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Abstract
Machine learning models (e.g., speech recogniz-
ers) trained on average loss suffer from representa-
tion disparity—minority groups (e.g., non-native
speakers) carry less weight in the training objec-
tive, and thus tend to suffer higher loss. Worse,
as model accuracy affects user retention, a mi-
nority group can shrink over time. In this paper,
we first show that the status quo of empirical risk
minimization (ERM) amplifies representation dis-
parity over time, which can even turn initially
fair models unfair. To mitigate this, we develop
an approach based on distributionally robust opti-
mization (DRO), which minimizes the worst case
risk over all distributions close to the empirical
distribution. We prove that this approach controls
the risk of the minority group at each time step,
in the spirit of Rawlsian distributive justice, while
remaining oblivious to the identity of the groups.
We demonstrate that DRO prevents disparity am-
plification on examples where ERM fails, and
show improvements in minority group user satis-
faction in a real-world text autocomplete task.

1. Introduction
Consider a speech recognizer that is deployed to millions
of users. State-of-the art speech recognizers achieve high
overall accuracy, yet it is well known that such systems have
systematically high errors on minority accents (Amodei
et al., 2016). We refer to this phenomenon of high overall
accuracy but low minority accuracy as a representation dis-
parity, which is the result of optimizing for average loss.
This representation disparity forms our definition of unfair-
ness, and has been observed in face recognition (Grother
et al., 2011), language identification (Blodgett et al., 2016;
Jurgens et al., 2017), dependency parsing (Blodgett et al.,
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2016), part-of-speech tagging (Hovy & Sgaard, 2015), aca-
demic recommender systems (Sapiezynski et al., 2017), and
automatic video captioning (Tatman, 2017).

Moreover, a minority user suffering from a higher error rate
will become discouraged and more likely to stop using the
system, thus no longer providing data to the system. As
a result, the minority group will shrink and might suffer
even higher error rates from a retrained model in a future
time step. Machine learning driven feedback loops have
been observed in predictive policing (Fuster et al., 2017)
and credit markets (Fuster et al., 2017), and this problem
of disparity amplification is a possibility in any deployed
machine learning system that is retrained on user data.

In this paper, we aim to mitigate the representation disparity
problem and its amplification through time. We focus on the
following setting: at each time step, each user interacts with
the current model and incurs some loss, based on which
she decides to keep or quit using the service. A model is
trained on the resulting user data which is used at the next
time step. We assume that each user comes from one of K
groups, and our goal is to minimize the worst case risk of
any group across time. However, the group membership and
number of groups K are both unknown, as full demographic
information is likely missing in real online services.

We first show that empirical risk minimization (ERM) does
not control the worst-case risk over the disparate K groups
and show examples where ERM turns initially fair models
unfair (Section 3). To remedy this issue, we propose the use
of distributionally robust optimization (DRO) (Section 4).
Given a lower bound on the smallest group proportion, we
show that optimizing the worst-case risk over an appropriate
chi-square divergence ball bounds the worst-case risk over
groups. Our approach is computationally efficient, and can
be applied as a small modification to a wide class machine
learning models trained by stochastic-gradient descent meth-
ods. We show that DRO succeeds on the examples where
ERM becomes unfair, and demonstrate higher average mi-
nority user satisfaction and lower disparity amplification on
a Amazon Mechanical Turk based autocomplete task.

1.1. Fairness in Machine Learning

Recently, there has been a surge of interest in fairness in
machine learning (Barocas & Selbst, 2016). Our work can
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be seen as a direct instantiation of John Rawls’ theory on
distributive justice and stability, where we view predictive
accuracy as a resource to be allocated. Rawls argues that
the difference principle, defined as maximizing the welfare
of the worst-off group, is fair and stable over time since it
ensures that minorities consent to and attempt to maintain
the status quo (Rawls, 2001, p155).

In this work, we assume the task is general loss minimiza-
tion, and demographic data is unavailable. This differs
from the substantial body of existing research into fair-
ness for classification problems involving protected labels
such as the use of race in recidivism protection (Choulde-
chova, 2017). There has been extensive work (Barocas &
Selbst, 2016) on guaranteeing fairness for classification over
a protected label through constraints such as equalized odds
(Woodworth et al., 2017; Hardt et al., 2016), disparate im-
pact (Feldman et al., 2015) and calibration (Kleinberg et al.,
2017). However, these approaches require the use of de-
mographic labels, and are designed for classification tasks.
This makes it difficult to apply such approaches to mitigate
representation disparity in tasks such as speech recogni-
tion or natural language generation where full demographic
information is often unavailable.

A number of authors have also studied individual notions of
fairness, either through a fixed similarity function (Dwork
et al., 2012) or subgroups of a set of protected labels (Kearns
et al., 2018; Hébert-Johnson et al., 2017). Dwork et al.
(2012) provides fairness guarantees without explicit groups,
but requires a fixed distance function which is difficult to
define for real-world tasks. Kearns et al. (2018); Hébert-
Johnson et al. (2017) consider subgroups of a set of pro-
tected features, but defining non-trivial protected features
which cover the latent demographics in our setting is dif-
ficult. Although these works generalize the demographic
group structure, similarity and subgroup structure are both
ill-defined for many real-world tasks.

In the online setting, works on fairness in bandit learn-
ing (Joseph et al., 2016; Jabbari et al., 2017) propose al-
gorithms compatible with Rawls’ principle on equality of
opportunity—an action is preferred over another only if the
true quality of the arm is better. Our work differs in con-
sidering Rawlsian fairness for distributive justice (Rawls,
2009). Simultaneous with our work, Liu et al. (2018) ana-
lyzed fairness over time in the context of constraint based
fairness criteria, and show that enforcing static fairness con-
straints do not ensure fairness over time. In this paper, we
consider latent demographic groups and study a loss-based
approach to fairness and stability.

2. Problem setup
We begin by outlining the two parts of our motivation: rep-
resentation disparity and disparity amplification.

Representation disparity: Consider the standard loss-
minimization setting where a user makes a query Z ∼ P ,
a model θ ∈ Θ makes a prediction, and the user in-
curs loss `(θ;Z). We denote the expected loss as the
risk R(θ) = EZ∼P [`(θ;Z)]. The observations Z are as-
sumed to arise from one of K latent groups such that
Z ∼ P :=

∑
k∈[K] αkPk. We assume that neither the

population proportions {αk} nor the group distributions
{Pk} are known. The goal is to control the worst case risk
over all K groups:

Rmax(θ) = max
k

{Rk(θ) := EPk [`(θ;Z)] : k ∈ [K]} . (1)

Disparity amplification: To understand the amplification
of representation disparity over time, we will make several
assumptions on the behavior of users in response to ob-
served losses. These assumptions are primarily for clarity of
exposition—we will indicate whenever the assumptions can
be relaxed leave generalizations to the supplement. Roughly
speaking, minimizing the worst-case risk Rmax(θ) should
mitigate disparity amplification as long as lower losses lead
to higher user retention. We now give assumptions that
make this intuition precise.

In the sequential setting, loss minimization proceeds over
t = 1, 2, . . . T rounds, where the group proportion α

(t)
k

depends on t and varies according to past losses. At each
round λ(t+1)

k is the expected number of users from group
k, which is determined by ν(Rk(θ)), the fraction of users
retained, and bk, the number of new users (see Definition
1). Here, ν is a differentiable, strictly decreasing retention
function which maps a risk levelR to the fraction of users
who continue to use the system. Modeling user retention
as a decreasing function of the risk implies that each user
makes an independent decision of whether to interact with
the system at time t+ 1 based on their expected loss at time
t. For example, selecting ν(x) = 1− x andRk equal to the
expected zero-one loss implies that users leave proportional
to the misclassification rates of their queries.

At each round we learn parameters θ(t+1) based on n(t+1) ∼
Pois(

∑
k λ

(t+1)
k ) users (data points). While we define the

sample size as a Poisson process for concreteness, our main
results hold for any distribution fulfilling the strong law of
large numbers, as we perform all stability analyses in the
population limit.

Definition 1 (Dynamics). Given a sequence θ(t), for each
t = 1 . . . T , the expected number of users λ and samples
Z

(t)
i starting at λ(0)

k = bk is governed by,

λ
(t+1)
k := λ

(t)
k ν(Rk(θ(t))) + bk

α
(t+1)
k :=

λ
(t+1)
k∑

k′∈[K] λ
(t+1)
k′
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n(t+1) := Pois(
∑
k

λ
(t+1)
k )

Z
(t+1)
1 . . . Z

(t+1)

n(t+1)

i.i.d.∼ P (t+1) :=
∑
k∈[K]

α
(t+1)
k Pk.

For example, if we use ERM at each time step the parameter
sequence is defined as θ(t) = arg minθ∈Θ

∑
i `(θ;Z

(t)
i ).

Our goal is to control the group-wise riskRk(θ(t)) over all
k = 1, . . . ,K groups and time periods t = 1, . . . , T :

RTmax(θ(0), · · · , θ(T )) = max
k,t

{
Rk(θ(t))

}
(2)

given only the losses {`(θ(t), Zi)} and samples Zi.

Without knowledge of group membership labels, population
proportions α(t)

k , new user rate bk, and retention rate ν,
minimizingRTmax gives rise to two major challenges. First,
without group membership labels there is no way to directly
measure the worst-case risk RTmax, let alone minimize it.
Second, we must ensure that the group proportions α(t)

k are
stable, since if α(t)

k → 0 as t→∞ for some group k ∈ [K],
then no algorithm can controlRTmax when a group has near
zero probability of appearing in our samples.

We begin by illustrating how models that are initially fair
with low representation disparity may become unfair over
time if we use ERM (Section 3). We study real-world prob-
lems with representation disparity further in our experimen-
tal section (Section 5).

3. Disparity amplification
The standard approach to fitting a sequence of models θ(t)

is to minimize an empirical approximation to the population
risk at each time period. In this section, we show that even
minimizing the population risk fails to control minority
risk over time, since expected loss (average-case) leads to
disparity amplification. The decrease in user retention for
the minority group exacerbates over time since once a group
grows sufficiently small, it receives higher losses relative to
others, leading to even fewer samples from the group.

3.1. Motivating example

Figure 1. An example online classification problem which begins
fair, but becomes unfair over time.

Consider the two-class classification problem in Figure 1a
where the two groups are situated on the left/right and the
true classification boundary is given along x2 = 0. Assume
that the sampling distribution evolves according to definition
1 with ν(x) = 1.0 − x, ` equal to the zero one loss, and
b0 = b1 = n

(0)
0 = n

(0)
1 = 1000. Initially, ERM has

similar and high accuracy on both groups with the boundary
x2 > 0, but over time random fluctuations in accuracy
result in slightly fewer samples from the cluster on the right.
This leads to disparity amplification since ERM will further
improve the loss on the left cluster at the expense of the
right cluster. After 500 rounds, there are nearly no samples
from the right cluster, and as a result, the right cluster ends
up suffering high loss.

3.2. Conditions for disparity amplification

The example above demonstrated that disparity amplifica-
tion can occur easily even from a completely fair and stable
looking starting point, and result in the minority group to
completely drop out. In general if we view the expected user
counts λ(t) as a dynamical system, the long-term fairness
properties are controlled by two factors - whether λ has a
fair fixed point (such as x2 > 0 in our motivating example)
and whether this fixed point is stable.

Fixed points of risk minimization (average-case) are deter-
mined by a combination of user retention function ν and
the models θ(t), and without knowledge of ν it is hard to
ensure that a model has a fair fixed point. Even if a fixed
point is fair and we start at this fair fixed point, minimizing
the average loss (e.g. ERM) may deviate from this fair fixed
point over time.

To show this result, we study the dynamical system Φ, which
is defined by dynamics in Definition 1 with θ derived from
minimizing the population, rather than empirical risk.

Definition 2. Let Φ be the update for the expected popula-
tion size

λ
(t+1)
k := Φ(λ

(t)
k ) = λ

(t)
k ν(Rk(θ(λ

(t)
k ))) + bk,

θ(λ
(t)
k ) = arg min

θ
E∑

k α
(t)
k Pk

[`(θ;Z)].

The arrival intensity λ∗ is called a fixed point if λ∗ = Φ(λ∗).
This fixed point is stable whenever the maximum modulus
of the eigenvalues of the Jacobian of Φ is less than one
and unstable whenever it is greater than one (Luo, 2012,
Theorem 2.1). If a fair fixed point is unstable, then any
perturbation results in disparity amplification where the
population size deviates from λ∗ over time.

Proposition 1 gives a precise statement of this phenomenon.
We prove the result in Section A.1, and further show a gen-
eralization to general dynamics Φ(λk) = h(λk,Rk) where
h is differentiable and monotone in the second argument.
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We denote by ρmax(A) the maximum modulus of the eigen-
values of A.

Proposition 1. Let λ∗ = Φ(λ∗) be a fixed point, and θ∗ =
arg minθ E∑

k α
∗
kPk

[`(θ;Z)] be the minimizer at λ∗.

Define HR(α∗) as the positive definite Hessian of the ex-
pected risk at θ∗, λ∗ and define∇L as the per-group param-
eter gradients at θ∗,

∇L =

∇θEP1
[`(θ∗;Z)]
...

∇θEPk
[`(θ∗;Z)]

 .
The arrival intensity λ∗ is unstable whenever

ρmax

(
diag(ν(R(θ(λ∗))))− diag(λ∗ν′(R(θ(λ∗))

∇LHR(α∗)−1∇L>
(

I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

))
> 1.

We see that the major quantities which control risk are the
retention rate ν and its derivative, as well as a K × K
square matrix ∇LHR(α∗)−1∇L> which roughly encodes
the changes in one group’s risk as a function of another.

We can specialize the stability condition to obtain an intu-
itive and negative result for the stability of risk minimiza-
tion (average-case). Even if we start at a fair fixed point
with λ∗1 = λ∗2 . . . = λ∗k and R1 = R2 . . . = Rk, if de-
creasing the risk for one group increases the risk for others
sufficiently, the fixed point is unstable and the model will
eventually converge to a different, possibly unfair, fixed
point.

Corollary 1 (Counterexample under symmetry). Let λ∗1 =
. . . λ∗k be a fixed point with R1 = . . .Rk, then for any
strongly convex loss,

ρmax

(
∇LHR(α∗)−1∇L>

)
>

1− ν(R1)

−ν′(R1)/k
. (3)

is a sufficient condition for instability.

See Section A.2 for proof and generalizations.

The bound (3) has a straightforward interpretation. The
left hand side is the stability of the model, where maximal
eigenvalue of the matrix∇LHR(α∗)−1∇L> represents the
maximum excess risk that can be incurred due to a small
perturbation in the mixture weights α. The right hand side
represents the underlying stability of the dynamics and mea-
sures the sensitivity of λ with respect to risk.

Mean and median estimation: Consider a simple mean
estimation example where each user belongs to one of
two groups, −1 or 1 and incurs loss (θ − Z)2. θ = 0
is clearly a fair fixed point, since it equalizes losses to both

groups, with Hrisk(α∗) = 1/2 and ∇L = [2,−2] mak-

ing ρmax

(
∇LHR(α∗)−1∇L>

)
= 4. If we select ν(x) =

exp(−x), the right hand side becomes 2(1− e−1)e ≈ 3.4,
and thus any perturbation will eventually result in λ1 6= λ2.
In this case the only other fixed points are the unfair solu-
tions of returning the mean of either one of the groups.

The situation is even worse for models which are not
strongly convex, such as median estimation. Replacing the
squared loss above with the absolute value results in a loss
which has a non-unique minimizer at 0 when λ1 = λ2 but
immediately becomes −1 whenever λ1 > λ2. In this case,
no conditions on the retention function ν can induce stabil-
ity. This fundamental degeneracy motivates us to search for
loss minimization schemes with better stability properties
than ERM (average-case).

4. Distributionally robust optimization (DRO)
Recall that our goal is to control the worst-case risk (2) over
all groups and over all time steps t. We will proceed in
two steps. First, we show that performing distributionally
robust optimization controls the worst-case riskRmax(θ(t))
for a single time step. Then, we show that this results in
a lower bound on group proportions {α(t)

k }Kk=1, and thus
ensures control over the worst-case risk for all time steps.
As a result of the two steps, we show in Section 4.4 that
our procedure mitigates disparity amplification over all time
steps. For notational clarity, we omit the superscript t in
Sections 4.1-4.3.

4.1. Bounding the risk over unknown groups

The fundamental difficulty in controlling the worst-case
group risk over a single time-step Rmax(θ(t)) comes from
not observing the group memberships from which the data
was sampled. For many machine learning systems such
as speech recognition or machine translation, such situa-
tions are common since we either do not ask for sensitive
demographic information, or it is unclear apriori which de-
mographics should be protected. To achieve reasonable
performance across different groups, we postulate a formu-
lation that protects against all directions around the data
generating distribution. We build on the distributionally
robust formulation of Duchi et al. (2016) which will allow
controlling worst-case group riskRmax(θ(t)).

To formally describe our approach, let Dχ2 (P ||Q) be the
χ2-divergence between probability distributions P and

Q given by Dχ2 (P ||Q) :=
∫ (

dP
dQ − 1

)2

dQ. If P is
not absolutely continuous with respect to Q, we define
Dχ2 (P ||Q) := ∞. Let B(P, r) be the chi-squared ball
around a probability distribution P of radius r so that
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B(P, r) := {Q � P : Dχ2 (Q||P ) ≤ r}. We consider
the worst-case loss over all r-perturbations around P ,

Rdro(θ; r) := sup
Q∈B(P,r)

EQ[`(θ;Z)]. (4)

Intuitively, the distributionally robust risk Rdro(θ; r) up-
weights examples Z with high loss `(θ;Z). If there is a
group suffering high loss, the corresponding mixture compo-
nent will be over-represented (relative to the original mixture
weights) in the distributionally robust risk Rdro(θ; r). We
show in the following proposition that Rdro(θ; r) bounds
the risk of each group Rk(θ), and hence the group-wise
worst-case risk (1), for an appropriate choice of the robust-
ness radius r.
Proposition 2. For P :=

∑
k∈[K] αkPk, we haveRk(θ) ≤

Rdro(θ; rk) for all θ ∈ Θ where rk := (1/αk − 1)
2 is the

robustness radius.

We prove the result in Section A.4. Roughly speaking, the
above bound becomes tighter if the variation in the loss
`(θ;Z) is substantially higher between groups than within
each group. In particular, this would be the case if the
loss distribution for each group have distinct support with
relatively well-concentrated components within each group.

As a consequence of Proposition 2, if we have a lower
bound on the group proportions αmin ≤ mink∈[K] αk,
then we can control the worst-case group risk Rmax(θ) by
minimizing the upper bound θ 7→ Rdro(θ; rmax) where
rmax := (1/αmin − 1)2.

Similar formulations for robustness around the empirical
distribution with radius shrinking as r/n had been consid-
ered in (Ben-Tal et al., 2013; Lam & Zhou, 2015; Duchi &
Namkoong, 2016). While there are many possible robust-
ness balls B which could provide upper bounds on group
risk, we opt to use the Chi-squared ball since it is straightfor-
ward to optimize (Ben-Tal et al., 2013; Namkoong & Duchi,
2016; 2017) and found it empirically outperformed other
f -divergence balls.

In the sequel, we provide intuition for (4) and show that
minimization can be performed efficiently.

4.2. Interpreting the dual

The dual of the maximization problem (4) provides addi-
tional intuition on the behavior of the robust risk. The fol-
lowing proposition was first proved by Ben-Tal et al. (2013)
for finitely supported distributions.
Proposition 3 ((Duchi & Namkoong, 2018)). If `(θ; ·) is
upper semi-continuous for any θ, then for rmax ≥ 0 and
any θ,Rdro(θ; rmax) is equal to the following expression

inf
η∈R

{
F (θ; η) := C

(
EP
[
[`(θ, Z)− η]

2
+

]) 1
2

+ η

}
(5)

where C =
(
2(1/αmin − 1)2 + 1

)1/2
Denoting by η? the optimal dual variable (5), we see from
the proposition that all examples suffering less than η?-
levels of loss are completely ignored, and large losses above
η? are upweighted due to the squared term.

The squared term in the dual can be seen as a form of regular-
ization of the original objective. However, unlike standard
parameter regularization techniques, which encourage θ to
be close to some point, our objective biases the model to
have fewer high loss examples which matches our goal of
mitigating representation disparity.

D
en

si
ty

Ri
sk

η* θ*(a)

(b)
θfairθerm

DRO

Rmax

Figure 2. Chi-square distributionally robust optimization (DRO)
regularizes the losses (top panel) such that the minimum loss
estimate is fair to both groups (bottom panel).

Median Estimation: Recall the median estimation problem
over two groups mentioned in Section 3.2 where the loss
is `(θ;Z) = ‖θ − Z‖1. Figure 2 shows the behavior of
both ERM and DRO on this median estimation task with
unbalanced (αmin = 0.1) groups. The parameter estimate
which minimizes Rmax for this problem is θfair = 0 since
this is equidistant from both groups. ERM on the other hand
focuses entirely on the majority and returns θERM ≈ −1.0.

DRO returns θ∗DRO which is close to θfair. Analyzing the risk,
we find that the single-step worst-case group riskRmax(θ)
in (1) is an upper bound on ERM, and DRO forms a tight up-
per bound this quantity (Figure 2b). We can also understand
the behavior of DRO through the worst-case distribution Q
in Equation 4. Figure 2a shows the worst-case distribution
Q at the minimizer θ∗DRO which completely removes points
within distance η∗. Additionally, points far from θ∗DRO are
upweighted, resulting in a large contribution to the loss from
the minority group.

Intuitively, we expect the DRO bound to be tight when losses
are tightly clustered within a group regardless of θ – in this
case thresholding by η∗ roughly corresponds to essentially
selecting some subset of groups and minimizing Rmax(θ),
the worst-case group risk (1) directly.

On the other hand, the worst case for our approach is if αmin
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is small, and a group with low expected loss has a high loss
tail with population size αmin regardless of θ. In this case
DRO is a loose upper bound and optimizes the losses of the
group with already low expected loss.

This is closely related to recent observations that the DRO
bound can be loose for classification losses such as the
zero-one loss due to the worst-case distribution consisting
purely of misclassified examples (Hu et al., 2018). Even in
this case, the estimated loss is still a valid upper bound on
the worst case group risk, and as figure 2 shows, there are
examples where the DRO estimate is nearly tight.

4.3. Optimization

We now show that minimizing θ 7→ Rdro(θ; rmax) can be
done efficiently for a large class of problems. For models
such as deep neural networks that rely on stochastic gradi-
ent descent, the dual objective F (θ; η) in (5) can be used
directly since it only involves an expectation over the data
generating distribution P .

Formally, the following procedure optimizes (4): for a given
value of η, compute the approximate minimizer θ̂η

minimize
θ∈Θ

EP [`(θ;Z)− η]
2
+ . (6)

From Propositions 2 and 3, we have

Rmax(θ̂η) ≤ Rdro(θ̂η; rmax) ≤ F (θ̂η, η)

which implies that we can treat η as a hyperparameter and
optimize over η using binary search. For convex losses
θ 7→ `(θ;Z), the function η 7→ F (θ̂η, η) is convex and the
binary search over η converges in linear time.

Alternatively, for models where there is a fast method for
computing the minimizer θ∗(Q) ∈ argminθ∈Θ EQ[`(θ;Z)],
we can use existing efficient primal solvers that com-
putes the worst-case probability distribution Q∗(θ) ∈
argmaxQ∈B(P,r) EQ[`(θ;Z)] for a given θ based on pro-
jected gradient ascent on Q (Namkoong & Duchi, 2016).
By alternating between optimization on θ and Q, we can
efficiently find the saddle point (θ∗, Q∗) that satisfies θ∗ =
θ∗(Q∗) and Q∗ = Q∗(θ∗).

4.4. Stability of minority loss minimization

We have thus far demonstrated that for a single time
step, the worst-case risk over all groups Rmax(θ) =
maxkRk(θ) can be controlled by the distributionally ro-
bust riskRdro(θ; rmax) where rmax := (1/αmin − 1)2 and
αmin is the minority group proportion. Now, we study how
the individual group risk Rk(θ) affects user retention and
hence future risk. By virtue of providing an upper bound
toRmax(θ), optimizingRdro(θ; rmax) at each time step can
thus control the future group riskRmax(θ).

We show that if the initial group proportions satisfy α(0)
k ≥

αmin and the worst-case riskRmax(θ(t)) is sufficiently small
at each time t, then we can ensure α(t+1)

k > αmin. Thus, to
controlRTmax, the worst-case group risk over all time steps,
it suffices to control Rdro(θ(t); rmax) using the procedure
in Section 4.3.
Proposition 4. Assume the retention model in Definition 1.
Let α(t)

k > αmin, bk∑
k bk

> αmin, n(t) ≤
∑

k bk
1−νmax

, and

ν(Rk(θ(t))) < νmax. Then, whenever we have

Rk(θ(t)) ≤ ν−1

(
1− (1− νmax)bk

αmin
∑
k bk

)
,

α
(t+1)
k =

λ(t)α
(t)
k ν(Rk(θ(t))) + bk∑

l λ
(t)α

(t)
l ν(Rl(θ(t))) + bl

> αmin.

We conclude that as long as we can guarantee

Rdro(θ(t); rmax) ≤ ν−1

(
1− (1− νmax)bk

αmin
∑
k bk

)
, (7)

we can control RTmax(θ(0), . . . , θ(T )), the unknown worst-
case group risk over all time steps by optimizing
Rdro(θ(t); rmax) at each step t. While the condition (7)
is hard to verify in practice, we observe empirically in
Section 5 that optimizing the distributionally robust risk
Rdro(θ(t); rmax) at time step t indeed significantly reduces
disparity amplification in comparison to using ERM.

Proposition 4 gives stronger fairness guarantees than the
stability conditions for ERM in Proposition 1. In ERM the
best one can do is to add strong convexity to the model
to stabilize to a possibly unfair fixed point. In contrast,
Proposition 4 gives conditions for controlling Rmax over
time without assumptions on the structure of fixed points.

Stability of median estimation: Returning to our running
example of geometric median estimation, we can show that
under the same dynamics, ERM is highly unstable while
DRO is stable. Consider a three Gaussian mixture on the
corners of the simplex, with L2 loss, retention function
ν(r) = exp(−r), and b1 = b2 = 50, n(t) = 1000. By
construction, (1/3, 1/3, 1/3) is the fair parameter estimate.

Figure 3 shows that ERM is highly unstable, with the only
stable fixed points being the corners, where a single group
dominates all others. The fair parameter estimate is an un-
stable fixed point for ERM, and any perturbation eventually
results in a completely unfair parameter estimate. On the
other hand, DRO has the reverse behavior, with the fair
parameter estimate being the unique stable fixed point.

5. Experiments
We demonstrate the effectiveness of DRO on our motivating
example (Figure 1) and human evaluation of a text autocom-
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(a) ERM (b) DRO (αk = 0.4)

Figure 3. Dynamics of repeated median estimation - shading in-
dicates velocity at each point. ERM results in unfair parameter
estimates that favor one group. DRO is strongly stable, with an
equal proportion groups being the unique stable equilibrium.

plete system on Amazon Mechanical Turk. In both cases
DRO controls the worst-case riskRTmax over time steps and
improves minority retention.

5.1. Simulated task

Recall the motivating example in Figure 1 which shows
that logistic regression applied to a two-class classification
problem is unstable, and becomes pathologically unfair.

The data is constructed by drawing from a mixture of
two Gaussians centered at (−1.5, 0) and (0, 1.5). Each
group is labeled according to linear decision boundary
(−3/2,

√
32 − 1/3) and (3/2,

√
32 − 1/3) such that clas-

sifying with x2 > 0 is accurate, but the optimal linear
classifier on one group achieves 50% accuracy on the other.

At each round we fit a logistic regression classifier using
ERM or DRO, fixing the margin distance to 1. Our dynam-
ics follow definition 1 with ν(x) = 1− x,R the zero-one
loss, and bk = 1000. The DRO model is trained using the
dual objective with logistic loss, and η = 0.95 which was
the optimal dual solution to αmin = 0.2. The results do
not qualitatively change for choices of αmin < 0.5, and we
show that we obtain control even for group sizes substan-
tially smaller than 0.2 (Figure 6).

Figure 5 shows that ERM is unstable and the minority group
rapidly loses accuracy beyond t = 300, with most runs
resulting in substantially lower accuracy for the minority
group by iteration 500. On the other hand, DRO is com-
pletely stable, and maintains 0.8 accuracy.

This stability is due to the fact that the regularized loss for
DRO prevents small losses in the minority fraction from
amplifying, as we discuss in Proposition 4. Even when
the minority fraction becomes as low as 1%, the DRO loss
ensures that the accuracy of this minority fraction is high,
with at least 75% accuracy (Figure 6).

5.2. Autocomplete task

We now present a real-world, human evaluation of user
retention and satisfaction on a text autocomplete task. The

task consists of the prediction of next words in a corpus
of tweets built from two estimated demographic groups,
African Americans and White Americans, from Blodgett
et al. (2016). There are several distinguishing linguistic
patterns between tweets from these groups, whose language
dialects we henceforth refer to as African-American English
(AAE) and Standard-American English (SAE), respectively
following the nomenclature in Blodgett et al. (2016). Our
overall experimental design is to measure the retention rate
ν and riskR for various choices of demographic proportions
(αAAE, αSAE) and simulate the implied dynamics, as running
a fully on-line experiment would be prohibitively expensive.

For both ERM and DRO, we train a set of five maximum like-
lihood bigram language models on a corpus with 366,361
tweets total and a (0.1, 0.4, 0.5, 0.6, 0.9) fraction of the
tweets labeled as AAE tweets. This results in 10 possi-
ble autocomplete systems a given Mechanical Turk user can
be assigned during the task.

To evaluate the retention and loss for AAE and SAE sep-
arately, a user is assigned 10 tweets from either the held
out AAE tweets or SAE tweets, which they must replicate
using a web-based keyboard augmented by the autocom-
plete system. We induce a user’s demographic by assigning
them to one of these two held out set types. Details of the
autocomplete task are included in the supplement.

After completing the task, users were asked to fill out a sur-
vey which included a rank from 1 to 5 on their satisfaction
with the task, and a yes/no question asking whether they
would continue to use such a system. We assign 50 users
to one of these two held out set types, and one of the 10
autocomplete models, resulting in 1,000 users’ feedback
across autocomplete models and induced demographics.

The response to whether a user would continue to use the
autocomplete system provides samples ν(RK(α)) with n =
366361 and the five values of demographic proportions α.
The user satisfaction survey provides a surrogate forRK(α)
at these same points. We interpolate ν andRK to α ∈ [0, 1]
via isotone regression which then allows us to simulate the
user dynamics and satisfaction over time using definition
1. We estimate variability in these estimates via bootstrap
replicates on the survey responses.

Our results in Figure 4 show an improvement in both minor-
ity satisfaction and retention rate: we improve the median
user satisfaction from 3.7 to 4.0 and retention from 0.7 to
0.85, while only slightly decreasing the majority satisfaction
and retention. Implied user counts follow the same trend
with larger differences between groups due to compounding.

Counterintuitively, the minority group has higher satisfac-
tion and retention under DRO. Analysis of long-form com-
ments from Turkers suggest this is likely due to users valuing
the model’s ability to complete slang more highly than com-



Fairness Without Demographics in Repeated Loss Minimization

(a) User satisfaction (b) User retention (c) User count

Figure 4. Inferred dynamics from a Mechanical Turk based evaluation of Autocomplete systems. DRO increases minority user satisfaction
(panel a) and retention (panel b) leading to a corresponding increase in user count (panel c). Error bars indicates bootstrap quartiles.
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Figure 5. Disparity amplification in Figure 1 is corrected by DRO.
Error bars indicate quartiles over 10 replicates.

Figure 6. Classifier accuracy as a function of group imbalance.
Dotted lines show accuracy on majority group.

pletion of common words and indicates a slight mismatch
between our training loss and human satisfaction with an
autocomplete system. This gap suggests that well-calibrated
losses are critical for real-world applications of fairness
through loss minimization.

6. Discussion
In this work we argued for a view of loss minimization as
a distributive justice problem, and showed that ERM often
results in disparity amplification and unfairness. We demon-
strate that DRO provides a upper bound on the risk incurred
by minority groups, where this bound is tight on simulations
and empirically effective on an Autocomplete task. Our
proposed algorithm is straightforward to implement, and
induces distributional robustness, which can be viewed as a
benefit in and of itself.

Our arguments against ERM and in favor of minority risk
minimization closely mirror Rawls’ arguments against utili-
tarianism, and thus inherit the critiques of Rawlsian distribu-
tive justice. Examples of such critiques are the focus on an
abstract worst-off group rather than demographic groups or
individuals (Altham, 1973), extreme risk-aversion (Mueller
et al., 1974), and utilitarianism with diminishing returns as
an alternative (Harsanyi, 1975). In this work, we do not
discuss the normative question of whether Rawlsian justice
is correct as many of these critiques have been discussed in
earlier work (Rawls, 2001). It is an open question whether
there are better frameworks for distributive justice in the
context of machine learning.

There are two large open questions from our work. First, as
fairness is fundamentally a causal question, observational
approaches such as DRO can only hope to control limited
aspects of fairness. The generality with which our algorithm
can be applied also limits its ability to enforce fairness
as a constraint, and thus our approach here is unsuitable
for high-stakes fairness applications such as classifiers for
loans, criminality, or admissions. In such problems the
implied minorities from DRO may differ from well-specified
demographic groups who are known to suffer from historical
and societal biases. This gap arises due to looseness in the
DRO bound (Hu et al., 2018), and could be tightened using
smoothness assumptions (Dwork et al., 2012).

Second, distributional robustness proposed here runs
counter to classical robust estimation for rejecting outlier
samples, as high loss groups created by an adversary can
easily resemble a minority group. Adversarial or high-noise
settings loosen the DRO upper bound substantially, and it is
an open question whether it is possible to design algorithms
which are both fair to unknown latent groups and robust.

Reproducibility: Code to generate results available at
https://bit.ly/2sFkDpE.

Acknowledgements: This work was funded by the Open
Philanthropy Project Award.
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A. Appendix
A.1. Proof of Proposition 1

We prove the following more general result.

Proposition 5. Let λ∗ = Φ(λ∗) be a fixed point, and θ∗ = arg minθ E∑
k α
∗
kPk

[`(θ;Z)] be the population minimizer.

Define HR(α∗) as the positive definite Hessian of the expected risk with α∗k ∝ λ∗k.

Further, let∇L define the per-group parameter gradients at θ∗,

∇L =

∇θEP1
[`(θ̂;Z)]
...

∇θEPk
[`(θ̂;Z)]

 .
λ∗ is stable whenever the absolute value of the maximum eigenvalue ρmax obeys

ρmax

(
diag(ν(R(θ(λ∗))))− diag(λ∗ν′(R(θ(λ∗))∇LHR(α∗)−1∇L>

(
I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

))
< 1.

Proof A necessary and sufficient condition for stability of a discrete time dynamical system is that the Jacobian of the
forward map Φ has eigenvalues with absolute value strictly less than 1.

Computing the Jacobian we have:

JΦ(λ∗) = diag(ν(Rk(λ∗))) + diag(λ∗ν′(R(θ(λ∗))))JR◦θ◦α∗(λ
∗).

Now we must compute the Jacobian of the risk with respect to the population fraction. To do this, we apply the chain rule
and separately analyze three Jacobians:R with respect to θ, θ with respect to α∗, and α∗ with respect to λ∗

By strong convexity of `,
Jθ(α

∗) = −HR(α∗)−1∇L>.

Where HR(α∗)−1 is the Hessian of the population risk and∇L is

∇L =

∇θEP1 [`(θ̂;Z)]
...

∇θEPk
[`(θ̂;Z)]

 .
The Jacobian of the risks with respect to change in θ is

JR(θ) = ∇L.

The Jacobian of the population fraction with respect to n is

Jα∗(λ
∗) =

(
I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

)
By the chain rule, we obtain the overall claim

JΦ(λ∗) = diag(ν(Rk(λ∗)))− diag(λ∗ν′(R(θ)))∇LHR(α∗)−1∇L>
(

I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

)
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A.2. Proof of corollary 2

Recall that the instability criteria is

ρmax

(
diag(ν(R(θ(λ∗))))− diag(λ∗ν′(R(θ(λ∗))∇LHR(α∗)−1∇L>

(
I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

))
> 1.

Setting ν(R(θ(λ∗))) = ν(R1) and λ∗k = λ∗1 we have,

ρmax

(
− ν′(R1)∇LHR(α∗)−1∇L>

(
I/k − 11>/k2

))
> 1− ν(R1).

By first order optimality conditions, and the fact that λ∗1 . . . = λ∗k,∇L>1 = 0.

Thus, collecting terms and noting ν′(x) < 0 by monotonicity of ν, we have

ρmax

(
∇LHR(α∗)−1∇L>

)
>

1− ν(R1)

−ν′(R1)/k
.

A.3. Generalization of Proposition 1 and Corollary 2

Consider the more general dynamics defined by h : (λ,R)→ R+ which defines the evolution of the expected number of
users.

Definition 3. Let Φ be the update for the expected population size

λ
(t+1)
k := Φ(λ

(t)
k ) = h(λ

(t)
k , ν(Rk(θ(λ(t))))),

θ(λ
(t)
k ) = arg min

θ
E∑

k α
(t)
k Pk

[`(θ;Z)].

Then as long as h is differentiable in both arguments, we obtain an essentially identical result to before.

Proposition 6. Let λ∗ = Φ(λ∗) be a fixed point, and θ∗ = arg minθ E∑
k α
∗
kPk

[`(θ;Z)] be the population minimizer.

Define HR(α∗) as the positive definite Hessian of the expected risk with α∗k ∝ λ∗k.

Further, let∇L define the per-group parameter gradients at θ∗,

∇L =

∇θEP1 [`(θ̂;Z)]
...

∇θEPk
[`(θ̂;Z)]

 .
λ∗ is stable whenever

ρmax

(
diag

(
∂

∂λ
h(λ∗,R(θ(λ∗)))

)
− diag

(
∂

∂R
h(λ∗,R(θ(λ∗)))

)
∇LHR(α∗)−1∇L>

(
I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

))
< 1.

Proof A necessary and sufficient condition for stability of a discrete time dynamical system is that the Jacobian of the
forward map Φ has eigenvalues with absolute value strictly less than 1.

Computing the Jacobian via total derivatives we have

JΦ(λ∗) = diag

(
∂

∂λ
h(λ∗,R(θ(λ∗)))

)
+ diag

(
∂

∂R
h(λ∗,R(θ(λ∗)))

)
JR◦θ◦p(λ

∗).

The Jacobian term remains identical to before, which completes the proof.

The Corollary follows from this derivation -
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Corollary 2 (Counterexample under symmetry). Let λ∗1 = . . . λ∗k be a fixed point withR1 = . . .Rk, and define ∂h
∂λ

∣∣
λ=λ∗

=
∂
∂λh(λ∗1,R1) and ∂h

∂R
∣∣
λ=λ∗

= ∂
∂Rh(λ∗1,R1). For any strongly convex loss,

ρmax

(
∇LHR(α∗)−1∇L>

)
>

1− ∂h
∂λ

∣∣
λ=λ∗

− ∂h
∂R
∣∣
λ=λ∗

kλ∗1.

Proof Recall that the instability criteria is

ρmax

(
diag

(
∂

∂λ
h(λ∗,R(θ(λ∗)))

)
− diag

(
∂

∂R
h(λ∗,R(θ(λ∗)))

)
∇LHR(α∗)−1∇L>

(
I∑
k λ
∗
k

− 1λ∗>

(
∑
k λ
∗
k)2

))
< 1.

Let ∂h∂λ
∣∣
λ=λ∗

= ∂
∂λh(λ∗1,R1(θ(λ∗))) and ∂h

∂R
∣∣
λ=λ∗

= ∂
∂Rh(λ∗1,R1(θ(λ∗))). Then following the same derivation as earlier

and using the monotonicity of h in the second argument gives

ρmax

(
∇LHR(α∗)−1∇L>

)
>

1− ∂h
∂λ

∣∣
λ=λ∗

− ∂h
∂R
∣∣
λ=λ∗

kλ∗1.

This is essentially in the same spirit as our earlier corollary, but requires further assumptions on h in order to interpret.
Generally we expect ∂h∂R to be on the order of λ as long as risk affects users independently, and ∂h

∂λ is upper bounded by the
maximum implied retention rate.

A.4. Proof of Proposition 2

Since Pk is a mixture component of P (P = αkPk + · · · ),

Dχ2

(
Pk||P (t)

)
=

∫
x

(
P

(t)
k (x)

P (t)(x)
− 1

)2

P (t)(x)dx

≤
∫
x

(
1

α
(t)
k

− 1

)2

P (t)(x)dx

= rk.

We just showed that Pk ∈ B(P, rk). Since the sup is over all Q ∈ B(P, rk), the upper bound follows.

A.5. Proof of Proposition 4

By assumption,

α
(t+1)
k ≥ n(t)αminν(Rk(θ(t))) + bk∑

k n
(t)α

(t)
k ν(Rk(θ(t))) + bk

.

We will show
n(t)αminν(Rk(θ(t))) + bk∑
k n

(t)α
(t)
k ν(Rk(θ(t))) + bk

> αmin,

which is equivalent to

ν(Rk(θ(t))) ≥
∑
k

α
(t)
k ν(Rk(θ(t))) +

∑
k bk − bk/αmin

n(t)
.

By the assumption that ν(Rk(θ(t))) < νmax,∑
k

α
(t)
k ν(Rk(θ(t))) +

∑
k bk − bk/αmin

n(t)
≤ νmax +

∑
k bk
n(t)

(
1− bk

αmin
∑
k bk

)
.
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Using bk∑
k bk
≥ αmin and n(t) ≤

∑
bk

1−νmax
the above simplifies to

∑
k

α
(t)
k ν(Rk(θ(t))) +

∑
k bk − bk/αmin

n(t)
≤ νmax + (1− νmax)

(
1− bk

αmin
∑
k bk

)
.

Thus, a sufficient condition for our proposition is

Rk(θ(t)) ≤ ν−1

(
1− (1− νmax)bk

αmin
∑
k bk

)
.

.

B. Turk task description
The Amazon Mechanical Turk experiment modeling user retention in an autocomplete system is detailed below. The
experiment design consists of a total of 1000 HITs (”Human Intelligence Tasks” on Mechanical Turk) consisting of 2 user
replicates × 5 values of α × 2 models (DRO/ERM) × 25 sets of 10 tweets from the test set × two test sets (AAE/SAE).

For each HIT the task, users are provided the description given in figure 7 . Users are then taken to a separate autocomplete
website, where they are asked to replicate 10 tweets using a software keyboard shown in figure 8. In this interface, users
must use the mouse and the software keyboard to type the target sentence, while also being given an autocomplete system
for next word prediction based on the two models. The autocomplete system appears through a dropdown as users begin
typing. After completion to the task, users are prompted to fill out a survey in figures 9,10. The first four questions are
quality control questions designed to identify Turkers who were low effort (empty entries in Q1/Q3) or inconsistent (Q2
inconsistent with Q4). Moreover, low-quality HITS could easily be identified due to a user’s refusal to select either yes or no
to Q5. We used this as our metric for filtering which users would be considered in the analysis. Q6 is our overall satisfaction
metric shown in the main paper.
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Instructions

We would like you to evaluate a text auto-completion system and your likelihood of using such a 
system.  We will ask you to use a virtual keyboard with an auto-completion system to re-type 10 
Tweets from Twitter, using the auto-complete to help you as you wish. You will have 1 hour to 
complete this task. Note that this tasks works best with those with fast network speed. You can 
check whether your current network speed is fast enough at this link:
 http://34.215.89.154:8080/static/latency.html (http://34.215.89.154:8080/static/latency.html)
 

DISCLAIMER: As we will be asking you to re-type real data from Twitter, the example 
texts in this system may contain offensive text and slang, despite automated filtering. 
 

After following the instructions below, please answer the questions in the survey:
 

1. Click on the "START TASK" link after the instructions. 
2. Next to the “Please type this” entry is the text you have to replicate using the keyboard 

below. Start by clicking the first letter of the text on the keyboard.
3. If there exists any auto-complete suggestions, they appear as a drop down menu. Use 

them in the way that is most helpful for you. 
4. If you enter a wrong key, the mismatch will be displayed next to the “Difference” entry. Use 

this entry to guide you to complete replicating the text. 
5. Once you have successfully replicated, the accept button will turn green. Click to receive 

the next tweet. 
6. Repeat until you have successfully replicated 10 tweets. Then, cancel the window and fill 

out the survey questions below.

 

We will manually inspect every answer before accepting your work, and will be logging your 
entries on the web form to verify you correctly replicated 10 tweets. Incomplete survey 
answers will not be approved. 
 
In addition, completion of the task will result in a unique code we ask you to enter at the end of 
this survey - no task will be approved without a correctly provided code. This task is expected to 
take 10 minutes to complete, but you will be allotted an hour. 

INTERFACE LINK:INTERFACE LINK:   If the link above is not shown there is an error with Javascript on your computer. To
perform this HIT, you must have Javascript and cookies enabled on your browser.
 

 

Figure 7. Task instructions on mechanical turk
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Figure 8. Autocomplete task interface on Amazon mechanical turk.
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In the following survey, please provide feedback on the suggestions and usefulness 
of the autocomplete system itself - NOT the interface. Any feedback regarding the 
interface can be states at the end. 

1. Please describe good aspects of the autocomplete word suggestions:1. Please describe good aspects of the autocomplete word suggestions:

2. On a scale of 1 (very unsatisfied) to 5 (extremely satisfied), how satisfied were you2. On a scale of 1 (very unsatisfied) to 5 (extremely satisfied), how satisfied were you
with the autocomplete suggestions?with the autocomplete suggestions?

1 - very unsatisfied, did not find autocomplete system helpful

2

3

4

5 extremely satisfied, found autocomplete system helpful with task

3. What were some drawbacks you experienced with the autocomplete word3. What were some drawbacks you experienced with the autocomplete word
suggestions?suggestions?

4. On a scale of 1 (not frustrated) to 5 (extremely frustrated), how frustrated were4. On a scale of 1 (not frustrated) to 5 (extremely frustrated), how frustrated were
you with the autocomplete suggestions?you with the autocomplete suggestions?

1 - not frustrated at all

2

3

4

5 - extremely frustrated

5. Would you use the suggestions from this autocomplete system to help with your5. Would you use the suggestions from this autocomplete system to help with your
own writing task?own writing task?

Yes

No

Figure 9. Survey, page 1, Q1-Q4 are quality control verification questions. Q5 measures retention
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6. On a scale of 1 (very unhappy) to 5 (very happy), how happy were you with this6. On a scale of 1 (very unhappy) to 5 (very happy), how happy were you with this
hit?hit?

1 - very unhappy

2

3

4

5 - very happy

7. Please provide feedback on the interface for this task:7. Please provide feedback on the interface for this task:

8. Please provide your unique code given at the end of the task:8. Please provide your unique code given at the end of the task:

Figure 10. Survey, page 2, Q2 measures satisfaction, Q7 is used to measure issues with the HIT, and Q8 is used to ensure users completed
the autocomplete task


