and Vβl
are restricted to be diagonal, the

matrix Gaussian approximation can lead to significant im-
provements over fully factorized approximations for vanilla
BNNs. We call this the semi-structured1 approximation.

The horseshoe prior exhibits strong correlations between
weights and their scales, which encourages strong poste-
rior coupling between βkl and τkl. For effective shrink-
age towards zero, it is important that the variational ap-
proximations are able to capture this strong dependence.

To do so, let Bl =

[
βl

νTl

]
, νl = [ν1l, . . . , νKll]

T , and

νkl = lnτkl. Now using the variational approximation
q(Bl | ϕBl

) = MN (Bl | Ml, Ul, Vl), allows us to re-
tain the coupling between weights incident into a unit and
the corresponding unit specific scales, with appropriate pa-
rameterizations of Ul. In particular, we note that a diagonal
Ul fails to capture the necessary correlations, and defeats
the purpose of using a matrix Gaussian variational fam-
ily to model the posterior of Bl. To retain computational
efficiency while capturing dependencies among the rows
of Bl we enforce a low-rank structure, Ul = Ψl + hlh

T
l ,

where Ψl ∈ RKl−1+2×Kl−1+2 is a diagonal matrix and

1it captures correlations among weights but not between
weights and scales

Table 1. Variational Approximation Families.

APPROXIMATION DESCRIPTION

FACTORIZED q(νl | ϕνl)q(βl | ϕβl) =
∏
i,j,l

N (βkl | µij,l, σ
2
ij,l)

∏
k,l

q(νkl | ϕνkl)

FACTORIZED (TIED) q(νl | ϕνl)q(βl | ϕβl) =
∏
i,j,l

N (βkl | µij,l, 1)
∏
k,l

q(νkl | ϕνkl)

SEMI-STRUCTURED q(νl | ϕνl)q(βl | ϕβl) = MN (βl | Mβl , Uβl , Vβl)
∏
k,l

q(νkl | ϕνkl)

STRUCTURED q(βl, νl | ϕBl) = MN (Bl | Ml, Ul, Vl)

hl ∈ RKl−1+2×1 is a column vector. We retain a diago-
nal structure for Vl ∈ RKl×Kl . We call this approximation
the structured approximation. In the experimental section,
we find that this structured approximation, indeed leads to
stronger shrinkage towards zero in the recovered solutions.
When combined with a pruning rule, it significantly com-
presses networks with excess capacity. Table 1 summarizes
the variational approximations introduced in this section.

4.2. Black Box Variational Inference

Irrespective of the variational family choice, the resulting
evidence lower bound (ELBO),

L(ϕ) =
∑
n

E[ln p(yn | f(β, T , κ, xn))]+

E[ln p(T , β, κ, ρκ | b0, bg, bκ)] +H[q(θ | ϕ)],
(6)

is challenging to evaluate. Here we have used β to denote
the set of all non-centered weights in the network. The non-
linearities introduced by the neural network and the poten-
tial lack of conjugacy between the neural network parame-
terized likelihoods and the Horseshoe priors render the first
expectation in Equation 6 intractable.

Recent progress in black box variational inference (Kingma
& Welling, 2014; Rezende et al., 2014; Ranganath et al.,
2014; Titsias & Lázaro-gredilla, 2014) subverts this dif-
ficulty. These techniques compute noisy unbiased esti-
mates of the gradient ∇ϕL̂(ϕ), by approximating the of-
fending expectations with unbiased Monte-Carlo estimates
and relying on either score function estimators (Williams,
1992; Ranganath et al., 2014) or reparameterization gra-
dients (Kingma & Welling, 2014; Rezende et al., 2014;
Titsias & Lázaro-gredilla, 2014) to differentiate through
the sampling process. With the unbiased gradients in
hand, stochastic gradient ascent can be used to optimize
the ELBO. In practice, reparameterization gradients exhibit
significantly lower variances than their score function coun-
terparts and are typically favored for differentiable mod-
els. The reparameterization gradients rely on the existence
of a parameterization that separates the source of random-
ness from the parameters with respect to which the gra-
dients are sought. For our Gaussian variational approx-
imations, the well known non-centered parameterization,
ζ ∼ N (µ, σ2) ⇔ ϵ ∼ N (0, 1), ζ = µ + σϵ, allows us
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to compute Monte-Carlo gradients,

∇µ,σEqw [g(w)] ⇔ ∇µ,σEN (ϵ|0,1)[g(µ+ σϵ)]

≈ 1

S

∑
s

∇µ,σg(µ+ σϵ(s)),
(7)

for any differentiable function g and ϵ(s) ∼ N (0, 1).
Furthermore, all practical implementations of variational
Bayesian neural networks use a further re-parameterization
to lower variance of the gradient estimator. They sample
from the implied variational distribution over a layer’s pre-
activations instead of directly sampling the much higher di-
mensional weights (Kingma et al., 2015).

Variational distribution on pre-activations The “local”
re-parametrization is straightforward for all the approxima-
tions except the structured approximation. For that, ob-
serve that q(Bl | ϕBl

) factorizes as q(βl | νl, ϕβl
)q(νl |

ϕνl
). Moreover, conditioned on νl ∼ q(νl | ϕνl

),
βl follows another matrix Gaussian distribution. The
conditional variational distribution is q(βl | νl, ϕβl

) =
MN (Mβl|νl

, Uβl|νl
, V ). It then follows that b = βT

l a for
an input a ∈ RKl−1+1×1 into layer l, is distributed as,

b | a, νl, ϕβl ∼ N (b | µb,Σb), (8)

with µb = MT
βl|νl

a, and Σb = (aTUβl|νl
a)V . Since,

aTUβl|νl
a is scalar and V is diagonal, Σ is diagonal as well.

For regularized HS-BNN, recall that the pre-activation of
node k in layer l, is ukl = τ̃klυlb, and the corresponding
variational posterior is,

q(ukl | µukl , σ
2
ukl

) = N (ukl | µukl , σ
2
ukl

),

µukl = τ̃
(s)
kl υ

(s)
l µbk; σ2

ukl
= τ̃

(s)2

kl υ
(s)
l

2
Σbk,k,

(9)

where τ
(s)
kl , υ

(s)
l , c(s) are samples from the correspond-

ing log-Normal posteriors and τ̃
(s)
kl is constructed as

c(s)
2
τ
(s)
kl

2
/(c(s)

2
+ τ

(s)
kl

2
υ
(s)
l

2
).

Algorithm We now have a simple prescription for opti-
mizing Equation 6. Recursively sampling the variational
posterior of Equation 9 for each layer of the network, al-
lows us to forward propagate information through the net-
work. Using the reparameterizations (Equation 7), allows
us to differentiate through the sampling process. We com-
pute the necessary gradients through reverse mode auto-
matic differentiation tools (Maclaurin et al., 2015). With
the gradients in hand, we optimize L(ϕ) with respect to
the variational weights ϕB , per-unit scales ϕτkl

, per-layer
scales ϕυl

, and the variational scale for the output layer
weights, ϕκ using Adam (Kingma & Ba, 2014). Condi-
tioned on these, the optimal variational posteriors of the
auxiliary variables ϑl, λkl, and ρκ follow Inverse Gamma
distributions. Fixed point updates that maximize L(ϕ) with

respect to ϕϑl
, ϕλkl

, ϕρκ , holding the other variational pa-
rameters fixed are available. It can be shown that, q(λkl |
ϕλkl

) = Inv-Gamma(λkl | 1,E[ 1
τkl

] + 1
b20
). The distribu-

tions of the other auxiliary variables are analogous. By al-
ternating between gradient and fixed point updates to max-
imize the ELBO in a coordinate ascent fashion we learn all
variational parameters jointly (see Algorithm 1 of the sup-
plement). Further details are available in the supplement.

Computational Considerations The primary computa-
tional bottleneck for the structured approximation arises in
computing the pre-activations in equation 8. While com-
puting Σb in the factorized approximation involves a single
inner product, in the structured case it requires the compu-
tation of the quadratic form aTUMβl|νl

a and a point wise
multiplication with the elements of Vl. Owing to the di-
agonal plus rank-one structure of UMβl|νl

, we only need
two inner products, followed by a scalar squaring and ad-
dition to compute the quadratic form and Kl scalar multi-
plications for the point-wise multiplication with Vl. Thus
the structured approximation is only marginally more ex-
pensive. Further, it uses only Kl + 2× (Kl−1 + 1) weight
variance parameters per layer, instead of Kl × (Kl−1 + 1)
parameters used by the factorized approximation. Not hav-
ing to compute gradients and update these additional pa-
rameters further mitigates the performance difference.

4.3. Pruning Rule

The Horseshoe and its regularized variant provide strong
shrinkage towards zero for small wkl. However, the shrunk
weights, although tiny, are never actually zero. A user-
defined thresholding rule is required to prune away the
shrunk weights. One could first summarize the inferred
posterior distributions using a point estimate and then use
the summary to define a thresholding rule (Louizos et al.,
2017). We propose an alternate thresholding rule that obvi-
ates the need for a point summary. We prune away a unit, if
p(τklυl < δ) > p0, where δ and p0 are user defined param-
eters, with τkl ∼ q(τkl | ϕτkl

) and υl ∼ q(υl | ϕυl
). Since,

both τkl and υl are constrained to the log-Normal varia-
tional family, their product follows another log-Normal dis-
tribution, and implementing the thresholding rule simply
amounts to computing the cumulative distribution function
of the log-Normal distribution. To see why this rule is sensi-
ble, recall that for units which experience strong shrinkage
the regularized Horseshoe tends to the Horseshoe. Under
the Horseshoe prior, τklυl governs the (non-negative) scale
of the weight node vector wkl. Therefore, under our thresh-
olding rule, we prune away nodes whose posterior scales,
place probability greater than p0 below a sufficiently small
threshold δ. In our experiments, we set p0 = 0.9 and δ to
either 10−3 or 10−5.
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5. Related Work
Bayesian neural networks have a long history. Early
work can be traced back to (Buntine & Weigend, 1991;
MacKay, 1992; Neal, 1993). These early approaches do
not scale well to modern architectures or the large datasets
required to learn them. Recent advances in stochastic
MCMC methods (Li et al., 2016; Welling & Teh, 2011)
and stochastic variational methods (Blundell et al., 2015;
Rezende et al., 2014), black-box variational and alpha-
divergence minimization (Hernandez-Lobato et al., 2016;
Ranganath et al., 2014), and probabilistic backpropaga-
tion (Hernández-Lobato & Adams, 2015) have reinvigo-
rated interest in BNNs by allowing scalable inference.

Work on learning structure in BNNs has received less at-
tention. (Blundell et al., 2015) introduce a mixture-of-
Gaussians prior on the weights, with one mixture tightly
concentrated around zero, thus approximating a spike and
slab prior over weights. Others (Kingma et al., 2015; Gal
& Ghahramani, 2016) have noticed connections between
Dropout (Srivastava et al., 2014) and approximate varia-
tional inference. In particular, (Molchanov et al., 2017)
show that the interpretation of Gaussian dropout as per-
forming variational inference in a network with log uniform
priors over weights leads to sparsity in weights. The goal of
turning off edges is very different than the approach consid-
ered here, which performs model selection over the appro-
priate number of nodes. More closely related to us, are the
recent works of (Ghosh & Doshi-Velez, 2017) and (Louizos
et al., 2017). The authors consider group Horseshoe priors
for unit pruning. We improve upon these works by using
regularized Horseshoe priors that improve generalization,
structured variational approximations that provide more ac-
curate inferences, and by proposing a new thresholding rule
to prune away units with small scales. Yet others (Neklyu-
dov et al., 2017) have proposed pruning units via truncated
log-normal priors over unit scales. However, they do not
place priors over network weights and are unable to infer
posterior weight uncertainty. In related but orthogonal re-
search (Adams et al., 2010; Song et al., 2017) focused on
the problem of structure learning in deep belief networks.

There is also a body of work on learning structure in non-
Bayesian neural networks. Early work (LeCun et al., 1990;
Hassibi et al., 1993) pruned networks by analyzing second-
order derivatives of the objectives. More recently, (Wen
et al., 2016) describe applications of structured sparsity not
only for optimizing filters and layers but also computation
time. Closer to our work in spirit, (Ochiai et al., 2016;
Scardapane et al., 2017; Alvarez & Salzmann, 2016) and
(Murray & Chiang, 2015) who use group sparsity to prune
groups of weights—e.g. weights incident to a node. How-
ever, these approaches don’t model weight uncertainty and
provide uniform shrinkage to all weights.

6. Experiments
In this section, we present experiments that evaluate
various aspects of the proposed regularized Horseshoe
Bayesian neural network (reg-HS) and the structured vari-
ational approximation. In all experiments, we use a learn-
ing rate of 0.005, the global horseshoe scale bg = 10−5, a
batch size of 128, ca = 2, and cb = 6. For the structured
approximation, we also found that constraining Ψ, V , and
h to unit-norms resulted in better predictive performance.
Additional experimental details are in the supplement.

Regularized Horseshoe Priors provide consistent bene-
fits, especially on smaller data sets. We begin by com-
paring reg-HS against BNNs using the standard Horseshoe
(HS) prior on a collection of diverse datasets from the UCI
repository. We follow the protocol of (Hernández-Lobato
& Adams, 2015) to compare the two models. To provide
a controlled comparison, and to tease apart the effects of
model versus inference enhancements we employ factor-
ized variational approximations for either model. In fig-
ure 2, the UCI datasets are sorted from left to right, with
the smallest on the left. We find that the regularized Horse-
shoe leads to consistent improvements in predictive perfor-
mance. As expected, the gains are more prominent for
the smaller datasets for which the regularization afforded
by the regularized Horseshoe is crucial for avoiding over-
fitting. In the remainder, all reported experimental results
use the reg-HS prior.

Structured variational approximations provide greater
shrinkage. Next, we evaluate the effect of utilizing struc-
tured variational approximations. In preliminary experi-
ments, we found that of the approximations described in
Section 4.1, the structured approximation outperformed the
semi-structured variant while the factorized approximation
provided better predictive performance than the tied ap-
proximation. In this section we only report results com-
paring models employing these two variational families.

Toy Data First, we explore the effects of structured and fac-
torized variational approximations on predictive uncertain-
ties. Following (Ghosh & Doshi-Velez, 2017) we consider
a noisy regression problem: y = sin(x)+ϵ, ϵ ∼ N (0, 0.1),
and explore the relationship between predictive uncertainty
and model capacity. We compare a single layer 1000 unit
BNN using a standard normal prior against BNNs with the
regularized horseshoe prior utilizing factorized and struc-
tured variational approximations. Figures 1 and 3 show
that while a BNN severely over-estimates the predictive un-
certainty, models using the reg-HS priors by pruning away
excess capacity, significantly improve the estimated uncer-
tainty. Furthermore, we observe that the structured approx-
imation best alleviates the under-fitting issues.

Controlled comparisons on UCI benchmarks We return to
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Figure 2. Top: Regularized Horseshoe results in consistent improvements over the vanilla horseshoe prior. The datasets are sorted
according to the number of data instances and plotted on the log scale with ‘yacht’ being the smallest and ‘year’ being the largest.
Relative improvement is defined as (x − y)/max(|x|, |y|). Middle: Structured variational approximations result in similar predictive
performance but consistently recover solutions that exhibit stronger shrinkage. The left most figure plots the predictive log likelihoods
achieved by the two approximations, each point corresponds to a UCI dataset. We also plot the fifty units with the smallest ||E[wkl]||2,
on a number of datasets. Each point in the plot displays the inferred ||E[wkl]||2 for a unit in the network. We plot recovered expected
weight norms from all five random trials for both the factorized and structured approximation. The structured approximation (in red)
consistently provides stronger shrinkage. The factorized approximation both produces weaker shrinkage and the degree of shrinkage
exhibits higher variance with random trials. Bottom: The structured approximation is competitive with VMG while using much smaller
networks. Fine tuning occasionally leads to small improvements. Compression rates are defined as the fraction of un-pruned units. The
rightmost plot compares VMG and reg-HS BNN in small data regimes on the three smallest UCI datasets. In parenthesis we indicate the
number of training instances. The shrinkage afforded by reg-HS leads to improved performance over VMG which employs priors that
lack shrinkage towards zero.

the UCI benchmark to carefully vet the different variational
approximations. We deviate from prior work, by using net-
works with significantly more capacity than previously con-
sidered for this benchmark. In particular, we use single
layer networks with an order of magnitude more hidden
units (500) than considered in previous work (50). This
additional capacity is more than that needed to explain
the UCI benchmark datasets well. With this experimental
setup, we are able to evaluate how well the proposed meth-
ods perform at pruning away extra modeling capacity. For
all but the ‘year‘ dataset, we report results from five trials
each trained on a random 90/10 split of the data. For the
large year dataset, we ran a single trial (details in the sup-
plement). Figure 2 shows consistently stronger shrinkage.

Comparison against Factorized approximations. The fac-
torized and structured variational approximations have sim-
ilar predictive performance. However, the structured ap-
proximation consistently recovers solutions that exhibit

much stronger shrinkage towards zero. Figure 2 demon-
strates this effect on several UCI datasets, with more in
the supplement. We have plotted 50 units with the small-
est ||wkl||2 weight norms recovered by the factorized and
structured approximations, from five random trials. Both
approximations provide shrinkage towards zero, but the
structured approximation has significantly stronger shrink-
age. Further, the degree of shrinkage from the factorized
approximation varies significantly between random initial-
izations. In contrast, the structured approximation consis-
tently provides strong shrinkage. We compare the shrink-
ages using ||E[wkl]||2 instead of applying the pruning rule
from section 4.3 and comparing the resulting compression
rates. This is because although the scales τklυl inferred
by the factorized approximation provide a clear separation
between signal and noise, they do not exhibit shrinkage to-
ward zero. However, wkl = τklυlβkl does exhibit shrink-
age and provides a fair comparison.
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Figure 3. Regularized Horseshoe BNNs prune away excess capac-
ity and are more resistant to underfitting. Variational approxima-
tions aware of model structure improve fits.

Comparison against competing methods. We compare the
reg-HS model with structured variational approximation
against the variational matrix Gaussian (VMG) approach
of (Louizos & Welling, 2016), which has previously been
shown to outperform other variational approaches to learn-
ing BNNs. We used the pruning rule with δ = 10−3 for
all but the ‘year‘ dataset, for which we set δ = 10−5.
Figure 2 demonstrates that structured reg-HS is competi-
tive with VMG in terms of predictive performance. We
either perform similarly or better than VMG on the major-
ity of the datasets. More interestingly, structured reg-HS
achieves competitive performance while pruning away ex-
cess capacity and achieving significant compression. We
also fine-tuned the pruned model by updating the weight
means while holding others fixed. However, this didn’t sig-
nificantly affect predictive performance. Finally, we eval-
uate how reg-HS compares against VMG in the low data
regime. For the three smallest UCI datasets we use ten per-
cent of the data for training. In such limited data regimes
(Figure 2) the shrinkage afforded by reg-HS leads to clear
improvements in predictive performance over VMG.

HS-BNNs improve reinforcement learning perfor-
mance. So far, we have focused on using BNNs simply
for prediction. One application area in which having good
predictive uncertainty estimates is crucial is in model-based
reinforcement learning scenarios (e.g. (Depeweg et al.,
2017; Gal et al., 2016b; Killian et al., 2017)): here, it is es-
sential not only to have an estimate of what state an agent
may be in after taking a particular action, but also an accu-
rate sense of all the states the agent may end up in. In the
following, we apply our regularized HS-BNN with struc-
tured approximations to two domains: the 2D map of Kil-
lian et al. (2017) and acrobot Sutton & Barto (1998). For
each domain, we focused on one instance dynamic setting.
In each domain, we collected training samples by training

a DDQN (van Hasselt et al., 2016) online (updated every
episode). The DDQN was trained with an epsilon-greedy
policy that started at one and decayed to 0.15 with decay
rate 0.99, for 500 episodes. This procedure ensured that we
had a wide variety of samples that were still biased in cov-
erage toward the optimal policy. To simulate resource con-
strained scenarios, we limited ourselves to 10% of DDQN
training batches (346 samples for the 2D map and 822 train-
ing samples for acrobot). We considered two architectures,
a single hidden layer network with 500 units, and a two
layer network with 100 units per layer as the transition
function for each domain. Then we simulated from each
BNN to learn a DDQN policy (two layers of width 256,
512; learning rate 5e− 4) and tested this policy on the orig-
inal simulator.

As in our prediction results, training a moderately-sized
BNN with so few data results in severe underfitting, which
in turn, adversely affects the quality of the policy that is
learned. We see in table 2 that the better fitting of the
structured reg-HS-BNN results in higher task performance,
across domains and model architectures.
Table 2. Model-based reinforcement learning. The under-fitting
of the standard BNN results in lower task performance, whereas
the HS-BNN is more robust to this underfitting.

2D Map
Test RMSE Avg. Reward

BNN x-500-y 0.187 975.386
BNN x-100-100-y 0.089 966.716
Structured x-500-y 0.058 995.416
Structured x-100-100-y 0.061 992.893

Acrobot
BNN x-500-y 0.924 -156.573
BNN x-100-100-y 0.710 -23.419
Structured x-500-y 0.558 -108.443
Structured x-100-100-y 0.656 -17.530

7. Discussion and Conclusion
We demonstrated that the regularized horseshoe prior, com-
bined with a structured variational distribution, is a compu-
tationally efficient tool for model selection in Bayesian neu-
ral networks. By retaining crucial posterior dependencies,
the structured approximation provided, to our knowledge,
state of the art shrinkage for BNNs while being competi-
tive in predictive performance to existing approaches. We
found, model re-parameterizations — decomposition of the
Half-Cauchy priors into inverse gamma distributions and
non-centered representations essential for avoiding poor lo-
cal optima. There remain several interesting follow-on di-
rections, including, modeling enhancements that use layer,
node, or even weight specific weight decay c, or layer spe-
cific global shrinkage parameter bg to provide different lev-
els of shrinkage to different parts of the BNN.
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