K-Beam Minimax: Efficient Optimization for Deep Adversarial Learning

Jihun Hamm 1 Yung-Kyun Noh 2

Abstract
Minimax optimization plays a key role in adversarial training of machine learning algorithms, such as learning generative models, domain adaptation, privacy preservation, and robust learning. In this paper, we demonstrate the failure of alternating gradient descent in minimax optimization problems due to the discontinuity of solutions of the inner maximization. To address this, we propose a new ε-subgradient descent algorithm that addresses this problem by simultaneously tracking K candidate solutions. Practically, the algorithm can find solutions that previous saddle-point algorithms cannot find, with only a sublinear increase of complexity in K. We analyze the conditions under which the algorithm converges to the true solution in detail. A significant improvement in stability and convergence speed of the algorithm is observed in simple representative problems, GAN training, and domain-adaptation problems.

1. Introduction
There is a wide range of problems in machine learning which can be formulated as continuous minimax optimization problems. Examples include generative adversarial nets (GANs) (Goodfellow et al., 2014), privacy preservation (Hamm, 2015; Edwards & Storkey, 2015), domain adaption (Ganin & Lempitsky, 2015), and robust learning (Globerson & Roweis, 2006) to list a few. More broadly, the problem of finding a worst-case solution or an equilibrium of a leader-follower game (Brückner & Scheffer, 2011) can be formulated as a minimax problem. Furthermore, the KKT condition for a convex problem can be considered a minimax point of the Lagrangian (Arrow et al., 1958). Efficient solvers for minimax problems can have positive impacts on all these fronts.

To define the problem, consider a real-valued function $f(u,v)$ on a subset $\mathcal{U} \times \mathcal{V} \subseteq \mathbb{R}^d \times \mathbb{R}^D$. A (continuous) minimax optimization problem is $\min_{u \in \mathcal{U}} \max_{v \in \mathcal{V}} f(u,v)$. It is called a discrete minimax problem if the maximization domain \mathcal{V} is finite. A related notion is the (global) saddle point (u^*,v^*) which is a point that satisfies

$$f(u^*,v) \leq f(u^*,v^*) \leq f(u,v^*) , \quad \forall (u,v) \in \mathcal{U} \times \mathcal{V}.$$

When $f(u,v)$ is convex in u and concave in v, saddle points coincide with minimax points, due to the Von Neumann’s theorem (v. Neumann, 1928): $\max_u \min_v f(u,v) = \min_v \max_u f(u,v)$. The problem of finding saddle points has been studied intensively since the seminal work of Arrow et al. (1958), and a gradient descent method was proposed by Uzawa (1958). Much theoretical work has ensued, in particular on the stability of saddle points and convergence (see Sec. 2). However, the cost function f in realistic machine learning applications is seldom convex-concave and may not have a global saddle point. Fig. 1 shows motivating examples of surfaces on $[-0.5, 0.5]^2 \subseteq \mathbb{R}^2$. Examples (a),(b), and (c) are saddle point problems: all three have a critical point at the origin $(0,0)$, which is also a saddle point and minimax point. However, examples (d),(e), and (f) do not have global saddle points: example (d) has minimax points $(u,v) \in \{(\pm 0.25,-0.25),(\pm 0.25,0.5)\}$ and examples (e) and (f) have minimax points $(u,v) = (0,0.5)$. These facts are not obvious until one analyzes each surface. (See Supplementary Material for more information.) Furthermore, the non-existence of saddle points also happens with unconstrained problems: consider the function $f(u,v) = -0.5u^2 + 2uv - v^2$ defined on \mathbb{R}^2. The inner maximum has the closed-form solution $\phi(u) = 0.5u^2$, and the outer minimum $\min_u \phi(u) = 0$ at $u = 0$. Therefore, $(u,v) = (0,0)$ is the global minimax point (and also a critical point). However, f cannot have a saddle point, local or global, since f is strictly concave in u and v respectively.

Despite the fact that saddle points and minimax points are conceptually different, many machine learning applications in the literature do not distinguish the two. This is a mistake, because a local saddle point is only an equilibrium.
point and is not the robust or worst case solution that
problem may be seeking. Furthermore, most papers have used
the alternating gradient descent method
\[u \leftarrow u - \rho \nabla_u f(u, v), \quad \text{and} \quad v \leftarrow v + \eta \nabla_v f(u, v). \quad (1) \]

Alternating descent fails to find minimax points even for
2-dimensional examples (d)-(f) in Fig. 1 as we show
empirically in the Sec. 6.1. To explain the reason for failure,
let’s define the inner maximum value \(\phi(u) := \max_{v \in V} f(u, v) \) and the corresponding maximum points
\(R(u) := \arg \max_{v \in V} f(u, v) \). The main reason for failure
is that the solution \(R(u) \) may not be unique and can be
discontinuous w.r.t. \(u \). For example, in Fig. 1 (e), we have
\(R(u) = \{-0.5\} \) for \(u < 0 \) and \(R(u) = \{+0.5\} \) for \(u > 0 \).
This discontinuity at \(u = 0 \) makes it impossible for a gra-
dient descent-type method to keep track of the true inner
maximization solution as \(v \) has to jump between \(\pm 0.5 \).\(^2\)

In this paper, we propose a \(K \)-beam approach that tracks
\(K \) candidate solutions (or “beams”) of the inner maximiza-
tion problem to handle the discontinuity. The proposed \(\epsilon \)
subgradient algorithm (Algs. 1 and 2) generalizes the alter-
nating gradient-descent method (\(K=1 \)) and also exact sub-
gradient methods. In the analysis, we prove that it can find
minimax points if the inner problem \(\max_{v \in V} f(u, v) \) can
be approximated well by \(\max_{v \in A} f(u, v) \) over a finite set
\(A \) at each \(u \), summarized by Theorem 7 which is the main

\(^2\)Also note that a gradient descent-type algorithms will diverge
away from \((0, 0)\) which is an anti-saddle, i.e., \(f \) is concave-convex
at \((0, 0)\) instead of convex-concave.

result of analysis. For the purpose of analysis we assume
that \(f \) is convex in \(u \) similar to the majority of the analyses
on gradient-type algorithms. However, we allow \(f \) to be
non-concave in \(v \) and have multiple local maxima, which
makes our setting much more general than that of classic
saddle point problems with convex-concave \(f \) or previous
work which assumed only bilinear couplings between \(u \)
and \(v \) (Chambolle & Pock, 2011; He & Yuan, 2012).

Practically, the algorithm can find solutions that graden
t descent cannot find with only a sublinear increase of
time complexity in \(K \). To demonstrate the advantages of the
algorithm, we test the algorithm on the toy surfaces
(Fig. 1) for which we know the true minimax solutions.
For real-world demonstrations, we also test the algorithm
on GAN problems (Goodfellow et al., 2014), and unsu-
servised domain-adaptation problems (Ganin & Lempitsky,
2015). Examples were chosen so that the performance
can be measured objectively – by the Jensen-Shannon diver-
gence for GAN and by cross-domain classification er-
or for domain adaptation. Evaluations show that the pro-
posed \(K \)-beam subgradient-descent approach can signifi-
cantly improve stability and convergence speed of minimax
optimization.

The remainder of the paper is organized as follows. We
discuss related work in Sec. 2 and backgrounds in Sec. 3.
We propose the main algorithm in Sec. 4, and present the
analysis in Sec. 5. The results of experiments are sum-
marized in Sec. 6, and the paper is concluded in Sec. 7.
Due to space limits, all proofs in Sec. 5 and additional fi-
ures are reported in Supplementary Material. The codes for the project can be found at https://github.com/jihunhamm/k-beam-minimax.

2. Related work

Following the seminal work of Arrow et al. (1958) (Chap. 10 of Uzawa (1958) in particular), many researchers have studied the questions of the convergence of (sub)gradient descent for saddle point problems under different stability conditions (Dem’yanov & Pevnyi, 1972; Golshtein, 1972; Maistroskii, 1977; Zabotin, 1988; Nedić & Ozdaglar, 2009). Optimization methods for minimax problems have also been studied somewhat independently. The algorithm proposed by Salmon (1968), referred to as the Salmon-Daraban method by Dem’yanov & Pevnyi (1972), finds continuous minimax points by solving successfully larger discrete minimax problems. The algorithm can find minimax points for a differentiable f on compact U and V. However, the Salmon-Daraban method is impractical, as it requires exact minimization and maximization steps at each iteration, and also because the memory footprint increases linearly with iteration. Another method of continuous minimax optimization was proposed by Dem’yanov & Malozemov (1971; 1974). The grid method, similar to the Salmon-Daraban method, iteratively solves a discrete minimax problem to a finite precision using the ϵ-steepest descent method.

Recently, a large number of papers tried to improve GAN models in particular by modifying the objective (e.g., Uehara et al. (2016); Nowozin et al. (2016); Arjovsky et al. (2017)), but relatively little attention was paid to the improvement of the optimization itself. Exceptions are the Bayesian GAN (Saatci & Wilson, 2017), both of which use multiple discriminators and have shown improved performance, although no analysis was provided. Also, gradient-norm regularization has been studied recently to stabilize gradient descent (Mescheder et al., 2017; Nagarajan & Kolter, 2017; Roth et al., 2017), which is orthogonal to and can be used simultaneously with the proposed method. Note that there can be multiple causes of instability in minimax optimization, and what we address here is more general and not GAN-specific.

3. Backgrounds

Throughout the paper, we assume that $f(u, v) : U \times V \rightarrow \mathbb{R}$ is a continuously differentiable function in u and v separately. A general form of the minimax problem is

$$\min_{u \in U} \max_{v \in V} f(u, v).$$

We assume that U and V are compact and convex subsets of Euclidean spaces such as a ball with a large but finite radius. Since f is continuous, min and max values are bounded and attainable. In addition, the solutions to min or max problems are assumed to be in the interior of U ad V, enforced by adding appropriate regularization (e.g., $\|u\|^2$ and $-\|v\|^2$) to the optimization problems if necessary.

As already introduced in Sec. 1, the inner maximum value and points are the key objects in the analysis of minimax problems.

Definition. The maximum value $\phi(u)$ is $\max_{v \in V} f(u, v)$.

Definition. The corresponding maximum points $R(u)$ is $\arg \max_{v \in V} f(u, v)$, i.e., $R(u) = \{ v \in V \mid f(u, v) = \max_{v \in V} f(u, v) \}$.

Note that $\phi(u)$ and $R(u)$ are functions of u. With abuse of notation, the $R(U)$ is the union of maximum points for all $u \in U$, i.e., $R(U) := \bigcup_{u \in U} R(u)$.

As a generalization, the ϵ-maximum points $R^{\epsilon}(u)$ are the points whose values are ϵ-close to the maximum:

$$R^{\epsilon}(u) := \{ v \in V \mid \max_{v \in V} f(u, v) - f(u, v) \leq \epsilon \}.$$

Definition. $S(u)$ is the set of local maximum points

$$S(u) := \{ v_0 \in V \mid \exists r > 0 \text{ s.t. } \forall v \in V, \| v_0 - v \| \leq r \Rightarrow f(u, v_0) \geq f(u, v) \}.$$

Note that $\nabla_v f(u, v) = 0$ for $v \in S(u)$ due to differentiability assumption, and that $R(u) \subseteq S(u)$.

Definition. $\min_{u \in U} \max_{v \in A} f(u, v)$ is a discrete minimax problem if A is a finite set $A := \{ v^1, \ldots, v^K \} \subseteq V$.

We accordingly define $\phi_A(u)$, $R_A(u)$ and $R^\epsilon_A(u)$ by

$$\phi_A(u) := \max_{v \in A} f(u, v), \text{ and } R^\epsilon_A(u) := \{ v \in A \mid \max_{v \in A} f(u, v) - f(u, v) \leq \epsilon \}.$$

We also summarize a few results we will use, which can be found in convex analysis textbooks such as Hiriart-Urruty & Lemaréchal (2001).

Definition. An ϵ-subgradient of a convex function $\phi(u)$ at u_0 is $g \in \mathbb{R}^d$ that satisfies for all u

$$\phi(u) - \phi(u_0) \geq \langle g, u - u_0 \rangle - \epsilon.$$

The ϵ-subdifferential $\partial_\epsilon \phi(u_0)$ is the set of all ϵ-subgradients at u_0.

Consider the convex hull $\text{co}\{\cdot\}$ of the set of gradients.

Lemma 1 (Corollary 4.3.2, Theorem 4.4.2, Hiriart-Urruty & Lemaréchal (2001)). Suppose $f(u, v)$ is convex in u for each $v \in A$. Then $\partial \phi_A(u) = \text{co}\{\nabla_v f(u, v) \}$. Similarly, suppose $f(u, v)$ is convex in v for each $v \in V$. Then $\partial \phi(u) = \text{co}\{ \nabla_u f(u, v) \}$.

Definition. A point u is called an ϵ-stationary point of $\phi(u)$ if $\max_{v \in R^\epsilon(u)} \langle \nabla_u f(u, v), g \rangle \geq 0$ for all $g \in \mathbb{R}^d$.

Lemma 2 (Chap 3.6, Dem’yanov & Malozemov (1974)). A point u is an ϵ-stationary point of $\phi(u)$ if and only if $0 \in \text{co}\{ \nabla_v R^\epsilon(u) \} \nabla_u f(u, v) \}$.
4. Algorithm

The alternating gradient descent method predominantly used in the literature fails when the inner maximization
\[\max_{v \in V} f(u,v) \]
has more than one solution, i.e., \(R(u) \) is not a singleton. To address the problem, we propose the \(K \)-beam method to simultaneously track the maximum points \(R(u) \) by keeping the candidate set \(A = (v^1, \ldots, v^K) \) for some large \(K \). (The choice for \(K \) will be discussed in Analysis and Experiments.) This approach can be exact, if the maximum points over the whole domain \(R(U) \) is finite, as in examples (a), (e) and (f) of Fig. 1 (see Supplementary Material.) In other words, the problem becomes a discrete minimax problem. More realistically, the maximum points \(R(U) \) is infinite but \(R(u) \) can still be finite for each \(u \), as in all the examples of Fig. 1 except (c). At \(i \)-th iteration, the \(K \)-beam method updates the current candidates \(A_i = (v^1_i, \ldots, v^K_i) \) such that the discrete maximum \(\phi_{A_i}(u) \) is a good approximation to the true \(\phi(u) \). In addition, we present an \(\epsilon \)-subgradient algorithm that generalizes exact subgradient algorithms.

4.1. Details of the algorithm

Algorithm 1 \(K \)-beam \(\epsilon \)-subgradient descent

Input: \(f, \rho_i, (\eta_i), (\epsilon_i) \)
Output: \(u_N, A_N \)
Initialize \(u_0, A_0 = (v^1_0, \ldots, v^K_0) \)
Begin
\[
\text{for } i = 1, \ldots, N \text{ do}
\]
Min step:
Update \(u_i = u_{i-1} + \rho_i \eta\nabla f(u_i, A_i, \epsilon_i) \) where \(g \) is a descent direction from Alg. 2.
Max step:
\[
\text{for } k = 1, \ldots, K \text{ in parallel do}
\]
Update \(v^k_i \leftarrow v^k_{i-1} + \eta_i \nabla f(u_i, v^k_{i-1}) \).
\[
\text{end for}
\]
Set \(A_i = (v^1_i, \ldots, v^K_i) \).
\[
\text{end for}
\]

Alg. 1 is the main algorithm for solving minimax problems. At each iteration, the algorithm alternates between the min step and the max step. In the min step, it approximately minimizes \(\phi(u) \) by following a subgradient direction \(z \in \partial \phi_{A_i}(u) \). In the max step, it updates \(A_i = (v^1_i, \ldots, v^K_i) \) to track the local maximum points of \(f(u, \cdot) \) so that the approximate subdifferential \(\partial \phi_{A_i}(u) \) remains close to the true subdifferential \(\partial \phi(u) \).

The hyperparameters of the algorithm are the beam size \(K = |A| \), the total number of iterations \(N \), and the step size schedules for min step \((\rho_i) \) and for max step \((\eta_i) \) and the approximation schedule \((\epsilon_i) \).

Alg. 2 is the subroutine for finding a descent direction. If \(\epsilon \approx 0 \), this subroutine identifies the best candidate \(v^{k_{\max}} \) among the current set \(A \) and returns its gradient \(\nabla_u f(u, v^{k_{\max}}) \). If \(\epsilon > 0 \), it finds \(\epsilon \)-approximate candidates and returns any direction in the convex hull of their gradients. We make a few remarks below.

- Alternating gradient descent (1) is a special case of the \(K \)-beam algorithm for \(K = 1 \) and \(\epsilon_1 = \epsilon_2 = \ldots = 0 \).
- As will be shown in the experiments, the algorithm usually performs better with increasing \(K \). However, increase in computation can be made negligible, since the \(K \) updates in the max step can be performed in parallel.
- One can use different schemes for the step sizes \((\rho_i, (\eta_i), (\epsilon_i) \). For the purpose of analysis, we use non-summable but square-summable step size, e.g., \(1/i \). Any decreasing sequence \((\epsilon_i) \rightarrow 0 \) can be used.
- The algorithm uses subgradients since the maximum value \(\phi(u) \) is non-differentiable even if \(f \) is, when there are more than one maximum point \(|R(u)| > 1 \) (Danskin, 1967). In practice, when \(\epsilon \) is close to 0, the approximate maximum set \(R_{\epsilon}(u) \) in Alg. 2 is often a singleton in which case the descent direction from Alg. 2 is simply the gradient \(-\nabla_u f(u, v) \).
- The convergence of the algorithm (Sec. 5) is not affected by the random choice \(z \in \text{co}\{z_1 \cup \ldots \cup z_n\} \) in Alg. 2. In practice, the random choice can help to avoid local minima if \(f \) is not convex.
- Checking the stopping criterion \(0 \in \text{co}\{U_j z_j\} \) can be non-trivial (see Sec. 5.4), and may be skipped in practice.
5. Analysis

We analyze the conditions under which Alg. 1 and Alg. 2 find a minimax point. We want the finite set A_i at t-th iteration to approximate the true maximum points $R(u_t)$ well, which we measure by the following two distances. Firstly, we want the following one-sided Hausdorff distance

$$d_H(R(u_t), A_i) := \max_{v \in R(u_t)} \min_{v' \in A_i} \|v - v'\|$$

(2)

to be small, i.e., each global maximum $v \in R(u_t)$ is close to at least one candidate in A_i. Secondly, we also want the following one-sided Hausdorff distance

$$d_H(A_i, S(u_t)) := \max_{v' \in A_i} \min_{v \in R(u_t)} \|v - v'\|$$

(3)

to be small, where $S(u_t)$ is the local maxima, i.e., each candidate is close to at least one local maximum $v \in S(u_t)$. This requires that K is at least as large as $\max_u |S(u)|$.

We discuss the consequences of these requirements more precisely in the rest of the section. For the purpose of analysis, we will make the following additional assumptions.

Assumptions. $\phi(u)$ is convex and achieves the minimum $\phi^* = \phi(u^*)$. Also, $f(u, v)$ is 1-Lipschitz in v for all u, and $\nabla_u f(u, v)$ is r-Lipschitz in v for all u.

Remark on the assumption. Note that we only assume the convexity of f over u and not the concavity over v, which makes this setting more general than that of classic analyses which assume the concavity over v, or that of restricted models with a bilinear coupling $f(u, v) = f_{\text{convex}}(u) + g_{\text{concave}}(v) + u^T A v$. While we allow f to be non-concave in v and have multiple local maxima, we also require f and $\nabla_u f$ to be Lipschitz in v for the purpose of analysis.

5.1. Finite $R(u)$, exact max step

If $R(u)$ is finite for each u, and if the maximization in the max step can be done exactly as assumed in the Salmon-Daraban method (Salmon, 1968), then the problem is no more difficult than a discrete minimax problem.

Lemma 3. Suppose $R(u)$ is finite at u. If $d_H(R(u), A_i) = 0$, then $R(u) = R_A(u)$ and therefore $\partial \phi(u) = \partial \phi_A(u)$.

Since the subdifferential is exact, Alg. 1 finds a minimax solution as does the subgradient-descent method with the true $\phi(u)$. We omit the proof and present a more general theorem shortly.

5.2. Finite $R(u)$, inexact max step

Exact maximization in each max step is unrealistic, unless $\max_i f(u, v)$ can be solved in closed form. Therefore we consider what happens to the convergence of the algorithm with an approximate max step. If $d_H(R(u), A) \leq \delta$ and $d_H(A, S(u)) \leq \delta$ for some $\delta \geq 0$, how close are $\phi(\cdot)$ and $\phi_A(\cdot)$ in the vicinity of u? The following lemmas answer this question. (See Supplementary Material for a visual aid.) From the smoothness assumptions on f, we have

Lemma 4. If $d_H(R(u), A) \leq \delta$, then for each $v \in R(u)$ there is one or more $v' \in A$ such that $\phi(u) - f(u, v') \leq \delta$ and $\|\nabla_u f(u, v) - \nabla_u f(u, v')\| \leq r\delta$.

The following lemma shows that if A approximates $R(u)$ well, then v' chosen by Alg. 2 is not far from a true maximum $v \in R(u)$.

Lemma 5. Assume $R(u)$ and $S(u)$ are both finite at u. Let $\zeta = \phi(u) - \max_{v \in S(u)} f(u, v)$ be the smallest gap between the global and the non-global maximum values at u. If all local maxima are global maxima, then set $\zeta = \infty$. If $d_H(R(u), A) \leq \delta$ and $d_H(A, S(u)) \leq \delta$ where $\delta < 0.5(\zeta - \epsilon)/l$, then for each $v' \in R_A(u)$, there is $v \in R(u)$ such that $\|v - v'\| \leq \delta$.

Furthermore, the subgradients at the approximate maximum points are close to the subgradients at the true maximum points.

Lemma 6. Suppose δ is chosen as in Lemma 5 and U is bounded: $\max_{v \in U} \|v\| = B$. Then any $z' \in \co \{\nabla u f(u_0, v) : v \in R_A(u_0)\}$ is an $(2r\delta B)$-subgradient of $\phi(u_0)$.

Now we state our main theorem that if the max step is accurate enough for a large i in terms of ζ_i (a property of f) and ϵ_i, ξ_i (chosen by a user), then the algorithm finds the minimum value using a step size $\rho_i \sim 1/i$.

Theorem 7. Suppose the conditions of Lemmas 4, 5 and 6 hold, and also suppose the max step in Alg. 1 is accurate for sufficiently large $i \geq i_0$ for some $i_0 \geq 1$ so that $\max_i d_H(R(u_i), A_i) \leq \delta_i$ holds where $\delta_i \leq \min \{0.5(\zeta_i - \epsilon_i)/l, 0.5\zeta_i/(rB)\}$ for some non-negative sequence (ξ_1, ξ_2, \ldots). If the step size satisfies $\rho_i \geq 0, \forall i, \sum_{i=1}^{\infty} \rho_i = \infty, \sum_{i=1}^{\infty} \rho_i^2 < \infty$, and $\sum_{i=1}^{\infty} \rho_i \xi_i < \infty$, then $\min \{\phi(u_1), \ldots, \phi(u_i)\}$ converges to the minimum value ϕ^*.

For ρ_i and ξ_i we can also use $1/i$. The ϵ_i can be any non-negative value. A large ϵ_i can make each min step better since the descent direction in Alg. 2 uses more z_i’s and therefore is more robust. The price to pay is that it may take more iterations for the max step to meet the condition $\delta_i \leq \min \{0.5(\zeta_i - \epsilon_i)/l, 0.5\zeta_i/(rB)\}$.

5.3. Infinite $R(u)$

Infinite $R(u)$ is the most challenging case. We only mention the accuracy of the approximating $R(u)$ with a finite and fixed A as in the grid methods of Dem’yanov & Malozemov (1971; 1974).

Lemma 8. For any $\epsilon > 0$, one can choose a fixed $A = (v^1, \ldots, v^K)$ such that $\phi(u) - \phi_A(u) \leq \epsilon$ holds for all u.

Furthermore, if \(\hat{u} = \arg \min_u \phi_A(u) \) is the minimizer of the approximation, then \(\phi(\hat{u}) - \phi(u^*) \leq \epsilon \).

If \(A \) is dense enough, the solution \(\hat{u} \) can be made arbitrarily accurate, but the corresponding \(K = |A| \) can be too large and has to be limited in practice.

5.4. Optional stopping criteria

The function \(\phi(u) \) is non-smooth and its gradient need not vanish at the minimum and can cause oscillations. A stopping criterion can help to terminate early. We can stop at an \(\epsilon \)-stationary point of \(\phi(u) \) by checking if \(0 \in \partial \phi(u) \) from Lemma 2. Algorithmically, this check is done by solving an LP or a QP problem (Dem'janov, 1968). The stopping criterion presented in Alg. 2 is a necessary condition for the approximate stationarity of \(\phi(u) \):

Lemma 9. Let \(\epsilon = \epsilon' + l\delta \) (\(\epsilon, \epsilon' \geq 0 \)) where \(l \) is the Lipschitz coefficient of \(f(u, v) \) in \(v \). If \(u_0 \) is an \(\epsilon \)-stationary point of \(\phi(u) \), then \(u_0 \) is an \(\epsilon' \)-stationary point of \(\phi_A(u) \).

The size \(n \) of the QP problem is \(|R_A(u)| \) which is small for \(\epsilon \ll 1 \), but it can be costly to solve at every iteration. It is therefore more practical to stop after a maximum number of iterations or by checking the stopping criterion only every so often.

6. Experiments

6.1. Simple surfaces

We test the proposed algorithm to find minimax points of the simple surfaces in Fig. 1. We compare Alternating Gradient Descent (Alt-GD), and the proposed \(K \)-beam algorithm with \(K = 1, 2, 5, 10 \). Note that for \(K = 1 \), the minimax algorithm is basically the same as Alt-GD. Since the domain is constrained to \([-0.5, 0.5]^2\), we use the projected gradient at each step with the common learning rate of \(\rho_i = \eta_i = 0.1/i \). In our preliminary tests, the value of \(\epsilon_i \) in Alg. 1 did not critically affect the results, and we report the case \(\epsilon_i = 0 \) for all subsequent tests. The experiments are repeated for 100 trials with random initial conditions.

Fig. 2 shows the convergence of Alt-GD and \(K \)-beam (\(K = 1, 2, 5, 10 \)) after 200 iterations, measured by the distance of the current solution to the closest optimal point \(d(u_i, U^*) := \min_{u \in U^*} \| u_i - u \| \), where \(U^* \) is the set of minimax solutions. We plot the average and the confidence level of the 100 trials. All methods converge well for surfaces (a) and (b). The surface (c) is more difficult. Although \((0,0)\) is a saddle point, (i.e., \(0 = f(0,v) \leq f(0,0) \leq f(u,0) = 0, \forall u, v \)), the point \((0,0)\) is unstable as it has no open neighborhood in which \(f \) is a local mini-
where N is the number of random samples used to find the solution. For non-saddle point problems (d)-(e), one can see that Alt-GD simply cannot find the true solution, whereas K-beam can find the solution if K is large enough. For anti-saddle (e), $K = 2$ is the smallest number to find the solution since the local maximum point $|S(u)|$ is at most 2. However, concavity-convexity of f (instead of convexity-concavity) makes optimization difficult and therefore $K > 2$ helps to recover from bad random initial points and find the solution.

6.2. GAN training with MoG

We train GANs with the proposed algorithm to learn a generative model of two-dimensional mixtures of Gaussians (MoGs). Let x be a sample from the MoG with the density $p(x) = \frac{1}{7} \sum_{i=0}^{6} N\left(\sin(\pi i/4), \cos(\pi i/4), (0.01)^2 I_2\right)$, and z be a sample from the 256-dimensional Gaussian distribution $N(0, I_{256})$. The optimization problem is

$$\min_{u} \max_{v} E\left[\log D(x; v) + \log(1 - D(G(z; u); v))\right],$$

where $G(z; u)$ and $D(x; v)$ are generator and discriminator networks respectively. Both G and D are two-layer tanh networks with 128 hidden units per layer, trained with Adam optimizer with batch size 128 and the learning rate of 10^{-4} for the discriminator and 10^{-5} for the generator.

For evaluation, we measure the Jensen-Shannon divergence

$$JSD = \frac{1}{2} KL\left(P, \frac{P + Q}{2}\right) + \frac{1}{2} KL\left(Q, \frac{P + Q}{2}\right)$$

between the true MoG P and the samples Q from the generator. We measure the divergence by discretizing the 2D region into 20×20 bins and compare the histograms of 64,000 random samples from the generator and 640,000 samples from the MoG. The top row, Fig. 3, shows the JSD curves of K-beam with $K = 1, 2, 5, 10$. Alt-GD performs nearly the same as $K=1$ and is omitted. The results are from 10 trials with random initialization. Note first that GAN training is sensitive in that each trial curve is jagged and often falls into the “mode collapsing” where there is a jump in the curve. With K increasing, the curve converges faster on average and is more stable as evidenced by the shrinking variance. The bottom row, Fig. 3, shows the corresponding samples from the generators after 10,000, 20,000, and 50,000 iterations from all 10 trials. The generated samples are also qualitatively better with K increasing.

Additionally, we measure the runtime of the algorithms by wall clock on the same system using a single NVIDIA GTX980 4GB GPU with a single Intel Core i7-2600 CPU. Even on a single GPU, the runtime per iteration increases only sublinear in K; relative to the time required for $K=1$, we get $\times 1.07$ ($K=2$), $\times 1.63$ ($K=5$), and $\times 2.26$ ($K=10$). Since the advantages are clear and the incurred time is negligible, there is a strong motivation to use the proposed method instead of Alt-GD.

6.3. Unsupervised domain adaptation

We perform experiments on unsupervised domain adaptation (Ganin & Lempitsky, 2015) which is another example of minmax problems. In domain adaption, it is assumed that two data sets belonging to different domains share the same structure. For examples, MNIST and MNIST-M are both images of handwritten digits 0–9, but MNIST-M is in color and has random background patches. Not surprisingly, the classifier trained on MNIST does not perform well with digits from MNIST-M out of the box. Unsupervised domain adaption tries to learn a common transformation G of the domains into another representation/features such that the distributions of the two domains are as similar as possible while preserving the digit class information. The discriminator D_1 tries to predict the domain accurately, and the target classifier D_2 tries to predict the la-
The optimization problem can be rewritten as
\[\min_{u,v} f(u,v) = \max_w \min_u f(u,v) \]
with
\[f(u,v) = -E[D_1(G(x;u');v)] + \lambda E[D_2(G(x;u');w)] \]
which is the weighted difference of the expected risks of the domain classifier \(D_1 \) and the digit classifier \(D_2 \). This form of minimax problem has also been proposed earlier by Hamm (2015; 2017) to remove sensitive information from data. In this experiment, we show domain adaptation results. The transformer \(G \) is a two-layer ReLU convolutional network that maps the input features (=images) to an internal representation of dim=2352. The discriminator \(D_1 \) is a single-layer ReLU dense network of 100 hidden units, and the digit classifier \(D_2 \) is a two-layer ReLU dense network of 100 hidden units. All networks are trained with the momentum optimizer with the batch size of 128 and the learning rate of 10^{-2}. The experiments are repeated for 10 trials with random initialization. We use \(\lambda = 1 \).

We performed the task of predicting the class of MNISTM digits, trained using labeled examples of MNIST and unlabeled examples of MNISTM. Fig. 4 shows the classification error of in-domain (top row) and cross-domain (bottom row) prediction tasks as a function of iterations. Again we omit the result of Alt-GD as it performs nearly the same as \(K=1 \). With \(K \) small, the average error is high for both in-domain and cross-domain tests, due to failed optimization which can be observed in the traces of the trials. As \(K \) increases, instability disappears and both in-domain and cross-domain errors converge to their lowest values.

Summary and discussions

- Experiments with 2D surfaces clearly show that the alternating gradient-descent method can fail completely when the minimax points are not local saddle points, while the \(K \)-beam method can find the true solutions.
- For GAN and domain adaptation problems involving nonlinear neural networks, the \(K \)-beam and Alt-GD can both find good solutions if they converge. The key difference is, the \(K \)-beam consistently converges to a good solution, whereas Alt-GD finds the solution only rarely (which are the bottom yellow curves for \(K=1 \) in Fig. 3 and Fig. 4.) Similar results can be observed in GAN-MNIST experiments in Supplementary Material.

- The true \(K \) value cannot be computed analytically for nontrivial functions. However, an overestimated \(K \) does not hurt the performance theoretically – it is only redundant. One the other hand, an underestimated \(K \) can be suboptimal but is still better than \(K=1 \). Therefore, in practice, one can choose as large a number as allowed by resource limits such as \(K=5 \) or 10.

- The \(K \)-beam method is different from running Alt-GD for \(K \)-times more iterations, since the instability of Alt-GD hinders convergence regardless of the total number of iterations. The \(K \)-beam method is also different from \(K \)-parallel independent runs of Alt-GD, which are basically the figures of \(K=1 \) in Fig. 3 and Fig. 4, but with \(K \)-times more trials. The variance will be reduced but the average curve will remain similar.

7. Conclusions

In this paper, we propose the \(K \)-beam subgradient descent algorithm to solve continuous minimax problems that appear frequently in machine learning. While simple in implementation, the proposed algorithm can significantly improve the convergence of optimization compared to the alternating gradient descent approach as demonstrated by synthetic and real-world examples. We analyze the conditions for convergence without assuming concavity or bilinearity, which we believe is the first result in the literature. There are open questions regarding possible relaxations of assumptions used which are left for future work.
References

