
Supplementary material for the article:
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In this supplementary material, we provide a complete proof of Theorem 2 and additional
experiments. The main arguments of this proof are collected in Section 1, while all auxiliary
results can be found in Section 2. Section 3 contains the supplemental experiments.

1 Main proofs

Let us recall our main assumptions on the data and the central result regarding the consis-
tency of the continuous comparison tree.

Assumption 1.1 (Bounded density on the unit cube). The random variable X ∈
[0, 1]d has density f with respect to the Lebesgue measure on [0, 1]d. Additionally, there
exist constants 0 < fmin ≤ fmax < +∞ such that

∀x ∈ X , fmin ≤ f (x) ≤ fmax .

Theorem 1.1 (Consistency of comparison trees). Assume that X satisfies Assump-
tion 1.1. Then the partitioning classification rule associated to T 0(α log n) is consistent for
any 0 < α < 1/ log 2.

As explained in the paper, the proof of Theorem 1.1 follows from Devroye et al. (1996,
Theorem 6.1). It first requires control on the number of samples in the leaves of the tree.
This is resolved in Section 1.2. Second, we need to bound the diameter of the leaves of the
tree, which is achieved in Section 1.3. Before turning to these proofs, we state and prove
the key result used to control the diameter (Proposition 1.1) in the next section.
Let us now introduce some additional notation. For any convex compact subset A, we define
πA as the orthogonal projection on A. For any given x ∈ Rd and r > 0, we define B (x, r)
as the closed ball of center x and radius x. Namely,

B (x, r) :=
{
y ∈ Rd | ‖x− y‖ ≤ r

}
.

The sphere of center x and radius r is the boundary of B (x, r), that is,

S (x, r) :=
{
y ∈ Rd | ‖x− y‖ = r

}
.

When working in dimension 2, S (x, r) is simply the circle of center x and radius r, denoted
by C (x, r). We call annulus the (closed) set of points comprised between two concentric
spheres, that is, for any x ∈ Rd, r1, r2 > 0,

A (x, r1, r2) :=
{
y ∈ Rd | r1 ≤ ‖x− y‖ ≤ r2

}
.

If r1 ≤ 0, we set A (x, r1, r2) = B (a, r2).
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1.1 Control of the cell diameter

Let us recall Proposition 1.1, the key result needed for proving that the diameter of the
comparison-tree leaves goes to zero in probability.

Proposition 1.1 (Diameter control). Assume that Assumption 1.1 holds. Let C be a
cell of T 0(X) such that diam (C) ≤ D. Then the probability that there exists a descendant
of C which is more than k levels below and yet has diameter greater than D/2 is at most
Nf,d(Nf,d + 1)γkf,d/2, where 0 < Nf,d and 0 < γf,d < 1 are constants depending only on d,
fmin, and fmax.

Proposition 1.1 is an analogous of Lemma 12 in Dasgupta and Freund (2008). In plain
words, it states that for any cell of the continuous comparison tree, the diameter of any
descendant at least k levels below is halved with high probability depending on k. Our
proof follows closely that of Dasgupta and Freund (2008, Lemma 12), the main difference
being in the auxiliary lemmas used to control the probability of certain events, due to the
radically different nature of the random tree that we consider.

Proof. Consider a cover of C by balls of radius r = D/cr, with cr := 26 · d · 25d · f
2
max

f2
min

.

According to Shalev-Shwartz and Ben-David (2014, Section 27.1), at most(
2D
√
d

r

)d
=

(
27 · d3/2 · 25d · f

2
max

f2min

)d
=: Nd,f

such balls are needed, since diam (C) ≤ D.
Fix any pair of balls B,B′ from this cover whose centers are at distance at least D/2 − r
from one another. Given any x and y, we say that the split according to ∆(x, y) is a good
cut if it cleanly separates B from B′, i.e., if B ⊂ Hx and B′ ⊂ Hy or B′ ⊂ Hx and B ⊂ Hy.
If the split cuts both B and B′, that is, B ∩∆(x, y) 6= ∅ and B′ ∩∆(x, y) 6= ∅, we say that
it is a bad cut. See Figure 1 for illustration.
For any k ≥ 1, let pk be the probability that there is some cell k levels below C which
contains points from both B and B′. We write

pk ≤ P (top split is a good cut) · 0 + P (top split is a bad cut) · 2pk−1
+ P (all other split configurations) · pk−1
≤ (1 + P (top split is a bad cut)− P (top split is a good cut)) pk−1 .

Since d ≥ 1 and cr > 50, according to Lemma 2.1 and 2.2,

P (top split is a bad cut)− P (top split is a good cut) ≤ fmax

fmin
· 64d

cr
− 2 · fmin

fmax
· 1

25d

= − fmin

fmax
· 1

25d
< 0 .

Set γf,d := 1− fmin

fmax
· 1
25d

, we just showed that

pk ≤ γf,dpk−1 . (1.1)

Since p0 = 1, we deduce that pk ≤ γkf,d. We conclude by a union bound over all the pairs
from the cover that are at the prescribed minimum distance from each other.
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Figure 1: Good cuts and bad cuts. The current cell A contains B and B′, two faraway
balls of small radius—with respect to the diameter of A. A good cut (in green) cleanly
separates B and B′, whereas a bad cut (in red) intersects both.
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Note that the main difference with the proof of Lemma 12 in Dasgupta and Freund (2008)
comes from Eq. (1.1). Namely, in the setting of Dasgupta and Freund (2008), γf,d is a
constant that does not depend on the dimension. The dependency on the dimension in
our case is due to the lower bound on the probability of a good cut that we obtain in
Lemma 2.1, which is decreasing exponentially with the dimension. Improving this bound,
namely obtaining a bound without exponential dependency in the dimension, would yield a
“more reasonable” number of levels required to divide the diameter by two in Proposition 1.1.

1.2 N(X) −→ +∞ in probability

According to Lemma 20.1 in Devroye et al. (1996) and the remark that follows, it is sufficient
to show that the number of regions is o (n). For each n, by construction, T 0(α log n) has
2α logn = nα log 2 leafs. Since α log 2 < 1, 2α logn = o (n) as n→ +∞.

1.3 diam (A(X)) −→ 0 in probability

Let 0 < ε < 1. In this section, we show that

P (diam (A(X)) > ε) −→ 0 when n→ +∞ .

We first notice that

P (diam (A(X)) > ε) ≤ max
i

P (diam (Ai,n) > ε) .

Let A be the leaf of T 0(pn) with maximal diameter and define π :=
⌈
log(
√
d)−log ε
log 2

⌉
, so that

ε >
√
d/2π. We write

P (diam (A) > ε) ≤ P

(
diam (A) >

√
d

2π

)
.

Define C1, . . . , Cpn the path from C0 = [0, 1]d to Cpn = A in the tree T 0(pn). Set k =
⌊
pn
π

⌋
.

Set A(0) = C0, A(1) = Ck, A(2) = C2k, . . . , A(π−1) = C(π−1)k and A(π) = A. We define the

event Ej :=
{

diam
(
A(j)

)
>
√
d/2j

}
. Then

P

(
diam (A) >

√
d

2π

)
= P (Eπ|Eπ−1) · P (Eπ−1) + P

(
Eπ
∣∣Ec

π−1
)
· P
(
Ec
π−1
)

(law of total probability)

≤ P
(
Eπ
∣∣Ec

π−1
)

+ P (Eπ−1) .

Repeating π times this reasoning, and since diam
(
A(0)

)
≤
√
d almost surely, we deduce that

P
(

diam
(
A(π)

)
> ε
)
≤

π∑
t=1

P

(
diam

(
A(t)

)
>

√
d

2t

∣∣∣∣∣diam
(
A(t−1)

)
≤
√
d

2t−1

)
.

There are always more than k levels between A(tk) and A((t−1)k) by construction. Hence,
according to Proposition 1.1,

P (diam (A) > ε) ≤ π · Nf,d(Nf,d + 1)

2
· γkf,d .

Since k = O (log n) and γf,d ∈ (0, 1), we can conclude the proof.
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2 Auxiliary results

The key in proving Proposition 1.1 is to show that, for a given cell, the probability of a
“good cut” is greater than the probability of a “bad cut.” We thus proceed to prove a
lower bound for the probability of a good cut (Section 2.1) and an upper bound for the
probability of a bad cut (Section 2.2). Since the first cell is the unit cube and all subsequent
cells are obtained by intersection with half-spaces, note that any cell of the comparison tree
is a full-dimensional convex polytope almost surely. Thus we state and prove our results for
such objects.

2.1 Good cuts

The following Lemma is an analogous of Lemma 10 in Dasgupta and Freund (2008). It
provides a lower bound on the probability of cleanly separating faraway balls.

Lemma 2.1 (Probability of good cut is lower bounded). Suppose that Assumption 1.1
holds. Let A ⊂ Rd be a full-dimensional convex polytope such that diam (A) ≤ D < +∞.
Let cr > 10 be a constant. Pick any two balls B := B (z, r) and B′ := B (z′, r) such that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z − z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution of X,

P (A ∩B ⊂ A ∩HX1
and A ∩B′ ⊂ A ∩HX2

) ≥ 2
fmin

fmax

(
cr − 10

4cr

)2d

.

As a direct consequence, if cr > 50,

P (A ∩B ⊂ A ∩HX1 and A ∩B′ ⊂ A ∩HX2) ≥ fmin

fmax

2

25d
.

While the statement of Lemma 2.1 is close to that of of Lemma 10 in Dasgupta and Freund
(2008), a major difference lies in the quality of the bound we obtain. Indeed, our bound
depends exponentially in the dimension, therefore becoming arbitrarily loose for large values
of d.

Proof. The proof follows the following scheme. First, we conveniently restrict ourselves to
the case where the centers of B and B′ both belong to A by geometric arguments. We then
use Lemma 2.5 to lower bound the probability of a good split by the probability that x and y
belong to certain balls γ and γ′. We conclude the proof by finding an upper bound for the
volume of A and a lower bound for the volume of γ ∩ A. We refer to Figure 2 throughout
this proof.

Preliminary computations. Set a := πA(z), a′ := πA(z′), β := B (a, r), and β′ :=
B (a′, r). Then, according to Lemma 2.3, A∩B ⊂ β and A∩B′ ⊂ β′. For any x, y ∈ A such
that β ⊂ Hx and β′ ⊂ Hy. Since A∩B ⊂ β, we have A∩B ⊂ Hx. Furthermore, A∩B ⊂ A,
thus A ∩B ⊂ A ∩Hx. A similar reasoning shows that A ∩B′ ⊂ A ∩Hy. Hence

P (A ∩B ⊂ A ∩HX1
and A ∩B′ ⊂ A ∩HX2

) ≥ P (β ⊂ HX1
and β′ ⊂ HX2

) .
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•
a

•
a′

Ω
Γ′ ΓΣ

γ ∩Π

γ = B (a, ρ) γ′ = B (a′, ρ)

ΠΠ′

Figure 2: Construction of Ω, Π and Σ. The central thick line represents Ω, the intersection
between A and the hyperplane ∆(a, a′). The half-cone Π is the union for all ω ∈ Ω of the
half-lines [a, ω). Finally, the spherical cap Σ is defined as the intersection between S (a, ρ)
and Π. In dotted lines we draw the counter-parts of these objects for a′. The gray area
represents γ ∩Π.

Set δ := ‖a− a′‖. Since a ∈ B and a′ ∈ B′, by the triangle inequality, ‖a− a′‖ ≥ ‖z − z′‖−
2r. By hypothesis, ‖z − z′‖ ≥ D/2− r and r ≤ D/cr, thus

‖a− a′‖ ≥ D

2
− 3r ≥ cr − 6

2cr
·D .

Define ρ := ‖a− a′‖ /2− r. We have ρ ≥ cr−10
4cr

·D. In particular, as cr > 10, ρ > 0. Then,
according to Lemma 2.5,

P (β ⊂ HX1 and β′ ⊂ HX2) ≥ P (X1 ∈ γ and X2 ∈ γ′ or X2 ∈ γ and X1 ∈ γ′) ,

where γ := B (a, ρ) and γ′ := B (a′, ρ). Since X1 and X2 are independent and identically
distributed and γ ∩ γ′ = ∅,

P (X1 ∈ γ and X2 ∈ γ′ or X2 ∈ γ and X1 ∈ γ′) ≥ 2P (X1 ∈ γ)P (X2 ∈ γ′) .

Since we sample X1 and X2 according to the law of X restricted to A and since Assump-
tion 1.1 holds,

P (X1 ∈ γ) ≥ fmin

fmax

Vold (γ ∩A)

Vold (A)
.

In the next paragraphs, we find an upper bound for Vold (A) and a lower bound for
Vold (γ ∩A). We will see that the latter also holds for γ′.
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Upper bound for Vold (A). We refer to Figure 2 for the geometric constructions that
follow. Let us first define Ω := ∆(a, a′)∩A the intersection between the convex polytope A
and the hyperplane ∆(a, a′). We also need to define Π the set of all half-lines going from a
through Ω, namely,

Π :=
{
a+ t(w − a) | ω ∈ Ω and t > 0

}
,

and the conic section Γ := B (a,diam (A)) ∩ Π. We claim that A ∩ Ha′ ⊂ Γ. Indeed, let
ξ ∈ A ∩Ha′ . Since ξ ∈ Ha′ , [a, ξ] intersects ∆(a, a′) in a unique point, say ζ. By convexity,
the segment [a, ξ] is contained into A. In particular, ζ ∈ A. Thus ζ ∈ ∆(a, a′)∩A = Ω, and

ξ = a+
‖ξ − a‖
‖ζ − a‖

(ζ − a) ∈ A .

Moreover, since ξ ∈ A,
‖a− ξ‖ ≤ sup

s∈A
‖a− s‖ = diam (A) ,

and ξ ∈ B (a,diam (A)). A similar reasoning shows that A ∩ Ha ⊂ Γ′, where Γ′ is the
symmetric of Γ with respect to ∆(a, a′). Therefore,

Vold (A) ≤ 2 Vold (Γ) .

Define the hyperspherical cap Σ := S (a, ρ) ∩ Π. Then we can express the volume of the
conic section Γ as

Vold (Γ) =
Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a,diam (A))) ,

which leads to

Vold (A) ≤ 2 Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a,diam (A))) . (2.2)

Lower bound for Vold (γ ∩A). By convexity, γ ∩Π ⊂ γ ∩A. Moreover,

Vold (γ ∩Π) =
Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a, ρ)) .

Hence the following lower bound holds:

Vold (γ ∩A) ≥ Vold−1 (Σ)

Vold−1 (S (a, ρ))
Vold (B (a, ρ)) . (2.3)

Conclusion. Putting together Eq. (2.2) and (2.3), we obtain

P (X1 ∈ γ) ≥ fmin

fmax

Vold (B (a, ρ))

Vold (B (a,diam (A)))
=
fmin

fmax

(
ρ

diam (A)

)d
.

Since ρ ≥ (cr − 10)/(4Dcr) and diam (A) ≤ D, we deduce that

P (X1 ∈ γ) ≥ fmin

fmax

(
cr − 10

4cr

)d
.

We conclude the proof by using the preliminary computations.
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2.2 Bad cuts

We now focus on the probability of a “bad split,” that is, ∆(x, y) intersects both B (z, r)
and B (z′, r). The following result is an analogous of Lemma 11 in Dasgupta and Freund
(2008).

Lemma 2.2 (Probability of bad cut is upper bounded). Suppose that assumption 1.1
holds. Let A ⊂ Rd be a full-dimensional convex polytope such that diam (A) ≤ D < +∞.
Let cr > 10 be a constant. Pick any two balls B := B (z, r) and B′ := B (z′, r) such that

(i) both B and B′ intersect A;

(ii) their radius is at most D/cr;

(iii) the distance between their centers satisfies ‖z − z′‖ ≥ D/2− r.

Then, if X1 and X2 are chosen independently from A according to the distribution of X,

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

32dcr
(cr − 2)(cr − 6)

.

As a direct consequence, if cr > 15,

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

64d

cr
.

Note that, as in Lemma 2.1, the bound we obtain worsens as the dimension increases.

Proof. We first restrict ourselves to the case where the centers of B and B′ both belong
to A with the same argument than in the proof of Lemma 2.1. Namely, define a := πA(z),
a′ := πA(z′), β := B (a, r), β′ := B (a′, r). According to Lemma 2.3, A ∩ B ⊂ β and
A ∩B′ ⊂ β′. Thus

P (A ∩B ∩∆(X1, X2) 6= ∅ and A ∩B′ ∩∆(X1, X2) 6= ∅)
≤ P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) .

For any x ∈ Rd, define Bx the set of points y such that ∆(x, y) is a bad cut, that is,

Bx :=
{
y ∈ Rd | β ∩∆(x, y) 6= ∅ and β′ ∩∆(x, y) 6= ∅

}
.

Then, since we sample X1 according to the law of X restricted to A and since we assume
Assumption 1.1 to be true,

P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

E [Vold (BX1
∩A)]

Vold (A)
,

where the expectation is relative to the random variable X1.

Upper bound for Vold (Bx ∩A). Let x ∈ A and y ∈ Bx. By Lemma 2.4,{
(‖x− a‖ − 2r)

+ ≤ ‖y − a‖ ≤ ‖x− a‖+ 2r

(‖x− a′‖ − 2r)
+ ≤ ‖y − a′‖ ≤ ‖x− a′‖+ 2r .
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a

•
a′

•
x

Bx

C1

C2

C ′1

C ′2

β β′

Figure 3: Sketch of Bx in R2. For a fixed x, Bx is the set of all y such that ∆(x, y) cuts
both β and β′ (border marked in red). We show that Bx is the intersection of two geometric
loci (solid lines border). In particular, Bx is included in the intersection of two annuli
(border in dotted lines).

Equivalently, Bx ⊂ A (a, r1, r2) ∩ Bx ⊂ A (a′, r′1, r
′
2), where we defined r1 := ‖x− a‖ − 2r,

r2 := ‖x− a‖+ 2r, r′1 := ‖x− a′‖ − 2r and r′2 := ‖x− a′‖+ 2r. Recall that A (a, r1, r2) =
B (a, r2) whenever r1 ≤ 0. See Figure 3 for an illustration.
For any ξ ∈ (a, a′), denote by Dξ the hyperplane orthogonal to (a, a′) and passing through ξ.
According to Lemma 2.6, the width ofA (a, r1, r2)∩A (a′, r′1, r

′
2) along the (a, a′) axis is upper

bounded by 16D/(cr − 2), hence there exists ξ− and ξ+ ∈ (a, a′) such that ‖ξ+ − ξ−‖ ≤
16D/(cr − 2) and Bx ∩ A is contained between Dξ− and Dξ+ . For each ξ ∈ (a, a′), set
Ωξ := Dξ ∩A. There exists ξ? ∈ [ξ−, ξ+] such that Vold−1 (Ωξ?) is maximal, and

Vold (Bx ∩A) =

∫
ξ∈[ξ−,ξ+]

Vold−1 (Ωξ) d ξ

≤
∥∥ξ+ − ξ−∥∥ ·Vold−1 (Ωξ?)

Vold (Bx ∩A) ≤ 16

cr − 2
·DVold−1 (Ωξ?) . (2.4)
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Lower bound for Vold (A). Suppose that ξ? belongs to the segment [a, a′]. By con-
vexity, A contains the (disjoint) union of the two hyperpyramids of apexes a and a′ with
(d− 1)-dimensional basis Ωξ? , which we denote by Q and Q′. Therefore,

Vold (A) ≥ Vold (Q) + Vold (Q′)

=
‖a− ξ?‖Vold−1 (Ωξ?)

d
+
‖a′ − ξ?‖Vold−1 (Ωξ?)

d

=
δVold−1 (Ωξ?)

d
.

Since δ ≥ (cr − 6)D/(2cr),

Vold (A) ≥ cr − 6

2dcr
·DVold−1 (Ωξ?) . (2.5)

A similar reasoning holds whenever ξ? does not belong to [a, a′].

Conclusion. Putting together Eq. (2.4) and (2.5), we obtain

P (β ∩∆(X1, X2) 6= ∅ and β′ ∩∆(X1, X2) 6= ∅) ≤ fmax

fmin

32dcr
(cr − 2)(cr − 6)

,

which concludes the proof.

Note that in the plane defined by a, a′ and x, we can actually describe precisely the shape of
the curves defining the border of Bx—see Figure 3. These curves correspond to the images
of x by all the symmetries with respect to a line tangent to β or β′. Individually, they are
called the orthotomics of a circle, or second caustic (Lawrence, 2013, p. 60).

2.3 Technical results

This first lemma is used in the proofs of Lemma 2.1 and 2.2 to deal with cases where the
center of B or B′ does not belong to A. See Figure 4 for an illustration of such a situation.

Lemma 2.3 (Construction of β). Let A ⊂ Rd be a convex compact set and B (z, r) be a
ball that intersects A. Define β := B (πA(z), r). Then A ∩B ⊂ β.

Proof. Set a := πA(z). Let x be an element of A ∩B. Then,

‖x− a‖2 = 〈x− a, x− a〉
= 〈x− z + z − a, x− z + z − a〉

= ‖x− z‖2 + 2〈x− z, z − a〉+ ‖z − a‖2

‖x− a‖2 = ‖x− z‖2 + 2〈x− a, z − a〉 − ‖z − a‖2 .

Since πA is a the orthogonal projection, given that x ∈ A, we have 〈x − a, z − a〉 ≤ 0.

Moreover, ‖z − a‖ ≥ 0, thus ‖x− a‖2 ≤ ‖x− z‖2. But x also belongs to B, hence ‖x− z‖ ≤
r. As a consequence, ‖x− a‖ ≤ r, that is, x ∈ β.

The next lemma shows that, for a given x, the set of every possible y such that ∆(x, y)
intersects B (a, r) is contained into an annulus centered in a. We refer to Figure 5 for an
illustration.
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z
•

a
•

B (z, r) β = B (a, r)

A

A ∩ B (z, r)

Figure 4: Construction of β. The point a is the image of z by the orthogonal projection
on A. The ball β has the same radius than B (z, r) and contains A∩B (z, r), which is marked
in gray.

Lemma 2.4 (Localization of Bx). Let a, x ∈ Rd and r > 0. Then, for any y ∈ Rd such
that ∆(x, y) ∩ B (a, r) is non-empty,

(‖x− a‖ − 2r)
+ ≤ ‖y − a‖ ≤ ‖x− a‖+ 2r .

Proof. Let y ∈ Rd such that ∆(x, y)∩B (a, r) is non-empty. In particular, there exists b ∈ Rd
such that ‖y − b‖ = ‖x− b‖ and ‖a− b‖ ≤ r. By the triangle inequality,

|‖y − a‖ − ‖y − b‖| ≤ ‖a− b‖ ≤ r .

Hence {
‖y − a‖ ≤ r + ‖y − b‖ = r + ‖x− b‖
‖y − a‖ ≥ −r + ‖y − b‖ = −r + ‖x− b‖ .

Since |‖x− b‖ − ‖a− b‖| ≤ ‖x− a‖ (again by the triangle inequality), we have{
‖y − a‖ ≤ ‖x− a‖+ 2r

‖y − a‖ ≥ ‖x− a‖ − 2r .

We now present a result stating that, for any two points a, a′ ∈ Rd, there exists a simple set
of possible x and y such that balls with center a and a′ are well-separated by ∆(x, y). It is
the key element in the proof of Lemma 2.1.
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•
a

B (a, r)

•x

•
y

∆(x, y)

•b

Figure 5: Bx is included in the intersection of two annuli. As in the proof of Lemma 2.4, a
and x are fixed, and y is such that ∆(x, y) intersects B (a, r). Then y belongs to an annulus
of radii (‖x− a‖ − 2r)

+
and ‖x− a‖+ 2r.

Lemma 2.5 (Sufficient condition for a good cut). Let a, a′ ∈ Rd. Let 0 < r <
‖a− a′‖ /2 and set ρ := ‖a− a′‖ /2 − r. Then, for any x ∈ B (a, ρ) and y ∈ B (a′, ρ), we
have B (a, r) ⊂ Hx and B (a′, r) ⊂ Hy.

Remark 2.1. Note that Lemma 2.5 holds in any metric space (X , δ) since the proof only
uses the triangle inequality.

Proof. We refer to Figure 6 for this proof. We have to prove that for any s ∈ B (a, r),
δ (s, x) ≤ δ (s, y) (the case t ∈ B (a′, r) is identical up to notations). We first write

δ (s, x) ≤ δ (s, a) + δ (a, x) ≤ r + ρ = δ (a, a′) /2 ,

where we used (i) the triangle inequality, (ii) s ∈ B (a, r) and x ∈ B (a, ρ), (iii) the definition
of ρ. Then,

δ (a, a′) ≤ δ (a, y) + δ (a′, y) ≤ δ (a, y) + ρ ,

where we used (i) triangle inequality, (ii) y ∈ B (a′, ρ). Thus δ (a, y) ≥ δ (a, a′)−ρ. Moreover,

δ (a, y) ≤ δ (a, s) + δ (s, y) ≤ r + δ (s, y) ,

where we used (i) triangle inequality, (ii) s ∈ B (a, r). Combining the two, we get

δ (s, y) ≥ δ (a, a′)− (r + ρ) = δ (a, a′) /2 .

Therefore δ (s, y) ≥ δ (s, x) and we can conclude.

Finally, we state and prove a technical lemma used in the proof of Lemma 2.2 to control the
size of the intersection of two annuli.

Lemma 2.6 (Bx has small width). Assume the set of hypotheses of Lemma 2.2 and
define r1, r2, r′1 and r′2 as in the proof of Lemma 2.2. Then there exist two hyperplanes Lx
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a
•

a′
•

∆(a, a′)

B (a, r)

B (a′, r)

B (a, ρ) B (a′, ρ)

•
x

•
y

∆(x, y)

Figure 6: Guaranteed good cut. Set a, a′ ∈ Rd and ρ = ‖a− a′‖ /2 − r. Then, for any
x ∈ B (a, ρ) and y ∈ B (a′, ρ), the hyperplane ∆(x, y) separates cleanly B (a, r) from B (a′, r).
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and L′x, orthogonal to (a, a′), such that the intersection of A (a, r1, r2) and A (a′, r′1, r
′
2) is

included between Lx and L′x. Additionally,

δ (Lx, L
′
x) ≤ 16D

cr − 2
. (2.6)

Even though the statement of Lemma 2.6 may seem intuitive at first sight (since the inter-
section is contained in two annuli of width O (D/cr), one would expect its width to be of the
same order), we do not know of a simpler proof. We believe that it is necessary to describe
precisely the intersection of the two annuli depending on the radii in order to make sure
that the situation where the two annuli are overlapping is excluded. Indeed, in this case the
width of the intersection is not bounded by a quantity depending on D/cr but rather on D,
since it has the same order than the diameter of the annuli.

Proof. By rotational symmetry around (a, a′), it suffices to prove the result in a 2-plane
containing a and a′. Hence from now on we work in the plane P defined by the triple
(x, a, a′). We first describe the shape of the intersection between the two annuli depending
on the position of x relatively to a and a′. Then, in each case, we bound the width of the
intersection in the direction of the (a, a′) axis.

Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2). Let us equip P with an orthogonal frame such that

a = (0, 0), a′ = (δ, 0) and x = (x1, x2). The width of the intersection is invariant by
line symmetry with respect to ∆(a, a′) and (a, a′), thus we can restrict our analysis to the
quadrant defined by x1 ≤ δ/2 and x2 > 0. In particular, ‖x− a‖ ≤ ‖x− a′‖. Define Ci :=
C (a, ri) and C ′i := C (a′, r′i) for i ∈ {1, 2}. The shape of A (a, r1, r2) ∩ A (a′, r′1, r

′
2) depends

on the mutual intersections between C1, C2, C
′
1 and C ′2. Recall that C (a, ρ) ∩ C (a′, ρ) 6= ∅

if, and only if,
|ρ− ρ′| ≤ δ ≤ ρ+ ρ′ .

We now proceed to describe these intersection depending on the position of x relatively to a
and a′.

• Since r > 0, r1 < r2 and r′1 < r′2 and thus C1 ∩ C2 = C ′1 ∩ C ′2 = ∅;

• By the triangle inequality, |r2 − r′2| = |‖x− a‖ − ‖x− a′‖| ≤ δ and r2+r′2 = ‖x− a‖+
‖x− a′‖+ 4r ≥ δ, hence C2 ∩ C ′2 is always non-empty;

• By the triangle inequality, |r1 − r′1| = |‖x− a‖ − ‖x− a′‖| ≤ δ. Hence C1 ∩ C ′1 is
non-empty if, and only if, r1 +r′1 ≥ δ, that is, ‖x− a‖+‖x− a′‖ ≥ δ−4r. The border
is an ellipse with focal points a, a′ and semi-major axis (δ + 4r)/2.

• By the triangle inequality, r1 +r′2 = ‖x− a‖+‖x− a′‖ ≤ δ. Since ‖x− a‖ ≤ ‖x− a′‖,
|r1 − r′2| = 4r − ‖x− a‖ + ‖x− a′‖. Thus C1 ∩ C ′2 is non-empty if, and only if,
‖x− a′‖ − ‖x− a‖ ≤ δ − 4r. The border is a hyperbola with focal points a, a′ and
semi-major axis (δ − 4r)/2.

• By the triangle inequality, r′1 + r2 = ‖x− a′‖ + ‖x− a‖ ≥ δ. Moreover, |r′1 − r2| =
|‖x− a′‖ − ‖x− a‖ − 4r|. Again, the triangle inequality yields ‖x− a′‖ − ‖x− a‖ ≤
δ ≤ δ+4r. On the other side, ‖x− a‖−‖x− a′‖ ≤ 0 ≤ δ−4r because r < δ/4. Hence
C2 ∩ C ′1 is always non-empty.

The different cases are summarized in Figure 7, and we provide a visual depiction of the
intersection for each case in Figure 8. Note that in Case III, ‖x− a‖ ≤ 2r is a possibility,
implying r1 < 0. In this event, we see in Figure 8 that the extremal points are the same.
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•
a

•
(δ/2, 0)

•
(2r, 0)

•
(−2r, 0)

•( δ2 ,
√

2rδ + 4r2)

I

II

III
IV

Figure 7: Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) (I). Depending on the relative position of x

with respect to a and a′, the shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) changes. Case I: C1 ∩ C ′1

and C1 ∩C ′2 are both non-empty. Case II: C1 ∩C ′1 is non-empty, whereas C1 ∩C ′2 is. Case
III: C1∩C ′1 and C1∩C ′2 are both empty. Case IV: C1∩C ′2 is non-empty whereas C1∩C ′1 is.
The shape of Bx as well as A (a, r1, r2)∩A (a′, r′1, r

′
2) in this last case is depicted in Figure 3.
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Case I Case II

Case III Case IV

• • • •

• • • •

Figure 8: Shape of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) (II). For each case described in Figure 7,

we sketch A (a, r1, r2) ∩ A (a′, r′1, r
′
2). Note that the points realizing the minimum and

maximum abscissa in each case are different, leading to different bounds on the width of
A (a, r1, r2) ∩ A (a′, r′1, r

′
2).
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Width of A (a, r1, r2)∩A (a′, r′1, r
′
2). For each case, we show that Eq. (2.6) holds. Recall

that we assumed r/δ ≤ 2/(cr − 2) and diam (A) ≤ D. We will use the fact that

‖x− a‖2 − ‖x− a′‖2

2δ
=
x21 + x22 − x21 + 2δx1 + δ2 + x22

2δ
= x1 −

δ

2
.

• Case I: The left-most points of A (a, r1, r2)∩A (a′, r′1, r
′
2) belong to C1 ∩C ′2. We solve{

ξ21 + ξ22 = r21 = (‖x− a‖ − 2r)
2

(ξ1 − δ)2 + ξ22 = r′22 = (‖x− a′‖+ 2r)
2
.

and find

ξ1 = x1 −
2r

δ
(‖x− a‖+ ‖x− a′‖) .

The right-most points of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belong to C2 ∩ C ′1. We solve{

ζ21 + ζ22 = r22 = (‖x− a‖+ 2r)
2

(ζ1 − δ)2 + ζ22 = r′21 = (‖x− a′‖ − 2r)
2
.

and find

ζ1 = x1 +
2r

δ
(‖x− a‖+ ‖x− a′‖) .

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
4r

δ
(‖x− a‖+ ‖x− a′‖) ≤ 16D

cr − 2
.

• Case II: The left-most point of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belongs to C ′2 ∩ (a, a′), and

we have
ξ1 = δ − r′2 = δ − ‖x− a′‖ − 2r .

The right-most points belongs to C2 ∩ C ′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x− a‖+ ‖x− a′‖)

δ
.

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
2r

δ
(‖x− a‖+ ‖x− a′‖) + ‖x− a′‖+ x1 − δ − 2r .

The equation of the asymptotes of the hyperbola ‖x− a′‖−‖x− a‖ = δ−4r are given
by

x2 = ±2
√

2rδ − 4r2

δ − 4r
(x1 − δ/2) ,

and considering the lines parallel to these asymptotes passing through (δ, 0) we deduce
that, in case II,

x22
(x1 − δ)2

≤ 4(2rδ − 4r2)

(δ − 4r)
2 ≤ 8rδ

(δ − 4r)
2 ≤ 8

r

δ

1(
1− 4 rδ

)2 ≤ 16 (cr − 10)
2

(cr − 2)
3 .

17



Thus

‖x− a′‖ =
√

(x1 − δ)2 + x22 ≤ |x1 − δ|

√
1 +

16 (cr − 10)
2

(cr − 2)
3 ,

and we have

‖x− a′‖+ x1 − δ ≤ |x1 − δ|

(√
1 +

16 (cr − 10)
2

(cr − 2)
3 − 1

)
≤ 8D (cr − 10)

2

(cr − 2)
3 ,

where we used
√

1 + x2 − 1 ≤ x/2 in the last inequality. Finally,

|ζ1 − ξ1| ≤
8D(cr − 10)2

(cr − 2)3
+

8D

cr − 2
.

• Case III: The left-most point of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) belongs to C2 ∩ C ′2. We

solve {
ξ21 + ξ22 = r22 = (‖x− a‖+ 2r)

2

(ξ1 − δ)2 + ξ22 = r′22 = (‖x− a′‖+ 2r)
2
,

which yields

ξ1 = x1 +
2r

δ
(‖x− a‖ − ‖x− a′‖) .

The right-most points belongs to C2 ∩ C ′1, and we have, as in Case I,

ζ1 = x1 +
2r (‖x− a‖+ ‖x− a′‖)

δ
.

Thus the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along (a, a′) is given by

|ζ1 − ξ1| =
4r

δ
‖x− a′‖ ≤ 8D

cr − 2
.

• Case IV: as in Case I, the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) is given by

|ξ1 − ζ1| =
4r (‖x− a‖+ ‖x− a′‖)

δ
.

Since in this case ‖x− a‖+ ‖x− a′‖ ≤ δ − 4r, we have

|ξ1 − ζ1| ≤ 4r ≤ 4D

cr
.

Overall, since cr > 10, we have shown that the width of A (a, r1, r2) ∩ A (a′, r′1, r
′
2) along

(a, a′) is upper bounded by 16D/(cr − 2).

3 Additional experiments

3.1 Comparison of embedding methods

Here we report the results of the comparison between embedding methods. The results
are provided as a supplement to Section 4.3. We use a subsample of n = 500 points
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Figure 9: Classification error of the various embedding methods and the KNN algorithm.

from the Gisette dataset (half as training set and half as test set). The dimension d ∈
{10, 20, 30, 40, 50} and k ∈ {2, 6, 10, 14, 18} of the KNN are adjusted with 2-fold cross-
validation on the training set. Figure 9 shows the classification error of the four embed-
ding methods: GNMDS (Agarwal et al., 2007), LOE (Terada and von Luxburg, 2014) and
STE/TSTE (van der Maaten and Weinberger, 2012).
The TSTE consistently outperforms other methods. Therefore, we use it as the main com-
petitor against our proposed random forest.

3.2 CompRF and subsampling

In this section we investigate the role of subsampling in the performance of the CompRF.
To construct each tree of the CompRF, we randomly pick a subsample of r|S| points among
the set of training points (S) without replacement and make the tree only based on the
subsample. We use the following range for the subsampling ratio: r ∈ {0.1, 0.2, 0.4, 1}. The
left panel of Figure 10 shows the average classification error of the CompRF for various
values of r. The right plot in this figure shows the normalized average MSE of the CompRF
for regression datasets. Note that the range of MSE depends on the dataset. To make a
unified figure, for each dataset, we divided all average values of the MSE by the maximum
value of the MSE on that particular dataset.
Our results hardly show any significant positive effect of subsampling. On the contrary, in
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Figure 10: (Left) Average classification error of the CompRF algorithm on four classifica-
tion datasets and various subsampling ratios (r). (Right) Normalized average MSE of the
CompRF algorithm on four regression datasets and various subsampling ratios (r). The
X-axis denotes the datasets. Note that for each dataset we divided all MSE values by the
maximum value of the dataset. In this way bars can be plotted together.

classification tasks we see a significant decrease in error when the whole dataset is used.
Only in case of ForestFire dataset do we see some slight improvement.

3.3 Running time of CompRF vs. Embedding procedures

Here we report the running time of CompRF in comparison with TSTE embedding combined
with KNN. Note that if we apply CART forest after embedding, it can be even more time
consuming. In addition, the running time of embedding does not change significantly if we
apply the same triplets as the CompRF or a random subsample of triplets, therefore we
report the running time based on the same triplets as the CompRF.
We use the subsample of Gisette dataset with n = 1000 point, similar to the Section 4.3.
We perform the embedding with d = 10 and d = 50 dimensions and fixed k = 5. Table 1
shows the running time of the experiments. Since the running time of embedding can change
significantly based on the initial conditions, we run embedding algorithms five times and
we report the average running time. The algorithms are implemented on a single core CPU
and the running times are reported in seconds.

Table 1: Comparison of computation time between CompRF and TSTE+KNN. The re-
ported values are in seconds.

Number of trees (M) 1 5 10 20

CompRF 1 4 8 16
TSTE+KNN (d=10) 148 236 350 595
TSTE+KNN (d=50) 185 654 1214 2398

The required running time for the embedding algorithm is orders of magnitude longer than
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the CompRF. Moreover, the embedding algorithms need a cross-validation step to adjust
the number of dimensions and other parameters of the classifier.
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