# Learning One Convolutional Layer with Overlapping Patches 

Surbhi Goel ${ }^{1}$ Adam Klivans ${ }^{1}$ Raghu Meka ${ }^{2}$

## 1. Omitted Proofs

### 1.1. Proof of Lemma 1

We will follow the following notation:

$$
\begin{aligned}
& T_{1}=\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}\left[\sigma\left(a^{T} x\right)\left(b^{T} x\right)\right] \\
& T_{2}=\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}\left[\left(a^{T} x\right)\left(b^{T} x\right)\right] .
\end{aligned}
$$

Since $x$ is drawn from a symmetric distribution we have $E_{x \sim \mathcal{D}_{\mathcal{X}}}[F(x)]=E_{x \sim \mathcal{D}_{\mathcal{X}}}[F(-x)]$ for any function $F$. Thus, we have

$$
\begin{aligned}
T_{1} & =\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}\left[\sigma\left(-a^{T} x\right)\left(-b^{T} x\right)\right] \\
\Longrightarrow 2 T_{1} & =\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}\left[\left(\sigma\left(-a^{T} x\right)-\sigma\left(-a^{T} x\right)\right)\left(b^{T} x\right)\right]
\end{aligned}
$$

Observe that $\sigma(c)-\sigma(-c)=\frac{(1-\alpha)|c|+(1+\alpha) c}{2}-$ $\frac{(1-\alpha)|a|-(1+\alpha) c}{2}=(1+\alpha) c$. Substituting this in the above, we get the required result $2 T_{1}=(1+\alpha) T_{2}$.

### 1.2. Proof of Lemma 2

We have,

$$
\begin{aligned}
& \left.\frac{1}{k} \sum_{1 \leq i \leq k} \mathbb{E}_{x}\left[\left(\sigma\left(w_{*} P_{i} x\right)-\sigma\left(w P_{i} x\right)\right)\left(w_{*}-w\right)^{T} P_{i} x\right)\right] \\
& \left.=\frac{1+\alpha}{2 k} \sum_{1 \leq i \leq k} \mathbb{E}_{x}\left[\left(\left(w_{*}-w\right)^{T} P_{i} x\right)\right)^{2}\right] \\
& =\frac{1+\alpha}{2 k}\left(w_{*}-w_{t}\right)^{T}\left(\sum_{1 \leq i \leq k} P_{i} \mathbb{E}_{x}\left[x x^{T}\right] P_{i}^{T}\right)\left(w_{*}-w_{t}\right) \\
& =\frac{1+\alpha}{2 k}\left(w_{*}-w_{t}\right)^{T}\left(\sum_{1 \leq i \leq k} P_{i} \Sigma P_{i}^{T}\right)\left(w_{*}-w_{t}\right) \\
& \leq \frac{1+\alpha}{2 k} \lambda_{\max }(\Sigma)\left(\sum_{1 \leq i \leq k} \lambda_{\max }\left(P_{i} P_{i}^{T}\right)\right)\left\|w_{*}-w_{t}\right\|^{2} \\
& =\frac{1+\alpha}{2} \lambda_{\max }(\Sigma)\left\|w_{*}-w\right\|^{2}
\end{aligned}
$$

[^0]The first equality follows from using Lemma 1 and the last follows since for all $i, P_{i} P_{i}^{T}$ is a permutation of the identity matrix by definition.

Using monotonicity of $\sigma$ and Jensen's inequality, we also have,

$$
\begin{aligned}
& \frac{1}{k} \sum_{1 \leq i \leq k} \mathbb{E}_{x}\left[\left(\sigma\left(w_{*} P_{i} x\right)-\sigma\left(w P_{i} x\right)\right)\left(w_{*}-w\right)^{T} P_{i} x\right] \\
& \quad \geq \frac{1}{k} \sum_{1 \leq i \leq k} \mathbb{E}_{x}\left[\left(\sigma\left(w_{*} P_{i} x\right)-\sigma\left(w P_{i} x\right)\right)^{2}\right] \\
& \quad \geq \mathbb{E}_{x}\left[\left(\frac{1}{k} \sum_{1 \leq i \leq k}\left(\sigma\left(w_{*} P_{i} x\right)-\sigma\left(w P_{i} x\right)\right)\right)^{2}\right] \\
& \quad=L(w)
\end{aligned}
$$

Combining the two above lemmas, we get the required result.

### 1.3. Proof of Lemma 3

We have,

$$
\begin{aligned}
& \left(f_{w_{*}}(x)-f_{w_{t}}(x)\right)^{2} \\
& =\left(\frac{1}{k} \sum_{i=1}^{k}\left(\sigma\left(w_{*}^{T} P_{i} x\right)-\sigma\left(w^{T} P_{i} x\right)\right)\right)^{2} \\
& \leq \frac{1}{k} \sum_{i=1}^{k}\left(\sigma\left(w_{*}^{T} P_{i} x\right)-\sigma\left(w^{T} P_{i} x\right)\right)^{2} \\
& \leq \frac{1}{k} \sum_{i=1}^{k}\left(w_{*}^{T} P_{i} x-w^{T} P_{i} x\right)^{2} \\
& \leq \frac{1}{k} \sum_{i=1}^{k}\left\|w_{*}-w\right\|^{2} \lambda_{\max }\left(P_{i} P_{i}^{T}\right)\| \| x \|^{2} \\
& \leq\left\|w_{*}-w\right\|^{2}\|x\|^{2}
\end{aligned}
$$

The first inequality follows from using Jensen's, the second inequality follows from the 1-Lipschitz property of $\sigma$, the third follows from observing that $P_{i} P_{i}^{T}$ is a PSD matrix and the last inequality follows since for all $i, \lambda_{\max }\left(P_{i} P_{i}^{T}\right)=1$ since $P_{i} P_{i}^{T}$ is a permutation of the identity matrix.

## 2. Properties of Patch Matrix $P$

Let $r=p d+q$ for some $p \geq 0$ and $1 \leq q \leq d$.
Lemma A. For $d<r / 3, P^{-1}$ has the following form:

$$
P_{i, j}^{-1}=\left\{\begin{array}{l}
\alpha_{0} \text { if } i=j \in\{1, \ldots, q\} \cup\{r-q+1, \ldots, r\} \\
\alpha_{1} \text { if } i=j \in\{q+1, \ldots, d\} \cup\{r-d+1, r-q\} \\
1 \text { if } i=j \in\{d+1, \ldots, r-d\} \\
-0.5 \text { if }|i-j|=d+1 \\
\phi \text { if }|i-j|=(p-1) d+1 \text { and } i \text { or } j \in\{q+1, \ldots, d\} \\
\beta \text { if }|i-j|=p d+1 \\
0 \text { otherwise }
\end{array}\right.
$$

Figure 1. $P^{-1}$ for $d=1$. Here $\alpha=\beta+0.5$ and $\beta=\frac{0.5}{2 k-p}=$ $\frac{0.5}{2 n-3 r+3}$. The shaded area is all 0 s .
$\max \left(\alpha_{0}+0.5+\beta, \alpha_{1}+0.5+\phi, 1+0.5+0.5\right)=$ $\max (2 \beta+1,2 \phi+1,2)=2$ as $\beta, \phi \leq 0.5$ which follows from $2 k-p-1 \geq 1$. Similarly, when $q=d$, $\lambda_{\max }\left(P^{-1}\right)=\max \left(\alpha_{0}+0.5+\beta, 1+0.5+0.5\right)=$ $\max (2 \beta+1,2)=2$.

Lemma B. For $r / 3 \leq d<r / 2, P^{-1}$ has the following form:
$P_{i, j}^{-1}=\left\{\begin{array}{l}\alpha_{0} \text { if } i=j \in\{1, \ldots, q\} \cup\{r-q+1, \ldots, r\} \\ \alpha_{1} \text { if } i=j \in\{q+1, \ldots, d\} \cup\{r-d+1, r-q\} \\ 1 \text { if } i=j \in\{d+1, \ldots, r-d\} \\ -0.5 \text { if }|i-j|=d+1 \text { and } i \text { or } j \in\{d+1, \ldots, r-d\} \\ \phi \text { if }|i-j|=d+1 \text { and } i \text { or } j \in\{q+1, \ldots, d\} \\ \beta \text { if }|i-j|=2 d+1 \\ 0 \text { otherwise }\end{array}\right.$
where $\alpha_{0}=\beta+0.5, \alpha_{1}=\frac{k}{2 k-1}, \beta=\frac{0.5}{2 k-2}$ and $\phi=$ $-\frac{k-1}{2 k-1}$. Also, $\lambda_{\max }\left(P^{-1}\right) \leq 2$.

Proof. Similar to the previous lemma, to verify this, consider each diagonal entry,

- $d \leq i \leq\lceil d / 2\rceil: A_{i, i}=-0.5(k-1)+k-0.5(k-1)=$ 1.
- $i \in\{1, \ldots, q\}: A_{i, i}=\alpha_{0} k-0.5(k-1)+\beta(k-p)=$ 1.
- $i \in\{q+1, \ldots, d\}: A_{i, i}=\alpha_{1} k+\phi(k-1)=1$.

For non-diagonal entries, that is, $j \neq i$,

- $d \leq j \leq\lceil d / 2\rceil: A_{i, j}=-0.5 P_{i, j-d}+P_{i, j}-0.5 P_{i, j+d}$. If $|i-j|=a d$ then $A_{i, j}=-0.5(k-a-1)+k-a-$ $0.5(k-a+1)=0$, else $P_{i, j}=P_{i, j-d}=P_{i, j+d}=$ $0 \Longrightarrow A_{i, j}=0$.
- $j \in\{1, \ldots, q\}: A_{i, j}=\alpha_{0} P_{i, j}-0.5 P_{i, j+d}+\beta P_{i, j+2 d}$. Now if $i-j=a d$, then $A_{i, j}=\alpha_{0}(k-a)-0.5(k-$ $a+1)+\beta(k-2+a)=0$ else $P_{i, j}=P_{i, j+d}=$ $P_{i, j+p d}=0 \Longrightarrow A_{i, j}=0$.
- $j \in\{q+1, \ldots, d\}: A_{i, j}=\alpha_{1} P_{i, j}+\phi P_{i, j+d}$. Now if $i-j=a d$, then $a=1$, implying $A_{i, j}=\alpha_{1}(k-1)+$ $\phi k=0$ else $P_{i, j}=P_{i, j+d}=0 \Longrightarrow A_{i, j}=0$.

Hence $A=I$.
Similar to the previous lemma, we have $\lambda_{\max }\left(P^{-1}\right)=$ $\max \left(\alpha_{0}+0.5+\beta, \alpha_{1}+|\phi|, 1+0.5+0.5\right)=\max (2 \beta+$ $1,1,2)=2$ as $\alpha_{1}+|\phi|=1$ and $\beta \leq 0.5$ which follows from $2 k-p-1 \geq 1$.


[^0]:    ${ }^{*}$ Equal contribution ${ }^{1}$ Department of Computer Science, University of Texas at Austin ${ }^{2}$ Department of Computer Science, UCLA. Correspondence to: Surbhi Goel < surbhi@cs.utexas.edu>.

    Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

