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Abstract
We develop and study multicalibration as a new
measure of fairness in machine learning that aims
to mitigate inadvertent or malicious discrimina-
tion that is introduced at training time (even from
ground truth data). Multicalibration guarantees
meaningful (calibrated) predictions for every sub-
population that can be identified within a specified
class of computations. The specified class can
be quite rich; in particular, it can contain many
overlapping subgroups of a protected group. We
demonstrate that in many settings this strong no-
tion of protection from discrimination is provably
attainable and aligned with the goal of accurate
predictions. Along the way, we present algorithms
for learning a multicalibrated predictor, study the
computational complexity of this task, and illus-
trate tight connections to the agnostic learning
model.

1. Introduction
Machine-learned predictors are informing decisions that
affect all aspects of life; from news article recommenda-
tions to criminal sentencing decisions to healthcare diag-
nostics, increasingly algorithms are used to make predic-
tions about individuals. A potential risk is that these pre-
dictors might discriminate against groups of individuals
that are protected by law or by ethics. Indeed, examples
of such unintended but harmful discrimination have been
well-documented across many learning tasks including im-
age classification (Buolamwini & Gebru, 2018) and natural
language tasks (Bolukbasi et al., 2016). This work aims
to mitigate such risks of algorithmic discrimination in the
context of prediction tasks.

The output of a learning algorithm can be discriminatory for
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a number of reasons. First, the training data may contain
biases that should be corrected. Second, the analysis of the
training data may inadvertently introduce biases that are not
borne out in the data. In this work, we focus on the latter
concern.

Indeed, even given accurate ground-truth training data, the
typical approach to supervised learning – choosing a model
that minimizes the expected loss on the training data – runs
the risk of choosing a prediction model that is good for
the majority population, but overlooks the minority pop-
ulations. Consider the case where a financial institution
trains a model to predict the probability that applicants will
default on their loans. If on average, the individuals from
S are financially disadvantaged compared to the majority
population, the model may assign a fixed, low probability
to all i ∈ S, while still achieving good empirical loss by
predicting very accurately in the majority population. Such
a model discriminates against the qualified members of S.
Worse yet, this form of discrimination has the potential
to amplify S’s underrepresentation by refusing to approve
members that are capable of repaying the loan.

Focusing on such concerns, we develop a theoretical frame-
work that aims to mitigate such risks of algorithmic dis-
crimination, in the context of prediction tasks. Specifically,
we focus on a setting where a learner has access to a small
sample of ground truth data D from some domain of in-
dividuals X . Each individual i ∈ D has a boolean label
oi ∈ {0, 1} representing the outcome of a certain stochas-
tic event (ad click, loan repayment, cancer diagnosis, etc.)
that the learner wishes to predict. We suppose that for each
i ∈ X , there is an underlying probability p∗i which governs
the distribution of the resulting outcome oi. We say a pre-
dictor f : X → [0, 1] is a map from individuals i ∈ X to an
estimate of the true parameters. Next, we discuss desirable
properties of predictors that motivate our new perspective
on fairness.

Calibration and Multicalibration. If we do not want a
predictor f to downplay the fitness of a group S ⊆ X ,
we can require that it be (approximately) unbiased over
S; namely, that

∣∣Ei∼S [fi − p∗i ]∣∣ ≤ α, for some small
α ≥ 0. This means that the expectation of f and p∗

over S are almost identical. Calibration strengthens this
requirement by essentially asking that for any particular
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value v, if we let Sv = {i ∈ S : fi = v} be the sub-
set of S of individuals with predicted probability v, then∣∣Ei∼Sv

[
fi − p∗i

]∣∣ = |v − Ei∼Sv [p∗i ]| ≤ α.

While this notion already precludes some forms of discrim-
ination, a principle weakness of calibration as a fairness
concept is that the guarantees are too coarse. Indeed, weak-
nesses of group fairness notions were discussed in (Dwork
et al., 2012), as a motivation for introducing an individ-
ual fairness notion. A specific way to discriminate while
satisfying calibration is to assign every member of S the
value Ei∼S [p∗i ]. While being perfectly calibrated over S,
the qualified members of S with large values p∗i will be hurt.

Calibration is typically applied to large, often disjoint, sets
of protected groups; that is, the guarantees are only required
to hold on average over a population defined by a small num-
ber of sensitive attributes, like race or gender. A stronger
definition of fairness would ensure that the predictions on
every subpopulation would be calibrated, including, for in-
stance, the qualified members of S from the example above.
The problem with such a notion is that it is information-
theoretically unattainable from a small sample of labeled
examples, as it essentially requires perfect predictions. As
such, we need an intermediary definition that balances the
desire to protect important subgroups and the information
bottleneck that arises when learning from a small sample.

To motivate our notion, suppose a learning algorithm pro-
duces a predictor f . Then, more outcomes are determined,
and an auditor finds a subpopulation S whose outcomes
outperform the predictions made by f . Perhaps the learn-
ing algorithm was lazy and neglected to identify the higher
potential in S? Perhaps the individuals of S were simply
lucky? How can we tell? To answer these questions, we
take the following perspective: on the one hand, we can only
expect a learner to produce a predictor that is calibrated on
sets that could have been identified efficiently from the data
at hand; on the other hand, we expect the learner to produce
a predictor that is calibrated on every efficiently-identifiable
subset. This motivates our definition of multicalibration,
which loosely says: “A predictor f is multicalibrated with
respect to a family of subpopulations C if it is calibrated
with respect to every S ∈ C.”

In a nutshell, multicalibration guarantees highly-accurate
predictions for every subpopulation of individuals identified
by a specified collection C of subpopulations of individuals.
While our results can be applied to any set system C, typi-
cally, we will think of C as a collection of subsets where set
membership can be determined efficiently – for instance, sub-
populations defined by the conjunctions of a small number
of boolean features or by small decision trees. In this sense,
we can take C to be sets identified by a class of bounded
computations. As we increase the expressiveness of C, the
fairness guarantee becomes stronger; no subpopulation that

can be identified within the class will be overlooked.

In the mortgage repayment example above, if the qualified
members of S can be identified by some computation c ∈ C,
then the resulting predictor cannot ignore the variance within
S. We emphasize that the class C can be quite rich and,
in particular, can contain many overlapping subgroups of
a protected group S. In this sense, multicalibration goes
far beyond calibration for a handful of sensitive groups,
providing calibration for all computationally-identifiable
subsets, where the notion of computational-identifiability is
parameterized by the expressiveness of C.

1.1. Our Contributions

We investigate the new notion of multicalibration from an al-
gorithmic and complexity theoretic perspective. We present
a simple, general-purpose algorithm for learning a predictor
from a small set of labeled examples that is multicalibrated
with respect to any given class C. The algorithm is an it-
erative method, similar to boosting, that can be viewed as
a variant of functional gradient descent. A number of sub-
tleties arise when learning a multicalibrated predictor due
to the fact that the calibration constraints change based on
the current set of predictions made by the predictor. To
guarantee generalization from a small sample of training
examples, we leverage results from a new line of work con-
necting differential privacy to robust adaptive data analysis
(Dwork et al., 2015a;b;c; Bassily et al., 2016).

We place no explicit restrictions on the hypothesis class of
the learned predictor; instead, we show that implicitly our
algorithm learns a model that provably generalizes well to
unseen data, which may be of independent interest. We
demonstrate this implicit generalization by showing the
predictions we learn are compressible, in a sense similar to
decomposition lemmas from pseudorandomness (Trevisan
et al., 2009). In the language of circuit complexity, we show
that we can build a circuit, only slightly larger than the
circuits from C, that implements the learned predictor. As a
corollary, the learned predictor is efficient in both space to
represent and time to evaluate.

We also study the computational complexity of learning
multicalibrated predictors for structured classes C. We show
a strong connection between the complexity of learning a
multicalibrated predictor and agnostic learning (Haussler,
1992; Kearns et al., 1994). In the positive direction, if there
is an efficient (weak) agnostic learner (Kalai et al., 2008;
Feldman, 2010) for a class C, then we can achieve similarly
efficient multicalibration over C. In the other direction, we
show that learning a multicalibrated predictor on all sets
defined by C is as hard as weak agnostic learning C. In this
sense, the complexity of learning a multicalibrated predictor
with respect to a class C is equivalent to the complexity of
weak agnostic learning C.
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Finally, we demonstrate that the goal of multicalbration is
aligned with the goal of achieving high-utility predictions.
In particular, given any predictor h, we can post-process h
to obtain a multicalibrated predictor f whose squared error
is no worse than that of h. The complexity of evaluating
the predictor f is only slightly larger than that of h. In this
sense, unlike many fairness notions, multicalibration is not
at odds with predictive power and can be paired with any
predictive model at essentially no cost to its accuracy.

2. Multicalibration Preliminaries
Let X denote the domain of (feature vectors of) individuals;
we wish to predict whether some event will occur for each
individual. For each i ∈ X , we assume there is some
unknown probability p∗i ∈ [0, 1]; we make no assumptions
on the structure of p∗ : X → [0, 1]. In particular, we assume
that there is enough uncertainty in the outcomes that it may
be hard to learn p∗ directly. Let D denote the distribution
over individuals, supported on X ; for S ⊆ X , let i ∼ S
denote a sample drawn from D conditioned on membership
in S.1 In our learning setting, the algorithm has access to
a small number of labeled individuals D ⊆ X , where for
each i ∈ D, the label is the outcome oi ∼ Ber(p∗i ) of an
independent Bernoulli trial. Given these samples, the learner
aims to produce a predictor f : X → [0, 1] that achieves
multicalibration, described formally next.

Multicalibration. The most basic property we might
hope for from a predictor is unbiasedness, i.e. that the pre-
dictions are accurate in expectation.

Definition (Accuracy in expectation). For any α > 0 and
S ⊆ X , a predictor f is α-accurate-in-expectation (AE)
with respect to S if ∣∣∣ E

i∼S
[fi − p∗i ]

∣∣∣ ≤ α. (1)

While this condition is necessary to achieve unbiased pre-
dictions, it is not sufficient to prevent all forms of discrimi-
nation; in particular, a predictor can be unbiased on a set S
while introducing variance that is not borne out in the data,
artificially treating similar individuals differently. Calibra-
tion mitigates this form of discrimination by considering the
expected values over categories Sv = {i : fi = v} defined
by the predictor f . Specifically, α-calibration with respect
to S requires that for all but an α-fraction of a set S, the
average of the true probabilities of the individuals receiving
prediction v is α-close to v.

1We remark that in order to guarantee a meaningful notion of
fairness, we assume that the subpopulations we wish to protect are
sufficiently represented in the distribution D, in order to see these
populations in a random sample. Understanding how much repre-
sentation is necessary in practice remains an interesting question
for future empirical investigations.

Definition (Calibration). For any v ∈ [0, 1], S ⊆ X , and
predictor f , let Sv = {i : fi = v}. For α ∈ [0, 1], f is
α-calibrated with respect to S if there exists some S′ ⊆ S
with Pri∼D[i ∈ S′] ≥ (1− α) · Pri∼D[i ∈ S] such that for
all v ∈ [0, 1], ∣∣∣∣ E

i∼Sv∩S′
[fi − p∗i ]

∣∣∣∣ ≤ α. (2)

Note that α-calibration with respect to S implies 2α-AE
with respect to S. Our definition only requires the notion of
calibration to hold on a (1−α)-fraction of each S; this is for
technical reasons due to learning from a small sample and
needing to discretize the range [0, 1] of the learned predictor.

For a collection of subsets C, we say that a predictor is
(C, α)-multicalibrated if it is α-calibrated simultaneously on
all S ∈ C.

Definition (Multicalibration). Let C ⊆ 2X be a collection
of subsets of X and α ∈ [0, 1]. A predictor f is (C, α)-
multicalibrated if for all S ∈ C, f is α-calibrated with
respect to S.

Discretization. Even though α-calibration is a meaning-
ful definition if we allow for arbitrary predictions fi ∈ [0, 1],
computationally, we need to maintain some discretization
on the values v ∈ [0, 1]. Formally, we will use the following
technical definition.

Definition (λ-discretization). Let λ > 0. The
λ-discretization of [0, 1], denoted by Λ[0, 1] ={
λ
2 ,

3λ
2 , . . . , 1−

λ
2

}
, is the set of 1/λ evenly spaced

real values over [0, 1]. For v ∈ Λ[0, 1], let

λ(v) = [v − λ/2, v + λ/2)

be the λ-interval centered around v (except for the final
interval, which will be [1− λ, 1]).

If we take λ = α, then the λ-discretization of a (C, α)-
multicalibrated predictor will be (C, 2α)-multicalibrated.

In what follows, we give an overview of our results and a
flavor of the proof techniques. We defer complete coverage
of the results and formal proofs to the Supplementary Mate-
rials (see also, the archival version (Hébert-Johnson et al.,
2017)).

3. Learning Multicalibrated Predictors
The first question to address is whether multicalibration
is feasible. For instance, it could be the case that the re-
quirements of multicalibration are so strong that they would
require learning and representing an arbitrarily complex
function p∗ very precisely, which can be infeasible in our
setting. Our first result characterizes the complexity of rep-
resenting a multicalbrated predictor. We demonstrate that
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multicalibration, indeed, can be achieved efficiently: for any
p∗ and any collection of large subsets C, there exists a pre-
dictor that is α-multicalibrated on C, whose complexity is
only slightly larger than the complexity required to describe
the sets of C. For concreteness, we use circuit size as our
measure of complexity in the following theorem.
Theorem 1. Suppose C ⊆ 2X is collection of sets where for
S ∈ C, there is a circuit of size s that computes membership
in S and Pri∼D[i ∈ S] ≥ γ. For any p∗ : X → [0, 1], there
is a predictor that is (C, α)-multicalibrated implemented by
a circuit of size O(s/α4γ).

3.1. The Algorithm

In fact, we prove Theorem 1 algorithmically by learning
(C, α)-multicalibrated predictors from labeled samples. Our
algorithm is an iterative procedure. At a high level, the
algorithm maintains a candidate predictor f , and at each it-
eration, corrects the candidate values of some subset that vio-
lates calibration until the candidate predictor is α-calibrated
on every S ∈ C. We show that even if C is very large (e.g. ex-
ponential in the other relevant parameters), the number of
updates we make and thus, the complexity of the learned
model is bounded (polynomially in 1/α, 1/γ).

Recall that calibration over a set S requires that on the
subsets Sv = {i ∈ S : fi = v} (which we will refer to
throughout as categories), the expected value of the true
probabilities Ei∼Sv

[p∗i ] on this set is close to v. As such,
the algorithm is easiest to describe in the statistical query
model, where we query for estimates of the true statistics
on subsets of the population and update the predictor based
on these estimates. In particular, given a statistical query
oracle that guarantees tolerance ω = O(αγ), the estimates
will be accurate enough to guarantee α-calibration on sets
S with such that Pri∼D[i ∈ S] ≥ γ.

Adaptive Generalization. When we turn to adapting the
algorithm to learn from random samples, the algorithm an-
swers these statistical queries using the empirical estimates
on some random sample from the population. Standard
uniform convergence arguments (Kearns & Vazirani, 1994)
show that if the set of queries we might ask is fixed in ad-
vance, then we could bound the sample complexity needed
to answer these non-adaptive queries as Õ(log |C|/ω2).
Note, however, that the categories Sv whose expectations
we query are selected adaptively (i.e. with dependence on
the results of prior queries). In particular, the definition
of the categories Sv depends on the current values of the
predictor f ; thus, when we update f based on the result of a
statistical query, the set of categories on which we might ask
a statistical query changes. In this case, we cannot simply
apply concentration inequalities and take a union bound
to guarantee good generalization without resampling every
time we update the predictor.

To avoid this blow-up in sample complexity, we appeal
to recently-uncovered connections between differential pri-
vacy and adaptive data analysis developed in (Dwork et al.,
2015a;b;c; Bassily et al., 2016). To answer the statisti-
cal queries, our algorithm deliberately interacts with the
data through a so-called guess-and-check oracle. In partic-
ular, each time the algorithm needs to know the value of
a statistical query on a set S, rather than asking the query
directly, we require that the algorithm submit its current
guess fS = Ei∼S [fi] to the oracle, as well as an accept-
able relative error window ω ∈ [0, 1]. Intuitively, if the
algorithm’s guess is far from the window centered around
the true expectation, then the oracle will respond with the
answer to a statistical query with tolerance α ·Pri∼D[i ∈ S].
If, however, the guess is sufficiently close to the true value,
then the oracle responds with X to indicate that the current
guess is close to the expectation, without revealing another
answer.
Definition (Guess-and-check oracle). Let q̃ : 2X × [0, 1]×
[0, 1] → [0, 1] ∪ {X}. q̃ is a guess-and-check oracle if for
S ⊆ X with pS = Ei∼S [p∗i ], v ∈ [0, 1], and any α > 0, the
response to q̃(S, v, ω) satisfies the following conditions:

• if |pS − v| < 2ω, then q̃(S, v, ω) = X

• if |pS − v| > 4ω, then q̃(S, v, ω) ∈ [0, 1]

• if q̃(S, v, ω) 6= X, then

pS − ω ≤ q̃(S, v, ω) ≤ pS + ω.

Note that if the guess is such that |pS − v| ∈ [2ω, 4ω], the
the oracle may respond with some ω-accurate r ∈ [0, 1] or
with X. If we have a lower bound ω0 = Pri∼D[i ∈ S] ·ω on
a sequence of guess-and-check queries, we can implement
the queries using a statistical query oracle with tolerance
τ ≤ ω0; the advantage of using this guess-and-check frame-
work is that it can be implemented using tools developed for
differential privacy (Hardt & Rothblum, 2010). This will
in turn allow us to give an algorithm for learning (C, α)-
multicalibrated predictors from a small number of samples
that generalizes well.

With the definition of this mechanism in place, we give a
description of the procedure in Algorithm 1.

Implicit Representation of C. While this procedure will
work for any collection C for efficiency’s sake (in the algo-
rithm and the learned predictor), it is important that we have
some implicit representation of S ∈ C – i.e. membership
tests can be evaluated by a simple model like a decision tree,
neural network, etc. In particular, even though the algorithm
updates the predictions for all i ∈ X , this update can be
done implicitly by stringing together a “circuit” that tests
membership, followed by the appropriate addition if the
individual passes the test.
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Algorithm 1 – Learning a (C, α)-multicalibrated predictor

Let α, λ > 0 and let C ⊆ 2X .
Let q̃(·, ·, ·) be a guess-and-check oracle.

• Initialize: f = (1/2, . . . , 1/2) ∈ [0, 1]X

• Repeat:
◦ For each S ∈ C and v ∈ Λ[0, 1]:

– Let Sv = S ∩ {i : fi ∈ λ(v)}
– if Pri∼D[i ∈ Sv] < αλ · Pri∼D[i ∈ S]:

continue
– Let v̄ = Ei∼Sv

[fi]

– Let r = q̃(Sv, v̄, α/4)

– If r 6= X:
update fi ← fi + (r − v̄) for all i ∈ Sv
(project onto [0, 1] if necessary)

◦ If no Sv updated: exit

• For v ∈ Λ[0, 1]:
◦ Let v̄ = Ei∼λ(v)[fi]
◦ For i ∈ λ(v): fi ← v̄

• Output f

Formally, we prove the following theorem.

Theorem 2. Suppose C ⊆ 2X is collection of sets such
that for all S ∈ C, Pri∼D[i ∈ S] ≥ γ, and suppose set
membership can be evaluated in time t. Then Algorithm 1
run with λ = α learns a predictor of f : X → [0, 1] that is
(C, 2α)-multicalibrated for p∗ from O(log(|C|)/α11/2γ3/2)
samples in time O(|C| · t · poly(1/α, 1/γ)).

4. Multicalibration and Weak Agnostic
Learning

Observing the linear dependence in the running time on
|C|, it is natural to try to develop a learning procedure with
subpolynomial, or even polylogarithmic, dependence on |C|.
Our next results aim to characterize when this optimistic
goal is possible – and when it is not. We emphasize that the
algorithm of Theorem 2 learns a multicalibrated predictor
for arbitrary p∗ : X → [0, 1] and C. In the setting where we
cannot exploit structure in p∗ to learn efficiently, we might
hope to exploit structure, if it exists, in the collection of
subsets C. Indeed, we demonstrate a connection between
our goal of learning a multicalibrated predictor and weak
agnostic learning, introduced in the literature on agnostic
boosting (Ben-David et al., 2001; Kalai et al., 2008; Kanade
& Kalai, 2009; Feldman, 2010). More formally, we require
a (ρ, τ)-weak agnostic learner as in (Kalai et al., 2008; Feld-
man, 2010). We describe the distribution-specific learner of

(Feldman, 2010), where the samples and inner product in
the definition are taken over the fixed data distribution D.

Definition (Weak agnostic learner). Let ρ ≥ τ > 0, C ⊆
2X , and H ⊆ [−1, 1]X . A (ρ, τ)-weak agnostic learner L
for a concept class C with hypothesis class H solves the
following promise problem: given a collection of labeled
samples {(i, yi)} where i ∼ D and yi ∈ [−1, 1], if there
is some c ∈ C such that Ei∼D[ci · yi] > ρ, then L returns
some h ∈ H such that Ei∼D[hi · yi] > τ .

Intuitively, if there is a concept c ∈ C that correlates non-
trivially with the observed labels, then the weak agnostic
learner returns a hypothesis h (not necessarily from C), that
is also nontrivially correlated with the observed labels. In
particular, ρ and τ are typically taken to be ρ = 1/p(d)
and τ = 1/q(d) for polynomials p(d) ≤ q(d), where
d = log(|C|).

Efficient Multicalibration from Agnostic Learning.
Our next result shows that efficient weak agnostic learn-
ing over C implies efficient learning of α-multicalibrated
predictors on C.

Theorem 3. Let ρ, τ > 0 and C ⊆ 2X be some con-
cept class. If C admits a (ρ, τ)-weak agnostic learner
that runs in time T (|C| , ρ, τ), then there is an algorithm
that learns a predictor that is (C, α)-multicalibrated on
C′ = {S ∈ C : Pri∼D[i ∈ S] ≥ γ} in time O(T (|C| , ρ, τ) ·
poly(1/α, 1/λ, 1/γ)) as long as ρ ≤ α2λγ/2 and τ =
poly(α, λ, γ).

Recall, in our algorithm for learning multicalibrated predic-
tors, we maintain a candidate predictor f , and iteratively
search for some set S ∈ C on which f is not calibrated. To
solve this search problem more quickly, we frame the search
as weak agnostic learning over a concept class derived from
C and over the hypothesis class ofH = {h : X → [−1, 1]}.

Specifically, consider the concept class defined by the col-
lection of subsets C, where for each S ∈ C, we include the
concept cS : X → {−1, 1} where cS(i) = 1 if and only if
i ∈ S. We show how to design a “labeling” ` : X → [−1, 1]
for individuals such that if f violates the calibration con-
straint on any S ∈ C, then the concept cS correlates non-
trivially with the labels over the distribution of individuals,
i.e. 〈cS , `〉 ≥ ρ for some ρ > 0. Specifically, we will con-
sider for each v ∈ Λ[0, 1], the following learning problem.
For i ∈ Xv, let `i = fi−oi

2 . For i ∈ X \ Xv, let `i = 0.
We claim that if there is some Sv currently in violation of
multicalibration, then for i ∼ D, the labeled samples of
either (i, `i) or (i,−`i) satisfy the weak learning promise
for ρ = αβ/2.

Thus, if f is not yet multicalibrated on C, then we are
promised that there is some concept cS with nontrivial cor-
relation with the labels; we observe that this promise is
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exactly the requirement for a weak agnostic learner, as de-
fined in (Kalai et al., 2008; Feldman, 2010). In particular,
given labeled samples (i, `(i)) sampled according to D, if
there is a concept cS with correlation at least ρ with `, then
the weak agnostic learner returns a hypothesis h that is τ
correlated with ` for some τ < ρ. The catch is that this
hypothesis may not be in our concept class C, so we cannot
directly “correct” any S ∈ C. Nevertheless, the labeling
on individuals ` is designed such that given the hypothesis
h, we can still extract an update to f that will make global
progress towards the goal of attaining calibration. As long
as τ is nontrvially lower bounded, we can upper bound the
number of calls we need to make to the weak learner.

Efficient Agnostic Learning from Multicalibration.
Our results so far show that under the right structural as-
sumptions on p∗ or on C, a multicalibrated predictor may
be learned more efficiently than our upper bound for the
general case. Returning to the general case, we may wonder
if these structural assumptions are necessary; we answer
this question in the positive. We show that for worst-case p∗

learning a multicalibrated predictor on C is as hard as weak
agnostic learning for the class C.
Theorem 4. Let α, γ > 0 and suppose C ⊆ 2X

is a concept class. If there is an algorithm for
learning a (C′, α)-multicalibrated predictor on C′ =
{S ∈ C : Pri∼D[i ∈ S] ≥ γ} in time T (|C| , α, γ) then we
can implement a (ρ, τ)-weak agnostic learner for C in time
O(T (|C| , α, γ) · poly(1/τ)) for any ρ, τ > 0 such that
τ ≤ min {ρ− 2γ, ρ/4− 4α}.

Specifically, we show how to implement a weak ag-
nostic learner for C, given an algorithm to learn an α-
multicalibrated predictor f with respect to C (in fact, we
only need the predictor to be multicalibrated on C′ =
{S ∈ C : Pri∼D[i ∈ S] ≥ γ}). The key lemma for this re-
duction says that if there is some c ∈ C that is nontrivially
correlated with the labels, then f is also nontrivially corre-
lated with c. In general, agnostic learning is considered a no-
toriously hard computational problem. In particular, under
cryptographic assumptions (Valiant, 1984; Goldreich et al.,
1984; Bogdanov & Rosen, 2017), this result implies that
there is some constant t > 0, such that any algorithm that
learns a (C, α)-multicalibrated predictor requires Ω(|C|t)
time for arbitrary C.

In combination, these results show that the complexity of
learning a multicalibrated predictor with respect to a class C
is equivalent to the complexity of weak agnostic learning C.

5. Best-in-class Predictions
Finally, we return our attention to investigating the utility of
multicalibrated predictors. Above, we have argued that mul-
ticalibration provides a strong protection of groups against

discrimination. We show that this protection comes at (next
to) no cost in the utility of the predictor. This result adds to
the growing literature on fairness-accuracy trade-offs (Fish
et al., 2016; Berk et al., 2017; Chouldechova & G’Sell,
2017).

Theorem 5. Suppose C ⊆ 2X is a collection of subsets of
X andH is a set of predictors. There is a predictor f that
is α-multicalibrated on C such that

E
i∼X

[(fi − p∗i )2]− E
i∼X

[(h∗i − p∗i )2] < 6α,

where h∗ = argminh∈H Ei∼X [(h−p∗)2]. Further, suppose
that for all S ∈ C, Pri∼D[i ∈ S] ≥ γ, and suppose that
set membership for S ∈ C and h ∈ H are computable by
circuits of size at most s; then f is computable by a circuit
of size at most O(s/α4γ).

We can interpret Theorem 5 in different ways based on the
choice ofH. Suppose there is some sophisticated learning
algorithm that produces some predictor h that obtains excep-
tional performance, but may violate calibration arbitrarily.
If we take H = {h}, then this result says: enforcing cal-
ibration on h after learning does not hurt the accuracy by
much.

Taking a different perspective, we can also think ofH as a
set of predictors that, say, are implemented by a circuit class
of bounded complexity (e.g. conjunctions of k variables,
halfspaces, circuits of size s). Leveraging Theorem 1 and
Theorem 2, this theorem shows that for any such class of
predictorsH of bounded complexity, there exists a multical-
ibrated predictor with similar complexity that performs as
well as the best h∗ ∈ H. In this sense, with just a slight over-
head in complexity, multicalibrated predictors can achieve
“best-in-class” predictions.

In contrast to many other notions of fairness, multicalibra-
tion does not limit the utility of a predictor. Further, to prove
that multicalibration does not negatively impact the utility,
we in fact, show a much stronger statement: if applying
multicalibration to some h ∈ H changes the predictions of
h significantly (i.e. if Ei∼D[(fi − hi)2] is large), then this
change represents an improvement in squared error. In this
sense, requiring multicalibration is aligned with the goals
of learning a high-utility predictor.

We give a flavor of our approach to proving Theorem 5. Con-
sider some h ∈ H and consider the partition of X into sets
according to the predictions of h – in particular, we will first
apply a λ-discretization to the range of each h to partition
X into categories. That is, let Sv(h) = {i : hi ∈ λ(v)},
and note that Sv(h) is disjoint from Sv′(h) for v 6= v′,
and

⋃
v∈Λ[0,1] Sv(h) = X . In addition to calibrating with

respect to S ∈ C, we can also ask for calibration on
Sv(h) for all h ∈ H and v ∈ Λ[0, 1]. Specifically, let
S(H) = {Sv(h)}h∈H,v∈Λ[0,1]; we consider imposing cali-
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bration on C∪S(H). Calibrating in this manner protects the
groups defined by C but additionally gives a strong utility
guarantee, captured by the following lemma.

Lemma. Suppose g is a λ-discretized predictor and let
S(g) = {Sv(g)}v∈Λ[0,1]. Suppose f is an arbitrary
(S(g), α)-multicalibrated predictor. Then for v ∈ Λ[0, 1],

E
i∼Sv(g)

[
(gi − fi)2

]
− (4α+ λ)

≤ E
i∼Sv(g)

[
(gi − p∗i )2

]
− E
i∼Sv(g)

[
(fi − p∗i )2

]
.

This lemma shows that calibrating on the categories of a
predictor not only prevents the squared prediction error from
degrading beyond a small additive approximation, but it also
guarantees that if calibrating changes the predictor signif-
icantly on any category, this change represents significant
progress towards the true underlying probabilities on this
category. Assuming Lemma 5, Theorem 5 follows.

Note that Lemma 5 shows that this best-in-class prop-
erty holds not just over the entire domain X , but on ev-
ery sufficiently large category Sv(h) identified by some
h ∈ H. That is, if f is calibrated on S(H), then for ev-
ery category Sv(h), the average squared prediction error
Ei∼Sv(h)

[
(fi − p∗i )2

]
will be at most 6α worse than predic-

tion given by h on this set. If we view H as defining a set
S(H) of “computationally-identifiable” categories, then we
can view any predictor that is calibrated on S(H) as at least
as fair and at least as accurate on this set of computationally-
identifiable categories as the predictor that identified the
group (up to some small additive approximation).

6. Related Works and Discussion
Calibration. Calibration is a well-studied concept in the
literature on statistics and econometrics, particularly fore-
casting. For a background on calibration in this context,
see (Sandroni et al., 2003; Foster & Hart, 2015) and the
references therein. Calibration has also been studied in the
context of structured predictions where the supported set of
predictions is large (Kuleshov & Liang, 2015). Our algo-
rithmic result for multicalibration bears similarity to works
from the online learning literature (Blum & Mansour, 2007;
Khot & Ponnuswami, 2008; Trevisan et al., 2009). While
these works are similar in spirit, none of the algorithmic
results apply directly to our setting of multicalibration. We
are unaware of prior works drawing connections between
calibration and differential privacy / adaptive data analysis.

Parity and Balance. Other works on fairness in classi-
fication tend to look at parity-based notions of fairness.
Specifically, the notion of statistical parity (Dwork et al.,
2012) and balanced error rates (Hardt et al., 2016) aim to
enforce some notion of equal treatment across groups of

individuals defined by sensitive features, like race, gender,
etc. In (Hardt et al., 2016) it is shown how to obtain equal-
ized odds, a definition related to error-rate balance, as a
post-processing step of “correcting” any predictor.

While both calibration and balance (as well as other related
variants) intuitively seem like good properties to expect in a
fair predictor (even if they are a bit weak), it is impossible
to satisfy both notions simultaneously (in non-degenerate
cases) (Kleinberg et al., 2017; Chouldechova, 2017; Pleiss
et al., 2017), and there is much debate about how to proceed
given this incompatibility (Corbett-Davies et al., 2017). The
inherent conflict between balance and calibration, combined
with our observation that calibration is always aligned with
the goal of accurate high-utility predictions, implies that at
times, balance must be at odds with obtaining predictive util-
ity. In this work, we strengthen the protections implied by
calibration, rather than enforcing error-rate balance. While
there are certainly contexts in which “equalizing the odds”
across groups is a good idea, there are also contexts where
calibration is a more appropriate notion of fairness.

One particular critique of balanced error rates as a fairness
notion is that given two populations S, T ⊆ X with differ-
ent base rates (i.e. p∗i > p∗j for i ∈ S, j ∈ T ), the Bayes
Optimal predictor p∗ will not be balanced. That is, even
given access to perfect information about the underlying
probabilities, the stochasticity in the outcomes will lead to
different false positive and false negative rates. In this sense,
balance can be viewed as an a posteriori notion of fairness
(fairness with respect to outcomes), while our notion of
multicalibration is an a priori notion of fairness (fairness
with respect to given data). In a prediction setting where,
given the data, there is still significant uncertainty in the
outcome, we feel that multicalibration should be considered
as an alternative to balanced error rates. That said, a seri-
ous form of discrimination could arise if the uncertainty in
outcomes is very different across different subpopulations;
this would be a form of information-theoretic discrimination
that multicalibration could help to identify, but could not
remedy directly.

Between Populations and Individuals. Most fairness no-
tions are statistical in nature; roughly, these definitions –
including statistical parity (Dwork et al., 2012), balanced
error-rates (Hardt et al., 2016), and calibration – say that
treatment across groups should be equitable on-average (for
different notions equitable). In a notable work, (Dwork
et al., 2012) critique these broad-strokes statistical defini-
tions and propose an individual notion of fairness, which
aims to “treat similar individuals similarly”. A key chal-
lenge to this approach is that it assumes access to a task-
specific metric for every pair of individuals. In the practical
setting, where we want to learn from a small sample, we
cannot hope to achieve such an information-theoretic notion
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of fairness. One can view multicalibration as a meaning-
ful compromise between group fairness (satisfying calibra-
tion) and individual-calibration (closely matching p∗i ). The
multicalibration framework presented in this work inspired
subsequent work investigating how to interpolate between
statistical and individual notions of “metric fairness” for gen-
eral similarity metrics (Kim et al., 2018b), as well as further
theoretical and empirical investigations of multi-accuracy-
in-expectation in the context of binary classification (Kim
et al., 2018a).

Contemporary independent work of (Kearns et al., 2017)
also investigates strengthening the guarantees of notions of
group fairness by requiring that these properties hold for a
much richer collection of sets. Unlike our work, their defini-
tions require balance or statistical parity on these collection
of sets. Despite similar motivations, the two approaches to
subgroup fairness differ in substantial ways. As a concrete
example, multicalibration is aligned with the incentives of
achieving high-utility predictors; this is not necessarily the
case with balance-based notions of fairness. Indeed, in the
setting considered in this work, one of the motivations for
multicalibration is the earlier critique of balance that may
only be heightened when considering “multi-balance”.

Consider the example from (Dwork et al., 2012) where we
wish to predict future success in school. In a population S,
the strongest students apply to Engineering whereas in the
general population T , they apply to Business. Enforcing
balance between the Business applicants and Engineering
applicants within both groups would be unfair to qualified
applicants in both groups (i.e. the Engineering students of
S and the Business students of T ). Essentially, carving
up the space of individuals into subgroups exaggerates the
differences in the base rates, which leads to mistreatment.
Preventing discrimination by algorithms is subtle, and dif-
ferent scenarios will call for different notions of protection.
Still, these works collectively validate the need to investigate
attainable approaches to mitigating discrimination beyond
large protected groups.

Corrective Discrimination Multicalibration represents a
powerful tool to address a certain form of discrimination,
but it is not universally-applicable. Consider the mortgage
example again: perhaps the number of members of S that
received loans in the past is small (and thus there are too
few examples for fine-grained learning within S); perhaps
the attributes are too limited to identify the qualified mem-
bers of S (taking this point to the extreme, perhaps the
only available attribute is membership in S). In these cases,
the data may be insufficient for multicalibration to provide
meaningful guarantees. Further, even if the algorithm was
given access to unlimited rich data such that refined values
of p∗ could be recovered, there are situations where pref-
erential treatment may be in order: after all, the salaries of

members of S may be lower due to historical discrimination.
For these reasons, the concern that balance is inconsistent
with p∗ could be answered with: “yes, and purposely so!”
Indeed, (Hardt et al., 2016) promotes enforcing a equal-
ized odds as a form of “corrective discrimination.” While
this type of advocacy is important in many settings, mul-
ticalibration represents a different addition to the quiver
of anti-discrimination measures, which we also believe is
natural and desirable in many settings.

Consider another example where multicalibration is appro-
priate, but equalizing error rates might not be: suppose a
genomics company offers individuals a prediction of their
likelihood of developing certain genetic disorders. These
disorders have different rates across different populations;
e.g., Tay-Sachs disease is rare in the general population,
but occurs much more frequently in the Ashkenazi popula-
tion. We certainly do not want to enforce balance on the
Ashkenazi population by down-weighting the prediction
that individuals would have Tay-Sachs (as they are endoge-
nously more likely to have the disease). However, we also
don’t want the company to base its prediction solely on
the Ashkenazi feature. Instead, enforcing multicalibration
would require that the learning algorithm investigate both
the Ashkenazi and non-Ashkenazi population to predict ac-
curately in each group (even if this means a higher false
positive rate in the Ashkenazi population). In this case, rely-
ing on p∗ seems to be well-aligned with promoting fairness.

Conclusion. Multicalibration addresses a specific form of
discrimination that can occur in prediction systems learned
from data. In particular, multicalibration requires that the
learned predictor accurately reflects the “computationally-
identifiable” variance present in the data, without introduc-
ing spurious variance. Multicalibration is most appropriate
in settings where perfect predictions at an individual level
are considered the fairest predictions, but where we do not
have rich enough training data to make perfect predictions.
Importantly, in this context, there is no fairness-utility trade-
off! Enforcing multicalibration only improves the predictive
power of the resulting model. Instead, this work identifies
and aims to address a “fairness-information” tradeoff; while
we cannot achieve the information-theoretic ideal predic-
tions from a small sample of training data, we show that
attaining a meaningful complexity-theoretic relaxation of
this goal is feasible through multicalibration. Finally, we
consider the interplay between multicalibration and “correc-
tive discrimination,” such as the transformation of (Hardt
et al., 2016), to be an important direction for further re-
search.
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