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A. Proof of Lemma 3
Proof. We adapt the proof of Rademacher based uniform convergence for our purpose. Fix the distribution over T to
R(S, w0

) for some w0. Recall that ¯T = {¯T
i

} with ¯T
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}[T
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and the elements of T
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are drawn i.i.d. from R(x
i

, w0
).

Since the only random part in ¯T
i

is T
i

and y
i

2 S, it suffices to show concentration of ET [L(w, S,T)]� L(w, S,T) for all
w and S. For a fixed S, we will consider L(w, S,T) to be a function of T and w and denote it by L(T, w; S). In what follows,
we will consider T to be an mn-dimensional vector whose elements (structured outputs) are conditionally independent (but
not identically distributed) given a data set S. Define,
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ET⇠R(S,w0) [L(T, w; S)]� L(T, w; S). (20)

'(T; S) is (1/m)-Lipschitz and the elements of T are independent. Therefore, by McDiarmid’s inequality, we have that:
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Therefore, with probability at least 1� � over the choice of T:
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Next, we will use a symmetrization argument to bound ET ['(T; S)]. Let T0 ⇠ R(S) be an independent copy of T. Observe
that:
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Now,
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has a distribution that is symmetric
around zero, z0

i

�z
i

and �
i

(z0
i

�z
i

) have the same distribution, where �
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’s are independent Rademacher variables. Continuing
the above derivation,
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where bRT(G) is the empirical Rademacher complexity of the function class G = {g
w

| w 2 Rd,s} with respect to T, with
g
w

(x, y) = Pr

�

{f
w,�,T(x) 6= y}. Next, using the same argument as in the proof of Theorem 1, we can bound bRT(G) for

any set T, and get the following bound:

ET ['(T)]  2

r
s(log d+ 2 log(nr))

m
(23)

Note that the above differs from the bound in Theorem 1 in the log factor since we need to consider linear orderings of nr
structured outputs. Therefore from (22) and (23) we have that:
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By Definition 1 and from the results by (Bennett, 1956; Bennett & Hays, 1960; Cover, 1967), there are at most
�
d

s

�
(mr)2s

effective (equivalence classes) proposal distributions R(.) Taking a union bound over all such proposal distributions we
prove our claim.


