
Learning to Search with MCTSnets

Arthur Guez * 1 Théophane Weber * 1 Ioannis Antonoglou 1 Karen Simonyan 1

Oriol Vinyals 1 Daan Wierstra 1 Rémi Munos 1 David Silver 1

Abstract

Planning problems are among the most impor-
tant and well-studied problems in artificial intel-
ligence. They are most typically solved by tree
search algorithms that simulate ahead into the fu-
ture, evaluate future states, and back-up those eval-
uations to the root of a search tree. Among these
algorithms, Monte-Carlo tree search (MCTS) is
one of the most general, powerful and widely
used. A typical implementation of MCTS uses
cleverly designed rules, optimised to the partic-
ular characteristics of the domain. These rules
control where the simulation traverses, what to
evaluate in the states that are reached, and how
to back-up those evaluations. In this paper we
instead learn where, what and how to search. Our
architecture, which we call an MCTSnet, incorpo-
rates simulation-based search inside a neural net-
work, by expanding, evaluating and backing-up
a vector embedding. The parameters of the net-
work are trained end-to-end using gradient-based
optimisation. When applied to small searches
in the well-known planning problem Sokoban,
the learned search algorithm significantly outper-
formed MCTS baselines.

1. Introduction
Many success stories in artificial intelligence are based on
the application of powerful tree search algorithms to chal-
lenging planning problems (Samuel, 1959; Knuth & Moore,
1975; Jünger et al., 2009). It has been well documented that
planning algorithms can be highly optimised by tailoring
them to the domain (Schaeffer, 2000). For example, the
performance can often be dramatically improved by modify-
ing the rules that select the trajectory to traverse, the states
to expand, the evaluation function by which performance

*Equal contribution 1DeepMind, London, UK. Correspondence
to: A. Guez and T. Weber <{aguez, theophane}@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

is measured, and the backup rule by which those evalua-
tions are propagated up the search tree. Our contribution
is a new search algorithm in which all of these steps can
be learned automatically and efficiently. Our work fits into
a more general trend of learning differentiable versions of
algorithms.

One particularly powerful and general method for planning
is Monte-Carlo tree search (MCTS) (Coulom, 2006; Kocsis
& Szepesvári, 2006), as used in the recent AlphaGo program
(Silver et al., 2016). A typical MCTS algorithm consists of
several phases. First, it simulates trajectories into the future,
starting from a root state. Second, it evaluates the perfor-
mance of leaf states - either using a random rollout, or using
an evaluation function such as a ’value network’. Third, it
backs-up these evaluations to update internal values along
the trajectory, for example by averaging over evaluations.

We present a neural network architecture that includes the
same processing stages as a typical MCTS, but inside the
neural network itself, as a dynamic computational graph.
The key idea is to represent the internal state of the search,
at each node, by a memory vector. The computation of
the network proceeds forwards from the root state, just like
a simulation of MCTS, using a simulation policy based
on the memory vector to select the trajectory to traverse.
The leaf state is then processed by an embedding network
to initialize the memory vector at the leaf. The network
proceeds backwards up the trajectory, updating the memory
at each visited state according to a backup network that
propagates from child to parent. Finally, the root memory
vector is used to compute an overall prediction of value or
action.

The major benefit of our planning architecture, compared
to more traditional planning algorithms, is that it can be
exposed to gradient-based optimisation. This allows us to
replace every component of MCTS with a richer, learnable
equivalent — while maintaining the desirable structural
properties of MCTS such as the use of a model, iterative
local computations, and structured memory. We jointly
train the parameters of the evaluation network, backup net-
work and simulation policy so as to optimise the overall
predictions of the MCTS network (MCTSnet). The ma-
jority of the network is fully differentiable, allowing for

Learning to Search with MCTSnets

efficient training by gradient descent. Still, internal action
sequences directing the control flow of the network cannot
be differentiated, and learning this internal policy presents a
challenging credit assignment problem. To address this, we
propose a novel, generally-applicable approximate scheme
for credit assignment that leverages the anytime property
of our computational graph, allowing us to also effectively
learn this part of the search network from data.

In the Sokoban domain, a classic planning task (Botea et al.,
2003), we justify our network design choices and show that
our learned search algorithm is able to outperform various
model-free and model-based baselines.

2. Related Work
There has been significant previous work on learning evalu-
ation functions, using supervised learning or reinforcement
learning, that are subsequently combined with a search al-
gorithm (Tesauro, 1994; Baxter et al., 1998; Silver et al.,
2016). However, the learning process is typically decoupled
from the search algorithm, and has no awareness of how
the search algorithm will combine those evaluations into an
overall decision.

Several previous search architectures have learned to tune
the parameters of the evaluation function so as to achieve the
most effective overall search results given a specified search
algorithm. The learning-to-search framework (Chang et al.,
2015) learns an evaluation function that is effective in the
context of beam search. Samuel’s checkers player (Samuel,
1959), the TD(leaf) algorithm (Baxter et al., 1998; Schaeffer
et al., 2001), and the TreeStrap algorithm apply reinforce-
ment learning to find an evaluation function that combines
with minimax search to produce an accurate root evaluation
(Veness et al., 2009); while comparison training (Tesauro,
1988) applies supervised learning to the same problem; these
methods have been successful in chess, checkers and shogi.
In all cases the evaluation function is scalar valued.

There have been a variety of previous efforts to frame the
learning of internal search decisions as a meta-reasoning
problem, one which can be optimized directly (Russell,
1995). Kocsis et al. (2005) apply black-box optimisation to
learn the meta-parameters controlling an alpha-beta search,
but do not learn fine-grained control over the search deci-
sions. Considering action choices at tree nodes as a bandit
problem led to the widely used UCT variant of MCTS (Koc-
sis & Szepesvári, 2006). Hay & Russell (2011) also studied
the meta-problem in MCTS, but they only considered a
myopic policy without function approximation. Pascanu
et al. (2017) also investigate learning-to-plan using neural
networks. However, their system uses an unstructured mem-
ory which makes complex branching very unlikely. Initial
results have been provided for toy domains but it has not yet

been demonstrated to succeed in any domain approaching
the complexity of Sokoban.

Other neural network architectures have also incorporated
Monte-Carlo simulations. The I2A architecture (Weber
et al., 2017) aggregates the results of several simulations into
its network computation. MCTSnets both generalise and
extend some ideas behind I2A: introducing a tree structured
memory that stores node-specific statistics; and learning the
simulation and tree expansion strategy, rather than rolling
out each possible action from the root state with a fixed pol-
icy. Similar to I2A, the predictron architecture (Silver et al.,
2017b) also aggregates over multiple simulations; however,
in that case the simulations roll out an implicit transition
model, rather than concrete steps from the actual environ-
ment. A recent extension by Farquhar et al. (2017) performs
planning over a fixed-tree expansion of such implicit model.

3. MCTSnet
The MCTSnet architecture may be understood from two dis-
tinct but equivalent perspectives. First, it may be understood
as a search algorithm with a control flow that closely mir-
rors the simulation-based tree traversals of MCTS. Second,
it may be understood as a neural network represented by
a dynamic computation graph that processes input states,
performs intermediate computations on hidden states, and
outputs a final decision. We present each of these perspec-
tives in turn, starting with the original, unmodified search
algorithm.

3.1. MCTS Algorithm

The goal of planning is to find the optimal strategy that
maximises the total reward in an environment defined by a
deterministic transition model s0 = T (s; a), mapping each
state and action to a successor state s0, and a reward model
r(s; a), describing the goodness of each transition.

MCTS is a simulation-based search algorithm that converges
to a solution to the planning problem. At a high level, the
idea of MCTS is to maintain statistics at each node, such
as the visit count and mean evaluation, and to use these
statistics to decide which branches of the tree to visit.

MCTS proceeds by running a number of simulations. Each
simulation traverses the tree, selecting the most promis-
ing child according to the statistics, until a leaf node is
reached. The leaf node is then evaluated using a rollout
or value-network (Silver et al., 2016). This value is then
propagated during a back-up phase that updates statistics of
the tree along the traversed path, tracking the visit counts
N(s), N(s; a) and mean evaluation Q(s; a) following from
each state s and action a. Search proceeds in an anytime
fashion: the statistics gradually become more accurate, and
simulations focus on increasingly promising regions of the

Learning to Search with MCTSnets

tree.

We now describe a value-network MCTS in more detail.
Each simulation from the root statesA is composed of four
stages:1

Algorithm 1: Value-Network Monte-Carlo Tree Search

1. Initialize simulation timet = 0 and current nodes0 = sA .

2. Forward simulation from root state. Do until we reach a
leaf node (N (st) = 0):

(a) Sample actionat based onsimulation policy,
at � � (ajst ; f N (st); N (st ; a); Q(st ; a)g),

(b) the rewardr t = r (st ; at) and next statest +1 =
T(st ; at) are computed

(c) Incrementt.

3. Evaluate leaf nodesL found at depthL .

(a) Obtain value estimateV (sL),
(b) SetN (sL) = 1 .

4. Back-up phase from leaf nodesL , for eacht < L

(a) Set(s; a) = (st ; at).
(b) UpdateQ(s; a) towards the Monte-Carlo return:

Q(s; a) Q(s; a) +
1

N (s; a) + 1
(R t � Q(s; a))

whereRt =
P L � 1

t 0= t t 0� t r t 0 + L � t V (sL)
(c) Update visit countsN (s) andN (s; a):

N (s) N (s) + 1 ; N (s; a) N (s; a) + 1

When the search completes, it selects the action at the root
with the most visit counts. The simulation policy� is chosen
to trade-off exploration and exploitation in the tree. In the
UCT variant of MCTS (Kocsis & Szepesvári, 2006),� is
inspired by the UCB bandit algorithm (Auer, 2002).2

3.2. MCTSnet: search algorithm

We now present MCTSnet as a generalisation of MCTS in
which the statistics being tracked by the search algorithm,
the backup update, and the expansion policy, are all learned
from data.

MCTSnet proceeds by executing simulations that start from
the root statesA . When a simulation reaches a leaf node,
that node is expanded and evaluated to initialize a vector
of statistics. The back-up phase then updates statistics in
each node traversed during the simulation. Speci�cally, the

1We write states with letter indices (sA ; sB ; : : :) when refer-
ring to states in the tree across simulations, and use time indices
(s0 ; s1 ; : : :) for states within a simulation.

2In this case, the simulation policy is deterministic,� (s) =
arg maxa Q(s; a) + c

p
log(N (s))=N(s; a).

parent node statistics are updated to new values that depend
on the child values and also on their previous values. Finally,
the selected action is chosen according to the statistics at
the root of the search tree.

Different sub-networks are responsible for each of the com-
ponents of the search described in the previous paragraph.
Internally, these sub-networks manipulate the memory statis-
tics h at each node of the tree, which now have a vector rep-
resentation,h 2 Rn . An embedding networkh � (s; � e)
evaluates the states and computes initial 'raw' statistics; this
can be understood as the generalisation of the value network
in Algorithm 1. A simulation policya � � (�jh; � s) is used
to select actions during each simulation, based on statistics
h. A backup networkhparent � (hparent; hchild; � b) updates
and propagates the statistics up the search tree. Finally,
an overall decision (or evaluation) is made by a readout
networka � (hsA ; � r).

An algorithmic description of the search network follows in
Algorithm 2: 3

Algorithm 2: MCTSnet
For m = 1 : : : M , do simulation:

1. Initialize simulation timet = 0 and current nodes0 = sA .

2. Forward simulation from root state. Do until we reach a
leaf node (N (st) = 0):

(a) Sample actionat based onsimulation policy, at �
� (ajhs t ; � s),

(b) Compute the rewardr t = r (st ; at) and next state
st +1 = T(st ; at).

(c) Incrementt.

3. Evaluate leaf nodesL found at depthL .

(a) Initialize node statistics using the embedding network:
hsL � (sL ; � e)

4. Back-up phase from leaf nodesL , for eacht < L

(a) Using the backup network� , update the node statistic
as a function of its previous statistics and the statistic
of its child:

hs t � (hs t ; hs t +1 ; r t ; at ; � b)

After M simulations, readout network outputs a (real) action
distribution from the root memory,� (hsA ; � r).

3.3. MCTSnet: neural network architecture

We now present MCTSnet as a neural network architecture.
The algorithm described above effectively de�nes a form of
tree-structured memory: each nodesk of the tree maintains
its own corresponding statisticshk . The statistics are initial-

3For clarity, we omitted the update of visitsN (s), only used to
determine leaf nodes, which proceeds as in Alg. 1.

Learning to Search with MCTSnets

ized by the embedding network, but otherwise kept constant
until the next time the node is visited. They are then updated
using the backup network. For a �xed tree expansion, this
allows us to see MCTSnet as a deep residual and recursive
network with numerous skip connections, as well as a large
number of inputs - all corresponding to different potential
future states of the environment. We describe MCTSnet
again following this different viewpoint in this section.

It is useful to introduce an index for the simulation count
m, so that the tree memory after simulationm is the set
of hm

s for all tree nodess. Conditioned on a tree path
pm +1 = s0; a0; s1; a1; � � � ; sL for simulationm + 1 , the
MCTSnet memory gets updated as follows:

1. Fort = L :

hm +1
sL

 � (sL) (1)

2. Fort < L :

hm +1
st

 � (hm
st

; hm +1
st +1

; r (st ; at); at ; � b) (2)

3. For all others:

hm +1
s hm

s (simulationm + 1 is skipped)
(3)

The tree path that gates this memory update is sampled as:

pm +1 � P(s0a0 � � � sL jhm) (4)

/
L � 1Y

t =0

� (at jhm
st

; � s)1[st +1 = T(st ; at)]; (5)

whereL is a random stopping time for the tree path de�ned
by (N m (sL � 1) > 0; N m (sL) = 0) . An illustration of this
update process is provided in Fig. 1.

Note that the computation �ow of the MCTS network is
not only de�ned by the �nal tree, but also by the order
in which nodes are visited (the tree expansion process).
Furthermore, taken as a whole, MCTSnet is a stochastic
feed-forward network with single input (the initial state) and
single output (the action probabilities). However, thanks to
the tree-structured memory, MCTSnet naturally allows for
partial replanning, in a fashion similar to MCTS. Assume
that from root-statesA , the MCTS network chooses action
a, and transitions (in the real environment) to new states0

A .
We can initialize the MCTS network fors0

A as the subtree
rooted ins0

A , and initialize node statistics of the subtree to
their previously computed values — the resulting network
would then be recurrent across real time-steps.

3.4. Design choices

We now provide design details for each sub-network in
MCTSnet.

Backup � The backup network contains a gated residual
connection, allowing it to selectively ignore information
originating from a node's subtree. It updateshs as follows:

hs � (� ; � b) = hs + g(� ; � b)f (� ; � b); (6)

where� = (hs; hs0; r; a) and whereg is a learned gating
function with range[0; 1] andf is the learned update func-
tion. We justify this architecture in Sec. 4.2, by comparing
it to a simpler MLP which maps� to the updated value of
hs.

Learned simulation policy � In its basic, unstructured
form, the simulation policy network is a simple MLP map-
ping the statisticshs to the logits (s; a), which de�ne
� (ajs; � s) / exp((s; a)) .

We consider adding structure by modulating each logit with
side-information corresponding to each action. One form
of action-speci�c information is obtained from the child
statistichT (s;a) . Another form of information comes from
a learned policy prior� over actions, with log-probabilities
 (s; a; � p) = log � (s; a; � p); as in PUCT (Rosin, 2011).
In our case, the policy prior comes from learning a small,
model-free residual network on the same data. Combined,
we obtain the following modulated network version for the
simulation policy logits:

 (s; a) = w0 p(s; a) + w1u
�
hs; hT (s;a)

�
; (7)

whereu is a small network that combines information from
the parent and child statistics.

Embedding � and readout network � The embedding
network is a standard residual convolution network. The
readout network,� , is a simple MLP that transforms a mem-
ory vector at the root into the required output format, in this
case an action distribution. See appendix for details.

3.5. Training MCTSnet

The readout network of MCTSnet ultimately outputs an
overall decision or evaluation from the entire search. This
�nal output may in principle be trained according to any
loss function, such as by value-based or policy gradient
reinforcement learning.

However, in order to focus on the novel aspects of our archi-
tecture, we choose to investigate the MCTSnet architecture
in a supervised learning setup in which labels are desired
actionsa� in each state (the dataset is detailed in the ap-
pendix). Our objective is to then train MCTSnet to predict
the actiona� from states.

Learning to Search with MCTSnets

sim 1 2 3 4

search trees sA sA

��

sA

�� ��

sA

�� ��
sB sB sC sB

��

sC

sD y

sA //hA
++sA

��

hA
++sA

��

hA
++sA

��

hA

OO

MCTSnet sB //hB
--

OO

sC //hC

OO

sB

��

hB

OO

sD //hD

OO

Figure 1.This diagram shows an execution of a search withM = 4 . (Top) The evolution of the search tree rooted ats0 after each
simulation, with the last simulation path highlighted in red. (Bottom) The computation graph in MCTSnet resulting from these simulations.
Black arrows represent the application of theembedding network� (s) to initializeh at tree nodes. Red arrows represent the forward
tree traversal during a simulation using the simulation policy (based on last memory state) and the environment model until a leaf node is
reached. Blue arrows correspond to the backup network� , which updates the memory statisticsh along the traversed simulation path
based on the child statistic and the last updated parent memory (in addition to transition information such as reward). The diagram makes
it clear that this backup mechanism can skip over simulations where a particular node was not visited. For example, the fourth simulation
updateshB based onhB from the second simulation, sincesB was not visited during the third simulation. Finally, the readout network� ,
in green, outputs the action distribution based on the last root memoryhA . Additional diagrams are available in the appendix.

We denotezm the set of actions sampled stochastically dur-
ing themth simulation;z� m the set of all stochastic actions
taken up to simulationm, andz = z� M the set of all
stochastic actions. The number of simulationsM is either
chosen to be �xed, or taken from a stochastic distribution
pM .

After performing the desired number of simulations, the
network output is the action probability vectorp� (ajs; z).
It is a random function of the states due to the stochastic
actionsz. We choose to optimizep� (ajs; z) so that the
prediction is on average correct, by minimizing the average
cross entropy between the prediction and the correct label
a� . For a pair(s; a�), the loss is:

`(s; a�) = Ez� � (zjs) [� logp� (a� js; z)] : (8)

This can also be interpreted as a lower-bound on the
log-likelihood of the marginal distributionp� (ajs) =
Ez� � (zjs) (p� (ajz; s)) .

We minimizel(s; a�) by computing a single sample estimate
of its gradient (Schulman et al., 2015):

r � `(s; a�) = � Ez

h
r � logp� (a� js; z)

+ (r � log � (zjs; � s)) log p� (a� js; z)
i
: (9)

The �rst term of the gradient corresponds to the differen-
tiable path of the network as described in section. The

second term corresponds to the gradient with respect to
the simulation distribution, and uses the REINFORCE or
score-function method. In this term, the �nal log likelihood
logp� (a� js; z) plays the role of a `reward' signal: in effect,
the quality of the search is determined by the con�dence
in the correct label (as measured by its log-likelihood); the
higher that con�dence, the better the tree expansion, and
the more the stochastic actionsz that induced that tree ex-
pansion will be reinforced. In addition, we follow the com-
mon method of adding a neg-entropy regularization term on
� (ajs; � s) to the loss, to prevent premature convergence.

3.6. A credit assignment technique for anytime
algorithms

Although it is unbiased, the REINFORCE gradient above
has high variance; this is due to the dif�culty of credit as-
signment in this problem: the number of decisions that con-
tribute to a single decisiona� is large (betweenO(M logM)
andO(M 2) for M simulations), and understanding how
each decision contributed to a low error through a better tree
expansion structure is very intricate.

In order to address this issue, we design a novel credit as-
signment technique for anytime algorithms, by casting the
loss minimization for a single example as a sequential deci-
sion problem, and using reinforcement learning techniques
to come up with a family of estimators, allowing us to ma-

Learning to Search with MCTSnets

nipulate the bias-variance trade-off.

Consider a general anytime algorithm which, given an ini-
tial states, can run for an arbitrary number of internal steps
M — in MCTSnet, these are simulations. For each step
m = 1 : : : M , any number of stochastic decisions (collec-
tively denotedzm) may be taken, and at the end of each
step, a candidate output distributionp� (ajs; z� m) may be
evaluated against a loss function`. The value of the loss

at the end of stepm is denoted̀ m
�= `(p� (ajs; z� m)) . We

assume the objective is to maximize the terminal negative
loss� `M . Letting`0 = 0 , we rewrite the terminal loss as a
telescoping sum:

� `M = � (`M � `0) =
X

m =1 :::M

� (`m � `m � 1)

=
X

m =1 :::M

�r m ;

where we de�ne the (surrogate) reward�r m as the decrease
in loss� (`m � `m � 1) obtained during themth step. We then
de�ne the returnRm =

P
m 0� m �r m 0 as the sum of future

rewards from stepm; by de�nition we haveR1 = � `M .

The REINFORCE term of equation (9),

�r � log � (zjs; � s) log p� (a� js; z) �= A, can be rewritten:

A =
X

m

r � log � (zm js; � s)R1: (10)

Since stochastic variables inzm can only affect future re-
wardsr 0

m ; m0 � m, it follows from a classical policy gradi-
ent argument that (10) is, in expectation, also equal to:

A =
X

m

r � log � (zm js; z<m ; � s)Rm (11)

= �
X

m

r � log � (zm js; z<m ; � s)(`M � `m � 1): (12)

In other words, the stochastic decisions from stepm do not
simply use the terminal loss as reinforcement signal, but
rather the difference between the terminal loss, and the loss
computed before stepm started (the baseline). This estimate
is still unbiased, but has lower variance, especially for the
later steps of algorithm. Next, we trade off bias and variance
by introducing a discount term . In essence, for simulation
choiceszm , we choose to reward short term improvements
more than later ones, since the relation between simulation
m and later improvements is harder to ascertain and likely to
mostly appear as noise. LettingR

m =
P

m 0� m m 0� m rm 0,
our �nal gradient estimate of the MCTSnet loss becomes:

r � l (s; a�) = Ez

h
�r � logp� (a� jx; z)

+
X

m

r � log � (zm js; � s)R
m

i
; (13)

R
m can be rewritten as the average of future baselined

losseslm + t � lm � 1, wheret follows a truncated geometric
distribution with parameter and maximum valueM � m.
Letting = 0 leads to a greedy behavior, where actions of
simulationm are only chosen as to maximize the immediate
improvement in loss� (`m � `m � 1). This myopic mode is
linked to thesingle-step assumptionproposed by Russell &
Wefald (1989) in an analog context.

4. Experiments

Figure 2.Evolution of success ratio in Sokoban during training
using a continuous evaluator. MCTSnet (withM = 25) against
two model-free baselines. In one case (M = 2), the copy-model
has access to the same number of parameters and the same subnet-
works. WhenM = 25 , the baseline also matches the amount of
computation. We also provide performance of MCTS with UCT
with variable number of simulations.

We investigate our architecture in the game of Sokoban, a
classic, challenging puzzle game (Botea et al., 2003). As
described above, our results are obtained in a supervised
training regime. However, we continuously evaluate our
network during training by running it as an agent in ran-
dom Sokoban levels and report its success ratio in solving
the levels. Throughout this experimental section, we keep
the architecture and size of both embedding and readout
network �xed, as detailed in the appendix.

4.1. Main results

We �rst compare our MCTSnet architecture withM = 25
simulations to a couple of model-free baselines. To assess
whether the MCTSnet leverages the information contained
in the simulations (from transition modelT and reward
functionr), we consider a version of the network that uses a
sham environment model whereT(s; a) = s andr (s; a) =
0, but otherwise has identical architecture. For the case
M = 2 , the baseline has the same number of parameters as
MCTSnet, and uses each subnetwork exactly once. We also

Learning to Search with MCTSnets

test this architecture for the caseM = 25, in which case
the model-free baseline has the same number of parameters
and can perform the same amount of computation (but does
not have access to the real environment model). We also
evaluate a standard model-based method (with no possibility
of learning) in the same environment: MCTS with a pre-
learned value function (see appendix for details). When
given access to 25 simulations per step, same as MCTSnet,
we observe� 30% success ratio for MCTS in Sokoban.
It requires 20 more times simulations for this version of
MCTS to reach the level of performance of MCTSnet. We
also tested a stronger model-based baseline that uses both a
pre-learned policy and value network with a PUCT-like rule
(Silver et al., 2016), this achieved� 65% with 25 sims.

Overall, MCTSnet performs favorably against both model-
based and model-free baselines, see Fig. 2. These com-
parisons validate two ingredients of our approach. First,
the comparison of MCTSnet to its model-free variant con-
�rms that it extracts information contained in states visited
(and rewards obtained) during the search - in section 4.3 we
show that it is also able to learn nontrivial search policies.
Second, at test time, MCTSnet and MCTS both use the
same environment model, and therefore have in principle
access to the same information. The higher performance of
MCTSnet demonstrates the bene�ts of learning and prop-
agating vector-valued statistics which are richer and more
informative than those tracked by MCTS.

Using the architecture detailed in Sec. 3.4 and25 simula-
tions, MCTSnets reach84� 1%of levels solved4 — close
to the87%obtained in (Weber et al., 2017), although in a
different setting (supervised vs RL,1e8 vs. 1e9 environment
steps). We now consider detailed comparisons to justify our
different design choices for MCTSnet.

4.2. Learned statistics and how to perform backups

In this section, we justify the backup network choice made
in Sec. 3.4, by comparing the simple MLP version to the
gated residual architecture we suggested. We �nd the gated
residual architecture for the backup network to be advan-
tageous both in terms of stability and accuracy. As Fig. 3
illustrates, withM = 10 simulations, the gated residual
version systematically achieves better performance. For
larger number of simulations (M > 25), we found the non-
residual backup network to be simply numerically unstable.
This can be explained by a large number of updates being
recurrently applied, which can cause divergence when the
network has arbitrary form. Instead, the gated network can
quickly reduce the in�uence of the update coming from
the subtree, and then slowly depart from the identity skip-
connection; this is the behavior we've observed in practice.

4A video of MCTSnet solving Sokoban levels is available here:
https://goo.gl/2Bu8HD .

Figure 3.Comparison of two backup network architectures (Num-
ber of simulations isM = 10).

For all other experiments, we therefore employed the gated
residual backup network in MCTSnet.

4.3. Learning the simulation policy

MCTSnet learns a tree exploration strategy that is directly
tuned to obtain the best possible �nal output. However, as
previously mentioned, learning the simulation policy is chal-
lenging because of the noisy estimation of the pseudo-return
for the selected sequencez. We investigate the effectiveness
of our proposed designs for� (see Sec. 3.4) and of our pro-
posed approximate credit assignment scheme for learning
its parameters (see Sec. 3.6).

Basic setting Despite the estimation issues, we veri�ed
that we can nevertheless lift� , in its simple form, above the
performance of a MCTSnet using a uniform random simula-
tion policy. Note that MCTSnet with a random simulation
strategy already performs reasonably since it can still take
advantage of the learned statistics, backups, and readout.
See blue and red curves in Fig. 4a for a comparison.

Improved credit assignment technique The vanilla gra-
dient in Eq. (9) is enough to learn a simulation policy�
that performs better than a random search strategy, but it is
still hampered by the noisy estimation process of the simu-
lation policy gradient. A more effective search strategy can
be learned using our proposed credit assignment scheme
in Sec. 3.6 and the modulated policy architecture in Sec.
3.4. To show this, we train MCTSnets for different values
of the discount using the modulated policy architecture.
The results in Fig. 4b demonstrate that the value of = 1 ,
for which the network is optimizing the true loss, is not
the ideal choice in MCTSnet. Lower values of perform
better at different stages of training. In late training, when
the estimation problem is more stationary, the advantage of
 < 1 reduces but remains. The best performing MCTSnet
architecture is shown in comparison to others in Fig. 4a. We
also investigated whether simply providing the policy prior

