A. Proof of Lemma 3

Proof. We adapt the proof of Rademacher based uniform convergence for our purpose. Fix the distribution over T to $\mathcal{R}(S, w')$ for some w'. Recall that $\overline{T} = {\overline{T}_i}$ with $\overline{T}_i = {y_i} \cup T_i$ and the elements of T_i are drawn i.i.d. from $\mathcal{R}(x_i, w')$. Since the only random part in \overline{T}_i is T_i and $y_i \in S$, it suffices to show concentration of $\mathbb{E}_T [L(w, S, T)] - L(w, S, T)$ for all w and S. For a fixed S, we will consider L(w, S, T) to be a function of T and w and denote it by L(T, w; S). In what follows, we will consider T to be an *mn*-dimensional vector whose elements (structured outputs) are conditionally independent (but not identically distributed) given a data set S. Define,

$$\varphi(\mathsf{T};\mathsf{S}) \stackrel{\text{def}}{=} \sup_{w \in \mathbb{R}^{d,s}} \mathbb{E}_{\mathsf{T} \sim \mathcal{R}(\mathsf{S},w')} \left[L(\mathsf{T},w;\mathsf{S}) \right] - L(\mathsf{T},w;\mathsf{S}).$$
(20)

 $\varphi(T; S)$ is (1/m)-Lipschitz and the elements of T are independent. Therefore, by McDiarmid's inequality, we have that:

$$\Pr_{\mathsf{T}}\left\{\mathbb{E}_{\mathsf{T}}\left[\varphi(\mathsf{T};\mathsf{S})\right] - \varphi(\mathsf{T};\mathsf{S}) \le \sqrt{\frac{\ln(1/\delta)}{2m}} \mid \mathsf{S}\right\} \ge 1 - \delta.$$
(21)

Therefore, with probability at least $1 - \delta$ over the choice of T:

$$(\forall w \in \mathbb{R}^{d,s}) \mathbb{E}_{\mathsf{T}} [L(\mathsf{T}, w; \mathsf{S})] - L(\mathsf{T}, w; \mathsf{S})$$

$$\leq \sup_{w \in \mathbb{R}^{d,s}} \mathbb{E}_{\mathsf{T}} [L(\mathsf{T}, w; \mathsf{S})] - L(\mathsf{T}, w; \mathsf{S}) = \varphi(\mathsf{T}; \mathsf{S})$$

$$\leq \mathbb{E}_{\mathsf{T}} [\varphi(\mathsf{T}; \mathsf{S})] + \sqrt{\frac{\ln^{1/\delta}}{2m}}.$$

$$(22)$$

Next, we will use a symmetrization argument to bound $\mathbb{E}_T [\varphi(T; S)]$. Let $T' \sim \mathcal{R}(S)$ be an independent copy of T. Observe that:

$$\mathbb{E}_{\mathsf{T}'} \left[L(\mathsf{T}, w; \mathsf{S}) \mid \mathsf{T} \right] = L(\mathsf{T}, w; \mathsf{S})$$
$$\mathbb{E}_{\mathsf{T}'} \left[L(\mathsf{T}', w; \mathsf{S}) \mid \mathsf{T} \right] = \mathbb{E}_{\mathsf{T}} \left[L(\mathsf{T}, w; \mathsf{S}) \right].$$

Now,

$$\begin{split} & \mathbb{E}_{\mathsf{T}} \left[\varphi(\mathsf{T}) \right] \\ &= \mathbb{E}_{\mathsf{T}} \left[\sup_{w \in \mathbb{R}^{d,s}} \mathbb{E}_{\mathsf{T}} \left[L(\mathsf{T},w;\mathsf{S}) \right] - L(\mathsf{T},w;\mathsf{S}) \right] \\ &= \mathbb{E}_{\mathsf{T}} \left[\sup_{w \in \mathbb{R}^{d,s}} \mathbb{E}_{\mathsf{T}'} \left[L(\mathsf{T}',w;\mathsf{S}) \mid \mathsf{T} \right] - \mathbb{E}_{\mathsf{T}'} \left[L(\mathsf{T},w;\mathsf{S}) \mid \mathsf{T} \right] \right] \\ &\leq \mathbb{E}_{\mathsf{T},\mathsf{T}'} \left[\sup_{w \in \mathbb{R}^{d,s}} \frac{1}{m} \sum_{i=1}^{m} z'_i - z_i \right], \end{split}$$

where $z'_i = \Pr_{\gamma} \{ f_{w,\gamma,\mathsf{T}'}(x_i) \neq y_i \}$ and $z_i = \Pr_{\gamma} \{ f_{w,\gamma,\mathsf{T}}(x_i) \neq y_i \}$. Since $z'_i - z_i$ has a distribution that is symmetric around zero, $z'_i - z_i$ and $\sigma_i(z'_i - z_i)$ have the same distribution, where σ_i 's are independent Rademacher variables. Continuing the above derivation,

$$\begin{split} & \mathbb{E}_{\mathsf{T}} \left[\varphi(\mathsf{T}) \right] \\ & \leq \mathbb{E}_{\mathsf{T},\mathsf{T}',\sigma} \left[\sup_{w \in \mathbb{R}^{d,s}} \frac{1}{m} \sum_{i=1}^{m} \sigma_i (z'_i - z_i) \right] \\ & = \frac{2}{m} \mathbb{E}_{\mathsf{T},\sigma} \left[\sup_{w \in \mathbb{R}^{d,s}} \sum_{i=1}^{m} \sigma_i \operatorname{Pr}_{\gamma} \left\{ f_{w,\gamma,\mathsf{T}}(x_i) \neq y_i \right\} \right] \\ & = 2 \mathbb{E}_{\mathsf{T}} \left[\widehat{\mathfrak{R}}_{\mathsf{T}}(\mathcal{G}) \right], \end{split}$$

where $\widehat{\mathfrak{R}}_{\mathsf{T}}(\mathcal{G})$ is the empirical Rademacher complexity of the function class $\mathcal{G} = \{g_w \mid w \in \mathbb{R}^{d,s}\}$ with respect to T , with $g_w(x,y) = \Pr_{\gamma} \{f_{w,\gamma,\mathsf{T}}(x) \neq y\}$. Next, using the same argument as in the proof of Theorem 1, we can bound $\widehat{\mathfrak{R}}_{\mathsf{T}}(\mathcal{G})$ for any set T , and get the following bound:

$$\mathbb{E}_{\mathsf{T}}\left[\varphi(\mathsf{T})\right] \le 2\sqrt{\frac{s(\log d + 2\log(nr))}{m}} \tag{23}$$

Note that the above differs from the bound in Theorem 1 in the log factor since we need to consider linear orderings of nr structured outputs. Therefore from (22) and (23) we have that:

$$\Pr_{\mathsf{T}}\{(\forall w \in \mathbb{R}^{d,s}) \mathbb{E}_{\mathsf{T}} [L(\mathsf{T}, w; \mathsf{S})] - L(\mathsf{T}, w; \mathsf{S}) \\ \leq \varepsilon_2(d, s, n, r, m, \delta) \mid \mathsf{S}\} \ge 1 - \delta.$$
(24)

By Definition 1 and from the results by (Bennett, 1956; Bennett & Hays, 1960; Cover, 1967), there are at most $\binom{d}{s}(mr)^{2s}$ effective (equivalence classes) proposal distributions $\mathcal{R}(.)$ Taking a union bound over all such proposal distributions we prove our claim.