Candidates vs. Noises Estimation for Large Multi-Class Classification Problem

Supplementary Material

A. Proofs
In the theorectical analysis, we fix sk (x, ) = 0. Then, we only need to consider C UN, = {1,--- , K — 1}. Now, the
normalization factor becomes
E(w,j) — 14 Z esk/(:c,e) +esf(’”’9)/qm(j),
k' €Ca

with some sampled class j € A. Now, we can rewrite R and Ras
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In the proofs, we will use point-wise notations py, s, g, and Ej, to represent p(y = k|x), si(x, 0), ¢ (k) and E(x, k) for
simplicity.

A.l. Useful Lemma

We will need the following lemma in our analysis.

Lemma 1. For any norm || - | V2skll and ||V skl
fork=1,--- K — 1 are bounded. Then, for any compact set S defined on the parameter space, we have

sup |Rn(8) — R(0)| £ 0, sup|VR,.(8) — VR(O)|| 20, and sup||V>R.(0) — V>R(8)| 2 0.
ecs ecs fcs

Proof. For fixed 0, let

e’k 1
U(@,y,0)=> Iy=Fk) > glog ) > gslog
kECs JEN L+ Y ee,, € + 5 jE€N 1+ Y ec, e + 55
e’k
+ Z I(y = k) log Pt
kENg 1+ Zk’ecm e + q:

Then we have R,,(6) = L 3> 4(x;,v:,0) and R(Q) = E, ¢(x, y, 0). By the Law of Large Numbers, we know that

n

R, (8) converges point-wisely to R(8) in probability.
According to the assumption, there exists a constant M > 0 such that

K—-1

Ve (z,y.0)| < > IIVeskl < M.

k=1

Given any ¢ > 0, we may find a finite cover S, C S so that for any 8 € S, there exists 8’ € S, such that |¢(x,y,0) —
Y(x,y,0")] < M@ — 6’| < e. Since S, is finite, as n — oo, supges,. |R,(0) — R(6)| converges to 0 in probability.
Therefore, as n — co, with probability 1, we have

sup | R, (8) — R(0)| < 2¢ + sup |Rn(8) — R()| — 2e.
0cs 0€S,

Let e — 0, we obtain the first bound. The second and the third bounds can be similarly obtained. O

A.2. Proof of Theorem 1

Proof. R can be re-written as

e’k 1 Dj el
R=E q; pr log — + pxk log + ]log — .
ijZNm ]<kezcw L4+ hee, €% +e%/q; L+ e, €% +€9/q g L4+ ee, €% +e% /q;
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For i € C, we have
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Similarly, for j € N, we have
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By measuring s;, = log 5—}’“{, we see that V,, R = O fork = 1,--- , K — 1. Therefore, s;, = log 5—}’“{ is an extrema of R.
Now, for 4,7’ € Cy and j, 5’ € N, we have
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where
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Now, we can write
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where v; = (%1, ,e”Ical [0, €% /qj, -+ ,0)T. Let
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For any non-zero vector ¢ = (@1, ,¢r_1)' € RE~1 we have

\%
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for every j € N, where the first inequality is by the Cauchy- Schwarz inequality and the second inequality is because
0< > e, € + < E;j. Therefore, —-V?R = E,, de/\/ 4G5 A is positive-definite and R is strongly concave with
respect to s. Hence sk = log = for k=1,--- K —listhe only maxima of R. O

A.3. Proof of Theorem 2

Proof. R can be re-written as

=Be Y pr Y, qglogfﬂL > pklogf+px > qjlogE

k€Cqx  jENg kEN JEN
Note that E; for any j can be viewed as a function of s = (s1,--- , s K,l)—'—. Define the following function
= > P Y qlogE;+ > prlogEx+px Y q;logEj,
k€Cx  jENG kEN JEN

then for any 0 == 6%,

* E; By E;
RO - RO =E: Y p Y 4, (1ogE*+sk—5k)+z e (tow s sk —se) o 3 aylon 7

keCq JEN keEN JEN
E; K—1
=Es Y pr qulo : +pK ZQJIOgE*+ZPk(SZ_Sk)
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=G(s) - G(s*) = VG(s") (s —s") = A(s, s%),

where A(s, s*) is the Bregman divergence of the convex function G(s). Since G(-) is convex, we have A(s,s*) > 0
and A(s, s*) = 0 only when s = s*. Under the assumption that the parameter space is compact and VO # 6* we have
Px (si(x,0) # sk(x,0%)) > 0 for k # K, we know that R(0) < R(6*) for any 8 # 6*.

Given any ¢’ > 0, there exists ¢ > 0 that R(6*) — R(0) < ¢ implies ||@* — 0]| < &’. Now according to Lemma 1, there
exists a § > 0, when n — oo, we have

R(6") — R(0) = R(07) — Ru(07) + Rn(07) — R(B) < R(6%) — Ru(60%) + Ru(6) — R(6)
< [R(6") — Ru(67)| + |Rn(6) — R(8)| < 20.

This implies that ||§ — 6*|| < ¢’ for any &' > 0. O

A.4. Proof of Theorem 3
Proof. By the Mean Value Theorem, we have

V(6 —0") = —V?R,(0) 'v/nVR,(67), (12)
where @ = t6* + (1 — )@ for some ¢ € [0,1]. Note that Lemma 1 implies that V2R,,(6)~! converges to V2R(8)~
in probability; moreover, & — @* in probability and hence & — 6* in probability. By the Slutsky’s Theorem, the limit
distribution of 1/n(0 — 6*) is given by

~V?R(8")'V/nVR,.(07).
Observe that \/nV R,,(8*) is the sum of 7 i.i.d. random vectors with mean E\/nV R, (0*) = /nEVR(6*) = 0, and the
variance of \/n(0 — 6*) is

Var (\/ﬁ(é - e*)) = V2R(0") Var (\/ﬁwﬁzn(e*)) V2R(97) !
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From the proof of Theorem 1, we have

D.
V’R(8) = —E.V LZ quJ_Aj} v, (13)
jENw J
where
) T
V = diag ((Vh,-'- »Vie s Vi ,ijm‘) )
and Vk = VQSk».

Measuring V2 R(0) at 6*, we have

V’R(0") = ~E, VMV (1
where
M=> g [diag(ua’) - %“j“; ’
JENZ ’
where u; = (Diy, -+ Pisey > 0, ,pj/Qj, .. ,())T. By following the proof of Theorem 1, it is easy to show that M > 0

is positive definite.

Next, we derive Var (ﬁVRn(B*)) Introduce some Bernoulli variables Q; for j € N with p(Q; = 1|x) = ¢;. Now,
fori,i € Cg and j, j' € N, we have

Vi = Var (viRn(e*), viRn(o*))
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Now, the variance can be written as

V(6") = Var (\/ﬁan(e*)>

Viyig Vili\cw\ 0 Viys 0
Vijegpin Viieglijegl | O Vijey i 0
_ 0 0 0o --- 0 .0
Vi, Viien, 0o .- Vj; e 0

i 0 0 o ... 0 0]

By comparing V2R(0*) and V (0*), we immediately have —V2R(6*) = V(6*) and hence

Var (\/ﬁ(é - 9*)) = [EmVMVT] -

A.5. Proof of Corollary 1

Proof. By following the proof of Theorem 3, it is easy to show that the statistical variance of the softmax logistic regression
in Eq. (1)is [E, VM™eV T]~1 (with s = 0 fixed), where

-
b1 p1 p1
M™° = diag -
PK-1 PK-1 PK-1

When 3y o iy P(k, @) — 1, wehave 3 - . pjr — 0and D; — 1. Then,

Piy Pii Piy T Pi1Pijc,, Piy Zj’eNm Py T Piy Zj’eNm pj

M = diag Pijcg . Dijcy | Pia Dijcy | Pijca) Dijcy g:j/eNm Pit -t Pijcg) 2ojren Pt
Piy Div Dojrena Pit T Pijen) Dogreny P P, /@ e 0
2
| Pin; | L Piv 2jreny Pit 0 Pijcg) 2ojren P 0 it/ Ging

If we arrange the index order in M ™€ according to the index order in M and denote A = M — M™!, we have

A1 As
A= — 0,
A As
because
A; =0,
iy (P, 7Z‘j’e/\/’m 20) Piy (pj\j\fm\ 72]'/6,/\[1 pj’)
Ao = . . . — 0,
pi\cm\(ph _Z]'/g/\/m pjr) - pi|cm\(pj\,/\fm\ _z:j/e/\/m pj’)
p§1 (1-1/g;) -+ Pi1Pijng
A3 = - . . — 0.
Pjing Pin p?‘Nm‘(lfl/Qj\Nm\)

This completes the proof. O
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B. The Beam Search Algorithm

The beam search algorithm used in both training and testing is depicted in Algorithm 3.

Algorithm 3 The Beam Search Algorithm.

: Input: The root of the tree, input data point & and Beam width J.
: Output: The J candidate classes.

1:

2

3: Initialize stack S < root and stack S’ + 0;
4: Initialize the candidate class set £ < 0;

5: while true do
6
7
8

if S is empty then
Break;
end if
9: fori=1toS.size() do

10: if S; is a leaf then
11: E.pushback(S;);
12: else
13: for c = 1to S;.Child.size() do
14: Accumulate the score to S;.C'hild(c);
15: S’ .pushback(S;.Child(c));
16: end for
17: end if
18:  end for

19:  S.clear();
20:  if &' .size() > J then

21: /] Using the max heap.

22: Find the top-J nodes with the highest accumulated scores in S’ and push them into S;
23:  else

24: S+ S

25:  endif

26:  §'.clear();

27: end while

28: /I Using the max heap.

29: Return the top-.J classes with the highest scores in &;

C. A Hierarchical Clustering Method for Generating the Tree Structure

Given the data points of a dataset, we can obtain the center, i.e., the average data point, of each class by scanning the data
once and get X € RE*4 where K is the number of classes and d is the feature dimension. Then, a hierarchical clustering
algorithm in Algorithm 4 is performed by viewing each row of X as a separate data point. In Algorithm 4, the function
‘Split(root)’ in step 16 has already constructed a b-nary tree, which can be used by the Beam Tree Algorithm. However, the
clustering algorithm, e.g., the k-means algorithm, may generate imbalanced clusters in step 9, and the resulting b-nary tree
in step 16 may be imbalanced and affect the efficiency of Beam Tree. A simple way to fix this problem is to fetch the labels
(leaves) in the tree in step 16 from left to right, where the obtained label order maintains a rough similarity relationship
among the classes. We then assign the ordered labels to the leaves of a new balanced b-nary tree from left to right.

D. Experimental Details

The previous 15 layers of the VGG-16 net

Training images I
resizedas 224 * 224 |1 Conv layers 1-13 ]—-[FC14 ]—{ FC15 ]m“ CANE ﬁ

............................... Yector

Figure 4. The neural network structure used for the ImageNet datasets. ‘FC’ indicates fully-connected layer.
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Algorithm 4 A Hierarchical Clustering Algorithm for Generating the Tree over Class Labels.

1: Input: K,band X.

2: Output: a b-nary tree.

3: Function Split(node o)

4: while true do

5:  if ois assigned with only one label then

6: o.isleaf = true;

7: Return;

8: endif

9:  Perform any clustering algorithm, e.g., k-means, on the labels associated with the node o and obtain b clusters {L1,- - , Lp};
10:  Split o into b children {o1, - - - , 0 } and assign the label clusters {L1, -+ , Ly} to them respectively;
11: fori=1tobdo
12: Split(o;);
13:  end for

14: end while

15: Assign root with all labels {1,2,--- , K};

16: Split(root);

17: Get the label order in the leaves from left to right;

18: Assign the labels to the leaves of a new balanced b-nary tree from left to right;
19: Return the balanced b-nary tree;

Hyper-parameter tuning is computationally expensive. In order to efficiently select a good setting of the hyper-parameters,
we let each method process half epoch of the training data and use another 10% held-out subset of the training set
to tune hyper-parameters. For every classifier, the learning rate 1 needs to be tuned. For the LOMTree method, by
following (Choromanska & Langford, 2015), we choose the number of the internal nodes in its binary tree from a set
{K —1,4K — 1,16 K — 1,64K — 1}, and tune the swap resistance from {4, 16, 64, 256}. The Recall Tree method has a
default setting for large class problem in (Daume III et al., 2017), which is also adopted in the experiments.

The VGG-16 network structure used in ImageNet-2010 and ImageNet-10K datasets is provided in Fig. 4. Parameters of
Conv layers 1-13, FC14 and FC15 are pre-trained on the ImageNet 2012 dataset.



