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Abstract

In conventional ODE modelling coefficients of an
equation driving the system state forward in time
are estimated. However, for many complex sys-
tems it is practically impossible to determine the
equations or interactions governing the underly-
ing dynamics. In these settings, parametric ODE
model cannot be formulated. Here, we overcome
this issue by introducing a novel paradigm of non-
parametric ODE modelling that can learn the un-
derlying dynamics of arbitrary continuous-time
systems without prior knowledge. We propose to
learn non-linear, unknown differential functions
from state observations using Gaussian process
vector fields within the exact ODE formalism. We
demonstrate the model’s capabilities to infer dy-
namics from sparse data and to simulate the sys-
tem forward into future.

1. Introduction
Dynamical systems modelling is a cornerstone of experi-
mental sciences. In biology, as well as in physics and chem-
istry, modelers attempt to capture the dynamical behavior
of a given system or a phenomenon in order to improve its
understanding and make predictions about its future state.
Systems of coupled ordinary differential equations (ODEs)
are undoubtedly the most widely used models in science.
Even simple ODE functions can describe complex dynami-
cal behaviours (Hirsch et al., 2004). Typically, the dynamics
are firmly grounded in physics with only a few parameters
to be estimated from data. However, equally ubiquitous
are the cases where the governing dynamics are partially or
completely unknown.

We consider the dynamics of a system governed by multi-
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variate ordinary differential functions:

ẋ(t) =
dx(t)

dt
= f(x(t)) (1)

where x(t) ∈ X = RD is the state vector of a D-
dimensional dynamical system at time t, and the ẋ(t) ∈
Ẋ = RD is the first order time derivative of x(t) that drives
the state x(t) forward, and where f : RD → RD is the
vector-valued derivative function. The ODE solution is de-
termined by

x(t) = x0 +

∫ t

0

f(x(τ))dτ, (2)

where we integrate the system state from an initial state
x(0) = x0 for time t forward. We assume that f(·) is com-
pletely unknown and we only observe one or several multi-
variate time series Y = (y1, . . . ,yN )T ∈ RN×D obtained
from an additive noisy observation model at observation
time points T = (t1, . . . , tN ) ∈ RN ,

y(t) = x(t) + εt, (3)

where εt ∼ N (0,Ω) follows a stationary zero-mean multi-
variate Gaussian distribution with diagonal noise variances
Ω = diag(ω2

1 , . . . , ω
2
D). The observation time points do

not need to be equally spaced. Our task is to learn the dif-
ferential function f(·) given observations Y , with no prior
knowledge of the ODE system.

There is a vast literature on conventional ODEs (Butcher,
2016) where a parametric form for function f(x;θ, t)
is assumed to be known, and its parameters θ are sub-
sequently optimised with least squares or Bayesian ap-
proach, where the expensive forward solution xθ(ti) =∫ ti
0

f(x(τ);θ, t)dτ is required to evaluate the system re-
sponses xθ(ti) from parameters θ against observations
y(ti). To overcome the computationally intensive forward
solution, a family of methods denoted as gradient match-
ing (Varah, 1982; Ellner et al., 2002; Ramsay et al., 2007)
have proposed to replace the forward solution by matching
f(yi) ≈ ẏi to empirical gradients ẏi of the data instead,
which do not require the costly integration step. Recently
several authors have proposed embedding a parametric dif-
ferential function within a Bayesian or Gaussian process
(GP) framework (Graepel, 2003; Calderhead et al., 2008;
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Dondelinger et al., 2013; Wang and Barber, 2014; Macdon-
ald, 2017) (see Macdonald et al. (2015) for a review). GPs
have been successfully applied to model linear differential
equations as they are analytically tractable (Gao et al., 2008;
Raissi et al., 2017).

However, conventional ODE modelling can only proceed
if a parametric form of the driving function f(·) is known.
Recently, initial work to handle unknown or non-parametric
ODE models have been proposed, although with various
limiting approximations. Early works include spline-based
smoothing and additive functions

∑D
j fj(xj) to infer gene

regulatory networks (De Hoon et al., 2002; Henderson and
Michailidis, 2014). Äijö and Lähdesmäki (2009) proposed
estimating the unknown nonlinear function with GPs using
either finite time differences, or analytically solving the
derivative function as a function of only time, ẋ(t) = f(t)
(Äijö et al., 2013). In a seminal technical report of Heinonen
and d’Alche Buc (2014) a full vector-valued kernel model
f(x) was proposed, however using a gradient matching
approximation. To our knowledge, there exists no model
that can learn non-linear ODE functions ẋ(t) = f(x(t))
over the state x against the true forward solutions x(ti).

In this work we propose NPODE1: the first ODE model for
learning arbitrary, and a priori completely unknown non-
parametric, non-linear differential functions f : X → Ẋ
from data in a Bayesian way. We do not use gradient match-
ing or other approximative models, but instead propose to
directly optimise the exact ODE system with the fully for-
ward simulated responses against data. We parameterise our
model as an augmented Gaussian process vector field with
inducing points, while we propose sensitivity equations to
efficiently compute the gradients of the system. Our model
can forecast continuous-time systems arbitrary amounts to
future, and we demonstrate the state-of-the-art performance
in human motion datasets.

2. Nonparametric ODE Model
The differential function f(x) to be learned defines a vector
field2 f , that is, an assignment of a gradient vector f(x) ∈
RD to every state x ∈ RD. We model the vector field as a
vector-valued Gaussian process (Rasmussen and Williams,
2006)

f(x) ∼ GP(0,K(x,x′)), (4)

which defines a priori distribution over function values f(x)
whose mean and covariances are

E[f(x)] = 0 (5)
cov[f(x), f(x′)] = K(x,x′), (6)

1The implementation is publicly available in http://www.
github.com/cagatayyildiz/npode

2We use vector field and differential function interchangeably.

Figure 1. (a) Illustration of an ODE system vector field induced
by the Gaussian process. The vector field f(x) (gray arrows) at
arbitrary states x is interpolated from the inducing points u, z
(black arrows), with the trajectory x(t) (red points) following the
differential system f(x) exactly. (b) The trajectory x(t) plotted
over time t.

and where the kernel K(x,x′) ∈ RD×D is matrix-
valued. A GP prior defines that for any collection of
states X = (x1, . . . ,xN )T ∈ RN×D, the function val-
ues F = (f(x1), . . . , f(xN ))T ∈ RN×D follow a matrix-
valued normal distribution,

p(F ) = N (vec(F )|0,K(X,X)), (7)

where K(X,X) = (K(xi,xj))
N
i,j=1 ∈ RND×ND is a

block matrix of matrix-valued kernels K(xi,xj). The key
property of Gaussian processes is that they encode func-
tions where similar states x,x′ induce similar differentials
f(x), f(x′), and where the state similarity is defined by the
kernel K(x,x′).

In standard GP regression we would obtain the posterior
of the vector field by conditioning the GP prior with the
data (Rasmussen and Williams, 2006). In ODE models
the conditional f(x)|Y of a vector field is intractable due
to the integral mapping (2) between observed states y(ti)
and differentials f(x). Instead, we resort to augmenting the
Gaussian process with a set of M inducing points z ∈ X
and u ∈ Ẋ , such that f(z) = u (Quiñonero-Candela and

http://www.github.com/cagatayyildiz/npode
http://www.github.com/cagatayyildiz/npode
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Rasmussen, 2005). We choose to interpolate the differential
function between the inducing points as (See Figure 1)

f (x) , K � (x ; Z )K � (Z; Z ) � 1vec(U); (8)

which supports the functionf (x) with inducing locations
Z = ( z1; : : : ; zM ), inducing vectorsU = ( u1; : : : ; uM ),
and� are the kernel parameters. The function above cor-
responds to a vector-valued kernel function (Alvarez et al.,
2012), or to a multi-task Gaussian process conditional mean
without the variance term (Rasmussen and Williams, 2006).
This de�nition is then compatible with the deterministic
nature of the ODE formalism. Due to universality of several
kernels and kernel functions (Shawe-Taylor and Cristianini,
2004), we can represent arbitrary vector �elds with appro-
priate inducing point and kernel choices.

2.1. Operator-valued Kernels

The vector-valued kernel function(8) usesoperator-valued
kernels, which result in matrix-valued kernelsK � (z; z0) 2
RD � D for real valued statesx; z, while the kernel ma-
trix over data points becomesK � = ( K (zi ; zj ))M

i;j =1 2
RMD � MD (See Alvarez et al. (2012) for a review). Most
straightforward operator-valued kernel is the identity de-
composable kernelK dec(z; z0) = k(z; z0) � I D , where the
scalar Gaussian kernel

K � (z; z0) = � 2
f exp

0

@�
1
2

DX

j =1

(zj � z0
j )2

`2
j

1

A (9)

with differential variance� 2
f and dimension-speci�c length-

scales̀ = ( `1; : : : ; `D ) are expanded into a diagonal ma-
trix of size D � D . We collect the kernel parameters as
� = ( � f ; ` ).

We note that more complex kernels can also be considered
given prior information of the underlying system charac-
teristics. The divergence-free matrix-valued kernel induces
vector �elds that have zero divergence (Wahlström et al.,
2013; Solin et al., 2015). Intuitively, these vector �elds do
not have sinks or sources, and every state always �nally
returns to itself after suf�cient amount of time. Similarly,
curl-free kernels induce curl-free vector �elds that can con-
tain sources or sinks, that is, trajectories can accelerate or
decelerate. For theoretical treatment of vector �eld kernels,
see (Narcowich and Ward, 1994; Bhatia et al., 2013; Fuse-
lier and Wright, 2017). Non-stationary vector �elds can
be modeled with input-dependent lengthscales (Heinonen
et al., 2016), while spectral kernels can represent stationary
(Wilson et al., 2013) or non-stationary (Remes et al., 2017)
recurring patterns in the differential function.

2.2. Joint Model

We assume a Gaussian likelihood over the observationsy i

and the corresponding simulated responsesx(t i ) of Equa-
tion (2),

p(Y jx0; U; Z; ! ) =
NY

i =1

N (y i jx (t i ); 
) ; (10)

where x(t i ) are forward simulated responses using the
integral Equation(2) and differential Equation(8), and

 = diag( ! 2

1 : : : ; ! 2
D ) collects the dimension-speci�c

noise variances.

The inducing vectors have a Gaussian process prior

p(UjZ; � ) = N (vec(U)j0; K � (Z; Z )) : (11)

The model posterior is then

p(U;x0; � ; ! jY ) / p(Y jx0; U; ! )p(Uj� ) = L ; (12)

where we have for brevity omitted the dependency on the
locations of the inducing pointsZ and also the parameter
hyperpriorsp(� ) and p(! ) since we assume them to be
uniform, unless there is speci�c domain knowledge of the
priors.

The model parameters are the initial statex0
3, the inducing

vectorsU, the noise standard deviations! = ( ! 1; : : : ; ! D ),
and the kernel hyperparameters� = ( � f ; `1; : : : ; `D ).

2.3. Noncentral Parameterisation

We apply a latent parameterisation using Cholesky decom-
position L � L T

� = K � (Z; Z ), which maps the inducing
vectors to whitened domain (Kuss and Rasmussen, 2005)

U = L � eU; eU = L � 1
� U: (13)

The latent variableseU are projected on the kernel manifold
L � to obtain the inducing vectorsU. This non-centered pa-
rameterisation (NCP) transforms the hierarchical posterior
L of Equation (12) into a reparameterised form

p(x0; eU; � ; ! jY ) / p(Y jx0; eU; ! ; � )p( eU); (14)

where all variables to be optimised are decoupled, with
the latent inducing vectors having a standard normal prior
eU � N (0; I ). Optimizing eU and� is now more ef�cient
since they have independent contributions to the vector �eld
via U = L � eU. The gradients of the whitened posterior can
be retrieved analytically as (Heinonen et al., 2016)

r eU logL = L T
� r U logL : (15)

3In case of multiple time-series, we will use one initial state
for each time-series.
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Finally, we �nd a maximum a posteriori (MAP) estimate for
the initial statex0, latent vector �eldeU, kernel parameters
� and noise variances! by gradient ascent,

x0;MAP; eUMAP; � MAP; ! MAP = arg max
x 0 ; eU; � ;!

logL ; (16)

while keeping the inducing locationsZ �xed on a suf�-
ciently dense grid (See Figure 1). The partial derivatives
of the posterior with respect to noise parameters! can be
found analytically, while the derivative with respect to� f is
approximated with �nite differences. We select the optimal
lengthscales̀ by cross-validation.

3. Sensitivity Equations

The key term to carry out the MAP gradient ascent optimiza-
tion is the likelihood

logp(Y jx0; eU; ! )

that requires forward integration and computing the partial
derivatives with respect to the whitened inducing vectorseU.
Given Equation(15)we only need to compute the gradients
with respect to the inducing vectorsu = vec(U) 2 RMD ,

d logp(Y jx0; u; ! )
du

=
NX

s=1

d logN (y s jx (ts; u); 
)
dx

dx(ts; u)
du

: (17)

This requires computing the derivatives of the simulated
system responsex(t; u) against the vector �eld parameters
u,

dx(t; u)
du

� S(t) 2 RD � MD ; (18)

which we denote bySij (t) = @x (t; u ) i

@uj
, and expand the no-

tation to make the dependency ofx onu explicit. Approxi-
mating these with �nite differences is possible in principle,
but is highly inef�cient and has been reported to cause un-
stability (Raue et al., 2013). We instead turn to sensitivity
equations foru andx0 that provide computationally ef�-
cient, analytical gradientsS(t) (Kokotovic and Heller, 1967;
Fröhlich et al., 2017).

The solution fordx ( t; u )
du can be derived by differentiating

the full nonparametric ODE system with respect tou by

d
du

dx(t; u)
dt

=
d

du
f (x(t; u)) : (19)

The sensitivity equation for the given system can be obtained
by changing the order of differentiation on the left hand side
and carrying out the differentiation on the right hand side.

The resulting sensitivity equation can then be expressed in
the form

_S( t )
z }| {
d
dt

dx(t; u)
du

=

J ( t )
z }| {
@f (x(t; u))

@x

S(t )
z }| {
dx(t; u)

du
+

R (t )
z }| {
@f (x(t; u))

@u
;

(20)

whereJ (t) 2 RD � D , R(t); _S(t) 2 RD � MD (See Supple-
ments for detailed speci�cation). For our nonparametric
ODE system the sensitivity equation is fully determined by

J (t) =
@K (x; Z )

@x
K (Z; Z ) � 1u (21)

R(t) = K (x; Z )K (Z; Z ) � 1: (22)

The sensitivity equation provides us with an additional ODE
system which describes the time evolution of the derivatives
with respect to the inducing vectorsS(t). The sensitivities
are coupled with the actual ODE system and, thus both sys-
temsx(t) andS(t) are concatenated as the new augmented
state that is solved jointly by Equation(2) driven by the
differentials _x(t) and _S(t) (Leis and Kramer, 1988). The
initial sensitivities are computed asS(0) = dx 0

du . In our
implementation, we mergex0 with u for sensitivity analysis
to obtain the partial derivatives with respect to the initial
state which is estimated along with the other parameters.
We use theCVODES solver from theSUNDIALS package
(Hindmarsh et al., 2005) to solve the nonparametric ODE
models and the corresponding gradients numerically. The
sensitivity equation based approach is superior to the �nite
differences approximation because we have exact formula-
tion for the gradients of state over inducing points, which
can be solved up to the numerical accuracy of the ODE
solver.

4. Simple Simulated Dynamics

As �rst illustration of the proposed nonparametric ODE
method we consider three simulated differential systems:
the Van der Pol (VDP), FitzHugh-Nagumo (FHN) and
Lotka-Volterra (LV) oscillators of form

VDP : _x1 = x2 _x2 = (1 � x2
1)x2 � x1

FHN : _x1 = 3( x1 �
x3

1

3
+ x2) _x2 =

0:2 � 3x1 � 0:2x2

3
LV : _x1 = 1 :5x1 � x1x2 _x2 = � 3x2 + x1x2:

In the conventional ODE case the coef�cients of these equa-
tions can be inferred using standard statistical techniques if
suf�cient amount of time series data is available (Girolami,
2008; Raue et al., 2013). Our main goal is to inferunknown
dynamics, that is, when these equations are unavailable and
we instead represent the dynamics with a nonparametric




