# Orthogonal Recurrent Neural Networks with Scaled Cayley Transform 

## Supplemental Material: Proof of Theorem 3.2

For completeness, we restate and prove Theorem 3.2.
Theorem 3.2 Let $L=L(W): \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ be some differentiable loss function for an RNN with the recurrent weight matrix $W$. Let $W=W(A):=(I+A)^{-1}(I-A) D$ where $A \in \mathbb{R}^{n \times n}$ is skew-symmetric and $D \in \mathbb{R}^{n \times n}$ is a fixed diagonal matrix consisting of -1 and 1 entries. Then the gradient of $L=L(W(A))$ with respect to $A$ is

$$
\begin{equation*}
\frac{\partial L}{\partial A}=V^{T}-V \tag{1}
\end{equation*}
$$

where $V:=(I+A)^{-T} \frac{\partial L}{\partial W}\left(D+W^{T}\right), \frac{\partial L}{\partial A}=\left[\frac{\partial L}{\partial A_{i, j}}\right] \in$ $\mathbb{R}^{n \times n}$, and $\frac{\partial L}{\partial W}=\left[\frac{\partial L}{\partial W_{i, j}}\right] \in \mathbb{R}^{n \times n}$
Proof: Let $Z:=(I+A)^{-1}(I-A)$. We consider the $(i, j)$ entry of $\frac{\partial L}{\partial A}$. Taking the derivative with respect to $A_{i, j}$ where $i \neq j$ we obtain:

$$
\begin{aligned}
\frac{\partial L}{\partial A_{i, j}} & =\sum_{k, l=1}^{n} \frac{\partial L}{\partial W_{k, l}} \frac{\partial W_{k, l}}{\partial A_{i, j}}=\sum_{k, l=1}^{n} \frac{\partial L}{\partial W_{k, l}} D_{l, l} \frac{\partial Z_{k, l}}{\partial A_{i, j}} \\
& =\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T} \frac{\partial Z}{\partial A_{i, j}}\right]
\end{aligned}
$$

Using the identity $(I+A) Z=I-A$ and taking the derivative with respect to $A_{i, j}$ to both sides we obtain:

$$
\frac{\partial Z}{\partial A_{i, j}}+\frac{\partial A}{\partial A_{i, j}} Z+A \frac{\partial Z}{\partial A_{i, j}}=-\frac{\partial A}{\partial A_{i, j}}
$$

and rearranging we get:

$$
\frac{\partial Z}{\partial A_{i, j}}=-(I+A)^{-1}\left(\frac{\partial A}{\partial A_{i, j}}+\frac{\partial A}{\partial A_{i, j}} Z\right)
$$

Let $E_{i, j}$ denote the matrix whose $(i, j)$ entry is 1 with all others being 0 . Since $A$ is skew-symmetric, we have $\frac{\partial A}{\partial A_{i, j}}=E_{i, j}-E_{j, i}$. Combining everything, we have:

$$
\begin{aligned}
& \frac{\partial L}{\partial A_{i, j}}=-\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\left(E_{i, j}-E_{j, i}+E_{i, j} Z-E_{j, i} Z\right)\right] \\
& =-\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1} E_{i, j}\right] \\
& +\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1} E_{j, i}\right] \\
& -\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1} E_{i, j} Z\right] \\
& +\operatorname{tr}\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1} E_{j, i} Z\right] \\
& =-\left[\left(\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right)^{T}\right]_{i, j} \\
& +\left[\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right]_{i, j} \\
& -\left[\left(\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right)^{T} Z^{T}\right]_{i, j} \\
& +\left[Z\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right]_{i, j} \\
& =\left[(I+Z)\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right]_{i, j} \\
& -\left[\left(\left(\frac{\partial L}{\partial W} D\right)^{T}(I+A)^{-1}\right)^{T}\left(I+Z^{T}\right)\right]_{i, j} \\
& =\left[(D+W)\left(\frac{\partial L}{\partial W}\right)^{T}(I+A)^{-1}\right]_{i, j} \\
& -\left[(I+A)^{-T} \frac{\partial L}{\partial W}\left(D+W^{T}\right)\right]_{i, j}
\end{aligned}
$$

Using the above formulation, $\frac{\partial L}{\partial A_{j, j}}=0$ and $\frac{\partial L}{\partial A_{i, j}}=$ $-\frac{\partial L}{\partial A_{j, i}}$ so that $\frac{\partial L}{\partial A}$ is a skew-symmetric matrix. Finally, by the definition of $V$ we get the desired result.

