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1. Simple surfaces
Fig.1 shows the six surfaces f(u, v) and the maximum
value function φ(u) = maxv∈V f(u, v). From φ(u) one
can check the minima argminu φ(u) are:
(a) u = 0, (b) u = 0, (c) u = 0, (d) u = ±0.25, (e) u = 0,
and (f) u = 0.
The corresponding maxima R(u) = argmaxv∈V f(u, v)
at the minimum are:
(a) R(0) = {0}, (b) R(0) = {0}, (c) R(0) = [−0.5, 0.5],
(d) R(±0.25) = {−0.25, 0.5}, (e) R(0) = {−0.5, 0.5},
and (f) R(0) = {−0.5, 0.5}.

Furthermore, R(U) for the whole domain is:
(a) R(U) = {0}, (b) R(U) = [−0.5, 0.5], (c) R(U) =
{−0.5, 0.5} except for R(0) = [−0.5, 0.5], (d) R(U) =
[−0.5,−0.25] ∪ {0.5}, (e) R(U) = {−0.5, 0.5}, and (f)
R(U) = {−0.5, 0.5}. These can be verified by solving the
minimax problems in closed form.

Note that the origin (0, 0) is a critical point for all surfaces.
It is also a global saddle point and minimax point for sur-
faces (a)-(c), but is neither a saddle nor a minimax point for
surfaces (d)-(f).

2. Proofs
Lemma 1 (Corollary 4.3.2, Theorem 4.4.2, (Hiriart-Urruty
& Lemaréchal, 2001)). Suppose f(u, v) is convex in u for
each v ∈ A. Then ∂φA(u) = co{∪v∈A∇uf(u, v)}. Simi-
larly, suppose f(u, v) is convex in u for each v ∈ V . Then
∂φ(u) = co{∪v∈V∇uf(u, v)}.

Lemma 2 (Chap 3.6, (Dem’yanov & Malozemov, 1974)).
A point u is an ε-stationary point of φA(u) if and only if
0 ∈ co{∪v∈RεA(u)∇uf(u, v)}.

Lemma 3. Suppose R(u) is finite at u. If dH(R(u), A) =
0, then R(u) = RA(u) and therefore ∂φ(u) = ∂φA(u).
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Proof. Since A ⊆ V , maxv∈V f(u, v) = maxv∈R(u)

f(u, v) ≥ maxv∈A f(u, v). By dH(R(u), A) = 0, we
have R(u) ⊆ A and therefore for each v ∈ R(u),
f(u, v) = maxv∈V f(u, v) = maxv∈A f(u, v), so v ∈
RA(u). Conversely, if v ∈ RA(u) then f(u, v) =
maxv∈A f(u, v) = maxv∈V f(u, v), so v ∈ R(u). The re-
mainder of the theorem follows from the definition of sub-
differentials.

Fig. 2 explains several symbols used in the following lem-
mas.

Lemma 4. If dH(R(u), A) ≤ δ, then for each v ∈ R(u)
there is one or more v′ ∈ A such that φ(u)− f(u, v′) ≤ lδ
and ‖∇uf(u, v)−∇uf(u, v′)‖ ≤ rδ.

The proof follows directly from the Lipschitz assumptions.

Lemma 5. Assume R(u) and S(u) are both finite at u. Let
ζ = φ(u) − maxv∈S(u)\R(u) f(u, v) be the smallest gap
between the global and the non-global maximum values at
u. If all local maxima are global maxima, then set ζ =∞.
If dH(R(u), A) ≤ δ and dH(A,S(u)) ≤ δ where δ <
0.5(ζ − ε)/l, then for each v′ ∈ RεA(u), there is v ∈ R(u)
such that ‖v − v′‖ ≤ δ.

Proof. Let any v′ ∈ A be δ-close to a global maximum,
then f(u, v′) ≥ φ(u) − lδ. Similarly, let any v′′ ∈ A be
δ-close to a non-global maximum, then f(u, v′′) ≤ φ(u)−
(ζ − lδ). Consequently, f(u, v′) ≥ f(u, v′′) + ζ − 2lδ >
f(u, v′′) + ε, i.e., any f(u, v′) and f(u, v′′) are separated
by at least ε. Therefore, each v′ satisfies v′ ∈ RεA = {v ∈
A | φA(u)−f(u, v) ≤ ε} but no v′′ satisfies v′′ ∈ RεA.

Lemma 6. Suppose δ is chosen as in Lemma 5 and U
is bounded (∀u ∈ U , ‖u‖ = B < ∞.) Then any
z′ ∈ co{∪v∈RεA∇uf(u0, v)} is an (2rδB)-subgradient of
φ(u0).

Proof. From Lemmas 4 and 5, for each (vk)′ ∈
RεA, there is vk ∈ R(u0) such that ‖∇uf(u0, vk) −
∇uf(u0, (vk)′)‖ ≤ rδ. Let zk = ∇uf(u0, vk) and z′k =



K-Beam Minimax: Efficient Optimization for Deep Adversarial Learning

U

0.6

0.4

0.2

0.0

0.2

0.4

0.6

V

0.6

0.4

0.2

0.0

0.2

0.4

0.6
1.5
1.0
0.5
0.0
0.5
1.0
1.5

0.4 0.2 0.0 0.2 0.4
U

0.00

0.05

0.10

0.15

0.20

0.25

(a) Saddle (u2 − v2)
critical pts {(0, 0)}
saddle pts {(0, 0)}

minimax pts {(0, 0)}
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(b) Rotated saddle (u2 − v2 + 2uv)
critical pts {(0, 0)}
saddle pts {(0, 0)}

minimax pts {(0, 0)}
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(c) Seesaw (−v sin(πu))
critical pts {(0, 0)}
saddle pts {(0, 0)}

minimax pts {(0, v)|v ∈ [−0.5, 0.5])}
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(d) Monkey saddle (v3 − 3vu2)
critical pts {(0, 0)}
saddle pts {}

minimax pts {(±0.25,−0.25), (±0.25, 0.5)}
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(e) Anti-saddle (−u2 + v2 + 2uv)
critical pts {(0, 0)}
saddle pts {}

minimax pts {(0,±0.5)}
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(f) Weapons
(e−10(u+.5)e−(v+.5)

+ e−10(.5−u)ev−.5 )
critical pts {(0, 0)}
saddle pts {}

minimax pts {(0,±0.5)}

Figure 1. Examples of saddle point (upper row) and non-saddle point (lower row) problems. The smaller inset after each surface is the
max value function φ(u) = maxv f(u, v).

∇uf(u0, (vk)′). Then, for all k = 1, ..., |RεA| and for all u,

φ(u)− φ(u0)− 〈z′k, u− u0〉
= φ(u)− φ(u0)− 〈zk + z′k − zk, u− u0〉
≥ −〈z′k − zk, u− u0〉
≥ −‖z′k − zk‖‖u− u0‖
≥ −rδ‖u− u0‖ ≥ −2rδB.

By taking any convex combination of
∑n
k=1 ak(·) on both

sides, we have

φ(u)− φ(u0)− 〈
n∑
k=1

akz
′
k, u− u0〉 ≥ −2rδB,

and therefore any z′ ∈ co{∪v∈RεA∇uf(u0, v)} is a
(2rδB)-subgradient of φ(u0)

Theorem 7. Suppose the conditions of Lemmas 4, 5 and
6 hold, and also suppose the max step in Alg.2 is ac-
curate for sufficiently large i ≥ i0 for some i0 ≥ 1
so that max[dH(R(ui), Ai), dH(Ai, S(ui))] ≤ δi holds
where δi ≤ min [0.5(ζi − εi)/l, 0.5ξi/(rB)] for some
non-negative sequence (ξ1, ξ2, ...). If the step size satis-
fies ρi ≥ 0,∀i,

∑∞
i=1 ρi = ∞,

∑∞
i=1 ρ

2
i < ∞, and∑∞

i=1 ρiξi < ∞, then min[φ(u1), ..., φ(ui)] converges to
the minimum value φ∗.

Note that a stronger result such as lim infi→∞ φ(ui) = φ∗

is possible (see, e.g., (Correa & Lemaréchal, 1993)), but we
give a simpler proof similar to (Boyd et al., 2003) which
assumes ‖∇uf(u, v)‖ ≤ L for some L > 0.

Proof. We combine previous lemmas with the standard
proof of the ε-subgradient descent method. Let ui+1 =
ui − ρigi. Then,

‖ui+1 − u∗‖2

= ‖ui − u∗‖2 + ρ2i ‖gi‖2 + 2ρi〈gi, u∗ − ui〉
≤ ‖ui − u∗‖2 + ρ2i ‖gi‖2 + 2ρi(φ(u

∗)− φ(ui) + ξi)

from the definition of ∂ξφ(u). Taking
∑N
i=1(·) on both

sides gives us

‖uN+1 − u∗‖2 ≤ ‖u1 − u∗‖2 +
N∑
i=1

ρ2i ‖gi‖2

+2

N∑
i=1

ρi(φ(u
∗)− φ(ui) + ξi),

or equivalently,

2

N∑
i=1

(ρi(φ(ui)−φ(u∗)−ξi) ≤ ‖u1−u∗‖2+
N∑
i=1

ρ2i ‖gi‖2.
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Figure 2. Consider a slice of f(u, v) at u = u0. ζ: smallest
gap between the f values of global maxima R(u) and non-global
maxima S(u) \ R(u). v′ is no farther than δ to a point in R(u0)
and v′′ is no farther than δ to a point in S(u0)\R(u0). By choos-
ing ε < ζ − 2lδ, we have v′ ∈ RεA(u0) and v′′ /∈ RεA(u0). See
Lemma 5.

If we define φ(ui) := min[φ(u1), ..., φ(ui)], then∑N
i=1 ρi(φ(ui) − φ∗) ≥ (

∑N
i=1 ρi)(φ(ui) − φ∗). Com-

bining the two inequalities, we have

0 ≤ φ(ui)− φ∗ ≤
∑N
i=1 ρi(φ(ui)− φ∗)∑N

i=1 ρi

≤
‖u1 − u∗‖2 +

∑N
i=1 ρ

2
i ‖gi‖2 + 2

∑N
i=1 ρiξi

2
∑N
i=1 ρi

≤
‖u1 − u∗‖2 +

∑N
i=1 ρ

2
iL

2 + 2
∑N
i=1 ρiξi

2
∑N
i=1 ρi

.

With
∑∞
i=1 ρi = ∞,

∑∞
i=1 ρ

2
i < ∞, and

∑∞
i=1 ρiξi < ∞,

we get φ(ui)→ φ∗.

Lemma 8. For any ε > 0, one can choose a fixed A =
(v1, ..., vk) such that φ(u) − φA(u) ≤ ε holds for all u.
Furthermore, if û = argminu φA(u) is the minimizer of
the approximation, then φ(û)− φ(u∗) ≤ ε.

Proof. Since V is compact and f is continuous, we can find
a finite grid A such as a uniform ε/l-grid for l-Lipschitz f
so that φ(u)− φA(u) ≤ ε for all u. Furthermore, we have

φ(û)− φ(u∗) = φ(û)− φA(û) + φA(û)− φ(u∗)
≤ φ(û)− φA(û) + φA(u

∗)− φ(u∗)
≤ φ(û)− φA(û) ≤ ε,

since φA(u) = maxv∈A f(u, v) ≤ maxv∈V f(u, v) =
φ(u) for all u.

Lemma 9. Let ε = ε′ + lδ (ε, ε′ ≥ 0) where l is the Lip-
schitz coefficient of f(u, v) in v. If u0 is an ε-stationary
point of φ(u), then u0 is also an ε′-stationary point of
φA(u).

Proof. At the ε′-stationary point of φA, we have
maxv∈Rε′A

〈∇uf(u, v), g〉 ≥ 0 for all g by defini-

tion. Since Rε(u) = Rε
′+lδ(u) ⊇ Rε

′

A(u), we have
maxv∈Rε〈∇uf(u, v), g〉 ≥ maxv∈Rε′A

〈∇uf(u, v), g〉 ≥
0 for all g.

3. GAN training for MNIST
We also trained GANs to generate MNIST images with the
K-beam method. The objective function is the same as the
MoG experiments, but the generator G and the discrimina-
tor networks D are more complex as shown in Table 1.

Table 1. Generator and discriminator networks for GAN-MNIST
(a) Generator

Type Size
Input input dim=10
Fully connected hidden nodes=7x7x64
ReLU ·
Conv transpose filter size=5x5x32
ReLU ·
Conv transpose filter size=5x5x1
Sigmoid output dim=28x28x1

(b) Discriminator

Type Size
Input input dim=28x28x1
Conv filter size=5x5x16
ReLU ·
Max pool size=2x2, stride=2x2
Conv filter size=5x5x32
ReLU ·
Max pool size=2x2, stride=2x2
Fully connected hidden nodes=50
ReLU · · ·
Fully connected output dim=2

The networks are trained with the batch size of 128 using
the Adam optimizer with the learning rate of 10−3.

Fig. 3 shows typical training results forK = 1, 2, 5, 10 and
J = 1. Images generated with a larger K look slightly
more natural than those with a smaller K. However, an im-
portant difference is that GAN training often fails to con-
verge to a good solution due to “mode collapsing” (Na-
garajan & Kolter, 2017) when K is small, as observed by
an abrupt change in the cost function during optimization.
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(a) K = 1 (b) K = 2 (c) K = 5 (d) K = 10

Figure 3. MNIST images generated using GAN after 10000 iterations, trained with K = 1, 2, 5, 10.

The mode collapsing rarely happens with larger K’s such
as K=10 with GAN-MNIST. This difference in stability is
not directly observable by qualitatively comparing the best
generated images from each setting, but it can be measured
objectively by average convergence and variance as shown
in the figures of the main paper.
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