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A. Proof of Theorem 1
Given θ (the parameter of the prediction function), we obtain the adversarial risk by the following optimization:

max
r∈Uf

Ep(x,y)[r(x, y)ℓ(gθ(x), y)] (24)

where Uf ≡ {r(x, y) | Ep(x,y) [f (r(x, y))] ≤ δ, Ep(x,y)[r(x, y)] = 1, r(x, y) ≥ 0 (∀(x, y) ∈ X × Y)}. (25)

Here, we are considering that ℓ(·, ·) is the 0-1 loss. Let Ω(0)
θ ≡ {(x, y) | ℓ(gθ(x), y) = 0} ⊆ X × Y . Then, we have

Ω(1)
θ ≡ {(x, y) | ℓ(gθ(x), y) = 1} = X × Y \ Ωθ. Let r∗(·, ·) be the optimal solution of Eq. (24).

Note that Eq. (24) is a convex optimization problem. This is because the objective is linear in r(·, ·) and the uncertainty
set is convex, which follows from the fact that f(·) is convex. Therefore, any local maximum of Eq. (24) is the global
maximum. Nonetheless, there can be multiple solutions that attain the same global maxima. Among those solutions, we
now show that there exists r∗(·, ·) such that it takes the same values within Ω(0)

θ and Ω(1)
θ , respectively, i.e.,

r∗(x, y) = r∗0 for ∀(x, y) ∈ Ω(0)
θ , r∗(x, y) = r∗1 for ∀(x, y) ∈ Ω(1)

θ , (26)

where r∗0 and r∗1 are some constant values. This is because for any given optimal solution r′∗(·, ·) of Eq. (24), we can
always obtain optimal solution r∗(·, ·) that satisfies Eq. (26) by the following transformation:

r∗0 = Ep(x,y)[r
′∗(x, y) · 1{(x, y) ∈ Ω(0)

θ }]/Ep(x,y)[1{(x, y) ∈ Ω(0)
θ }], (27)

r∗1 = Ep(x,y)[r
′∗(x, y) · 1{(x, y) ∈ Ω(1)

θ }]/Ep(x,y)[1{(x, y) ∈ Ω(1)
θ }], (28)

where 1{·} is an indicator function. Eqs. (27) and (28) are simple average operations of r′∗(·, ·) on regions Ω(0)
θ and Ω(1)

θ ,
respectively. Utilizing the convexity of f(·), it is straightforward to see that r∗(·, ·) constructed in this way is still in the
feasible region of Eq. (25). It also attains exactly the same objective of Eq. (24) as the original solution r∗′(·, ·) does. This
concludes our proof that there exists an optimal solution of Eq. (24) such that it takes the same values within Ω(0)

θ and Ω(1)
θ ,

respectively.

Let p
Ω(i)

θ
= Ep(x,y)[1{(x, y) ∈ Ω(i)

θ }] for i = 0, 1, which is the proportion of data that is correctly and incorrectly
classified, respectively. We note that p

Ω(0)
θ

+ p
Ω(1)

θ
= 1. Also, we see that p

Ω(1)
θ

is by definition the misclassification rate;
thus, it is equal to the ordinary risk, i.e., Ep(x,y)[ℓ(gθ(x), y)]. By using Eq. (26), we can simplify Eq. (24) as

sup
(r0,r1)∈U ′

f

p
Ω(1)

θ
r1, (29)

where U ′
f ≡ {(r0, r1) | pΩ(0)

θ
f(r0) + p

Ω(1)
θ
f(r1) ≤ δ, pΩ(0)

θ
r0 + p

Ω(1)
θ
r1 = 1, r0 ≥ 0, r1 ≥ 0}. (30)

In the following, we show that Eq. (29) has monotonic relationship with p
Ω(1)

θ
. With a fixed value of p

Ω(1)
θ

, we can obtain
the optimal (r0, r1) by solving Eq. (29). Let (r∗0(p1), r∗1(p1)) be the solution of Eq. (29) when p

Ω(1)
θ

is fixed to p1 with
0 ≤ p1 ≤ 1.

First, we note that the first inequality constraint in Eq. (30) is a convex set and includes (1, 1) in its relative interior because
p
Ω(0)

θ
f(1) + p

Ω(1)
θ
f(1) = 0 < δ and p

Ω(0)
θ

· 1 + p
Ω(1)

θ
· 1 = 1. Note that in a two dimensional space, the number of

intersections between a line and a boundary of a convex set is at most two. For δ > 0, there are always exactly two
different points that satisfies both p

Ω(0)
θ
f(r0) + p

Ω(1)
θ
f(r1) = δ and p

Ω(0)
θ
r0 + p

Ω(1)
θ
r1 = 1. We further see that the optimal

solution of r1 is always greater than 1 because the objective in Eq. (29) is an increasing function of r1. Taking these facts
into account, we can see that the optimal solution, (r∗0(p1), r∗0(p1)), satisfies either of the following two cases depending
on whether the inequality constraint r0 ≥ 0 in Eq. (30) is active or not.

Case 1: p0 · f(r∗0(p1)) + p1 · f(r∗1(p1)) = δ, p0 · r∗0(p1) + p1 · r∗1(p1) = 1, 0 < r∗0(p1) < 1 < r∗1(p1). (31)

Case 2: r∗0(p1) = 0, r∗1(p1) =
1

p1
, (32)
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where p0 = 1 − p1. We now show that there is the monotonic relation between p
Ω(1)

θ
and Eq. (29) for both the cases. To

this end, pick any p′1 such that p1 < p′1 ≤ 1, and let (r∗0(p′1), r∗1(p′1)) be the solution of Eq. (29) when p
Ω(1)

θ
is fixed to p′1.

Regarding Case 2 in Eq. (32), the adversarial risk in Eq. (29) is p1 · 1
p1

= 1. On the other hand, it is easy to see that the
active equality constraint stays r0 ≥ 0 in Eq. (30) for p

Ω(1)
θ

larger p1. Hence, we can show that r∗0(p′1) = 0, r∗1(p
′
1) =

1
p′
1

.
Therefore, the adversarial risk in Eq. (29) stays p′1 · 1

p′
1
= 1. This concludes our proof for Eq. (10) in Theorem 1.

Regarding Case 1 in Eq. (31), we note that both the ordinary risk p1 and the adversarial risk p1 · r∗1(p1) are strictly less
than 1. Our goal is to show Eq. (9) in Theorem 1, which is equivalent to showing

p1 · r∗1(p1) < p′1 · r∗1(p′1). (33)

To do so, we further consider the following two sub-cases of Case 1 in Eq. (31):

Case 1-a: p′1 < p1 · r∗1(p1) (34)
Case 1-b: p′1 ≥ p1 · r∗1(p1). (35)

In Case 1-b, we can straightforwardly show Eq. (33) as follows.

p1 · r∗1(p1) ≤ p′1 < p′1 · r∗1(p′1), (36)

where the last inequality follows from 1 < r∗1(p
′
1).

Now, assume Cases 1 and 1-a in Eqs. (31) and (34). Our goal is to show that r∗1(p′1) satisfies r∗1(p′1) >
p1

p′
1
r∗1(p1) because

then Eq. (33) holds. To this end, we show that

r′1 =
p1
p′1

· r∗1(p1) (37)

is contained in the relative interior (excluding the boundary) of Eq. (30) with p
Ω(1)

θ
fixed to p′1. Then, because our objective

in Eq. (29) is linear in r1, r′1 < r∗1(p
′
1) holds in our setting. Then, we arrive at r∗1(p′1) >

p1

p′
1
· r∗1(p1). Formally, our goal is

to show r′1 in Eq. (37) satisfies

p′0 · f(r′0) + p′1 · f(r′1) < δ, p′0r
′
0 + p′1r

′
1 = 1, r′0 > 0, r′1 > 0, (38)

where p′0 = 1− p′1. By Eqs. (31), (37) and the second equality of Eq. (38), we have

r′0 =
1− p′1r

′
1

p′0
=

1− p1 · r∗1(p1)
p′0

=
p0
p′0

· r∗0(p1). (39)

The latter two inequalities of Eq. (38), i.e., r′0 > 0 and r′1 > 0 follow straightforwardly from the assumptions. Combining
the assumption in Eq. (34) and the last inequality in Eq. (31), we have the following inequality.

0 < r∗0(p1) < r′0 < 1 < r′1 < r∗1(p1). (40)

Thus, we can write r′0 (resp. r′1) as a linear interpolation of r∗0(p1) and 1 (resp. 1 and r∗1(p1)) as follows.

r′0 = α · r∗0(p1) + (1− α) · 1, r′1 = β · r∗1(p1) + (1− β) · 1, (41)

where 0 < α,β < 1. Substituting Eqs. (37) and (39), we have

α =
1

1− r∗0(p1)
· p

′
0 − p0 · r∗0(p1)

p′0
, (42)

β =
1

r∗1(p1)− 1
· p1 · r

∗
1(p1)− p′1
p′1

=
1

r∗1(p1)− 1
· p

′
0 − p0 · r∗0(p1)

p′1
. (43)



Does Distributionally Robust Supervised Learning Give Robust Classifiers?

Then, we have

p′0f(r
′
0) + p′1f(r

′
1) = p′0f(α · r∗0(p1) + (1− α) · 1) + p′1f(β · r∗1(p1) + (1− β) · 1)
≤ p′0 · {α · f(r∗0(p1)) + (1− α) · f(1)}+ p′1 · {β · f(r∗1(p1)) + (1− β) · f(1)} (∵ convexity of f(·))
= p′0α · f(r∗0(p1)) + p′1β · f(r∗1(p1)) (∵ f(1) = 0)

= (p′0 − p0 · r∗0(p1))
(

1

1− r∗0(p1)
· f(r∗0(p1)) +

1

r∗1(p1)− 1
· f(r∗1(p1))

)
(∵ Eqs. (42) and (43))

= (p1 · r∗1(p1)− p′1)

(
1

1− r∗0(p1)
· f(r∗0(p1)) +

1

r∗1(p1)− 1
· f(r∗1(p1))

)

< (p1 · r∗1(p1)− p1)

(
1

1− r∗0(p1)
· f(r∗0(p1)) +

1

r∗1(p1)− 1
· f(r∗1(p1))

)
(∵ p′1 > p1.)

= p0 · f(r∗0(p1)) + p1 · f(r∗1(p1))
= δ. (∵ the first equation of Eq. (31).)

This concludes our proof that Eq. (29) has monotonic relationship with p
Ω(1)

θ
. Recall that p

Ω(1)
θ

is by definition equal to the
ordinary risk, R(θ). Therefore, for any pair of parameters θ1 and θ2, if Radv(θ1) < 1, we have

R(θ1) < R(θ2) =⇒ Radv(θ1) < Radv(θ2). (44)

To show that the opposite direction of Eq. (44) holds, we need to show that any pair of parameters θ1 and θ2, the following
holds:

R(θ1) = R(θ2) =⇒ Radv(θ1) = Radv(θ2). (45)

This is obvious from Eq. (29) because the adversarial risk depends on the parameter of the model only through the risk of the
model. This concludes the proof of Theorem 1, in which the adversarial risk and ordinary risk are compared. For the case
of empirical approximations, the same argument can be used by replacing the expectations with empirical averages.

B. Proof of Theorem 2
We prove by contradiction. Let Ω be the subset of R|Y|. We consider the multi-class classification and assume that the loss
ℓ(·, ·) : Ω× Y → R≥0 is classification-calibrated. Although we will mainly focus on a multi-class classification scenario,
our proof easily extends to a binary classification scenario, which we will discuss at the end of the proof.

Let g(·) : X → RK be prediction function, where K is the number of classes. Assume the prediction function, g, can take
any measurable functions. Then, g∗ that minimizes the ordinary risk using the classification-calibrated loss, ℓ(·, ·), i.e.,

g∗ = argmin
g

Ep(x,y) [ℓ(g(x), y)]

= argmin
g

Ep(x)

⎡

⎣
∑

y∈Y
p(y|x)ℓ(g(x), y)

⎤

⎦ , (46)

is the Bayes optimal classifier10 (Bartlett et al., 2006; Tewari & Bartlett, 2007).

Our goal is to show that g(adv) that minimizes the adversarial risk using classification-calibrated loss is also Bayes optimal
w.r.t. p(x, y). More specifically, we consider

g(adv) = argmin
g

sup
q:Df [q||p]≤δ

Eq(x,y)[ℓ(g(x), y)] (47)

= argmin
g

sup
r(·,·)∈Uf

Ep(x,y) [r(x, y)ℓ(g(x), y)] . (48)

10The classifier that minimizes the mis-classification rate for the training density p(x, y) (the 0-1 loss is considered), i.e., the classifier
whose prediction on x is equal to argmaxy∈Y p(y|x).
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Recall that q(x, y) in Eq. (47) and r(x, y) in Eq. (48) are related by r(x, y) ≡ q(x, y)/p(x, y). In the following, with a slight
abuse of notation, we denote r(x) ≡ q(x)/p(x) and r(y|x) ≡ q(y|x)/p(y|x). Obviously, we have r(x, y) = r(x)r(y|x).

Let r∗(·, ·) be the solution of the inner maximization of Eq. (48) with g(adv), i.e.,

r∗(·, ·) = argmax
r(·,·)∈Uf

Ep(x,y)

[
r(x, y)ℓ(g(adv)(x), y)

]
. (49)

Then, by Danskin’s theorem (Danskin, 1966), Eq. (48) can be rewritten as

g(adv) = argmin
g

Ep(x,y) [r
∗(x, y)ℓ(g(x), y)]

= argmin
g

Ep(x)

[
r∗(x)Ep(y|x)[r

∗(y|x)ℓ(g(x), y)]
]

= argmin
g

Ep(x)

⎡

⎣r∗(x)
∑

y∈Y
p(y|x)r∗(y|x)ℓ(g(x), y)

⎤

⎦ . (50)

Now, suppose that g(adv) is not Bayes optimal almost surely over q∗(x) ≡ r∗(x)p(x). Then, we have
∫

x∈S
q∗(x)dx > 0, (51)

where

S ≡
{
x

∣∣∣∣ x ∈ X , p(x) > 0, q∗(x) > 0, argmax
y∈Y

p(y|x) ̸= argmax
y∈Y

g(adv)y (x)

}
. (52)

In the following, we denote x ∈ S by x†, i.e., whenever we denote x†, we implicitly assume x† ∈ S . We immediately
have r∗(x†) = q∗(x†)/p(x†) > 0. We let y(max)(x†) ≡ argmaxy∈Y p(y|x†) and y(adv)(x†) ≡ argmaxy∈Y g(adv)y (x†).
Since ℓ(·, ·) is classification-calibrated, from Eq. (50) and the definition of the classification-calibrated loss (Bartlett et al.,
2006; Tewari & Bartlett, 2007), we have

y(adv)(x†) = argmax
y∈Y

p(y|x†)r∗(y|x†). (53)

Because we have x† ∈ S , y(adv)(x†) ̸= y(max)(x†) holds. Thus, we have

p(y(adv)(x†)|x†)r∗(y(adv)(x†)|x†) > p(y(max)(x†)|x†)r∗(y(max)(x†)|x†). (54)

Combining this with p(y(max)(x†)|x†) > p(y(adv)(x†)|x†), we have

r∗(y(adv)(x†)|x†) > r∗(y(max)(x†)|x†) > 0. (55)

We construct a new ratio function, rnew(·, ·), by the following operations. We first set rnew(x, y) ← r∗(x, y) for all
(x, y) ∈ X × Y . Then, for ∀x ∈ S , we let

rnew(y
(max)(x)|x)← r∗(y(max)(x)|x) + ϵ · p(y(adv)(x)|x), (56)

rnew(y
(adv)(x)|x)← r∗(y(adv)(x)|x)− ϵ · p(y(max)(x)|x), (57)

where ϵ > 0 is a sufficiently small number. We show that such rnew(·, ·) is still in Uf . As shown in Eqs. (56) and (57), the
value of rnew(·, ·) changed from r∗(·, ·) only in S . Therefore, given that r∗(·, ·) ∈ Uf , in order to show rnew(·, ·) ∈ Uf , it
is sufficient to show the following three equality/inequalities:

Ep(x,y) [f (rnew(x, y))] ≤ δ, Ep(x,y)[rnew(x, y)] = 1, rnew(x, y) ≥ 0 (∀(x, y) ∈ X × Y). (58)

Because we know r∗(·, ·) ∈ Uf , it is sufficient to show

Ep(x,y) [f (rnew(x, y))] ≤ Ep(x,y) [f (r∗(x, y))] ,

Ep(x,y)[rnew(x, y)] = Ep(x,y)[r
∗(x, y)],

rnew(x, y) ≥ 0, ∀(x, y) ∈ X × Y. (59)
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Furthermore, rnew(·, ·) only differs from r∗(·, ·) in (x, y(max)) ∈ S × Y and (x, y(adv)) ∈ S × Y . Therefore, to show
Eq. (59), all we need to show is

∫

x∈S

{
p(x, y(adv)(x)) · f(rnew(x, y(adv)(x))) + p(x†, y(max)(x)) · f(rnew(x, y(max)(x)))

}
dx

≤
∫

x∈S

{
p(x, y(adv)(x)) · f(r∗(x, y(adv)(x))) + p(x, y(max)(x)) · f(r∗(x, y(max)(x)))

}
dx, (60)

∫

x∈S

{
p(x, y(adv)(x)) · rnew(x, y(adv)(x)) + p(x, y(max)(x)) · rnew(x, y(max)(x))

}
dx

=

∫

x∈S

{
p(x, y(adv)(x)) · r∗(x, y(adv)(x)) + p(x, y(max)(x)) · r∗(x, y(max)(x))

}
dx, (61)

rnew(x, y
(adv)(x)) ≥ 0, rnew(x, y

(max)(x)) ≥ 0, ∀x ∈ S. (62)

First, since r∗(y(adv)(x†)|x†) > 0 holds from Eq. (54), rnew(y(adv)(x†)|x†) = r∗(y(adv)(x†)|x†)−ϵ ·p(y(max)(x†)|x†) ≥
0 holds for sufficiently small ϵ. Thus, rnew(x†, y(adv)(x†)) = rnew(y(adv)(x†)|x†)r(x†) ≥ 0. Hence, Eq. (62) holds for
sufficiently small ϵ. Also, Eq. (61) follows because

Integrand of L.H.S. of Eq. (61)

= p(x†, y(adv)(x†)) ·
[
rnew(x

†) ·
{
r∗(y(adv)(x†)|x†)− ϵ · p(y(max)(x†)|x†)

}]

+ p(x†, y(max)(x†)) ·
[
rnew(x

†) ·
{
r∗(y(max)(x†)|x†) + ϵ · p(y(adv)(x†)|x†)

}]
(63)

= p(x†, y(adv)(x†)) ·
[
r∗(x†) ·

{
r∗(y(adv)(x†)|x†)− ϵ · p(y(max)(x†)|x†)

}]

+ p(x†, y(max)(x†)) ·
[
r∗(x†) ·

{
r∗(y(max)(x†)|x†) + ϵ · p(y(adv)(x†)|x†)

}]
(64)

= p(x†, y(adv)(x†)) · r∗(x†, y(adv)(x†)) + p(x†, y(max)(x†)) · r∗(x†, y(max)(x†))

+ ϵ · r∗(x†)p(x†)
{
p(y(adv)(x†)|x†)p(y(max)(x†)|x†)− p(y(max)(x†)|x†)p(y(adv)(x†)|x†)

}

︸ ︷︷ ︸
=0

(65)

= Integrand of R.H.S. of Eq. (61) (66)

Finally, we show Eq. (60). Substituting Eqs. (56) and (57) into the L.H.S. of Eq. (60), we have

Integrand of L.H.S. of Eq. (60)

= p(x†) ·
{
p(y(adv)(x†)|x†) · f

(
r∗(x†, y(adv)(x†))− ϵ · r∗(x†)p(y(max)(x†)|x†)

)

+ p(y(max)(x†)|x†) · f
(
r∗(x†, y(max)(x†)) + ϵ · r∗(x†)p(y(adv)(x†)|x†)

)}
. (67)

Because f(·) is differentiable, we can apply the first order Taylor expansion to the two terms involving f(·) in Eq. (67) as

f
(
r∗(x†, y(adv)(x†))− ϵ · r∗(x†)p(y(max)(x†)|x†)

)

= f
(
r∗(x†, y(adv)(x†))

)
− ϵ · f ′

(
r∗(x†, y(adv)(x†))

)
· r∗(x†)p(y(max)(x†)|x†) +O(ϵ2),

f
(
r∗(x†, y(max)(x†)) + ϵ · r∗(x†)p(y(adv)(x†)|x†)

)

= f
(
r∗(x†, y(max)(x†))

)
+ ϵ · f ′

(
r∗(x†, y(max)(x†))

)
· r∗(x†)p(y(adv)(x†)|x†) +O(ϵ2). (68)

Substituting Eq. (68) into Eq. (67), we have
Integrand of L.H.S. of Eq. (60)

= p(x†, y(adv)(x†)) · f
(
r∗(x†, y(adv)(x†))

)
+ p(x†, y(max)(x†)) · f

(
r∗(x†, y(max)(x†))

)

+ ϵ · r∗(x†)p(y(max)(x†)|x†)p(y(adv)(x†)|x†) ·
{
f ′

(
r∗(x†, y(max)(x†))

)
− f ′

(
r∗(x†, y(adv)(x†))

)}
+O(ϵ2), (69)
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Since f(·) is convex, its derivative f ′(·) is non-decreasing. Also r∗(x†, y(adv)(x†)) > r∗(x†, y(max)(x†)) holds because
of Eq. (55). Therefore, we have f ′(r∗(x†, y(max)(x†)))− f ′(r∗(x†, y(adv)(x†))) ≤ 0.

First, assume f ′(r∗(x†, y(max)(x†))) − f ′(r∗(x†, y(adv)(x†))) = 0. Then, f(·) is exactly linear in the interval of
[r∗(x†, y(max)(x†)), r∗(x†, y(adv)(x†))]; hence, O(ϵ2) term in Eq. (69) is exactly 0 for sufficiently small ϵ. Hence, we
have

Eq. (69) = p(x†, y(adv)(x†)) · f(r∗(x†, y(adv)(x†))) + p(x†, y(max)(x†)) · f(r∗(x†, y(max)(x†)))

= Integrand of R.H.S. of Eq. (60). (70)

Next, assume f ′(r∗(x†, y(max)(x†))) − f ′(r∗(x†, y(adv)(x†))) < 0. In this case, since the coefficient of ϵ in Eq. (71) is
negative, there exits sufficiently small ϵ > 0 such that

ϵ · r∗(x†)︸ ︷︷ ︸
>0

p(y(max)(x†)|x†)p(y(adv)(x†)|x†)︸ ︷︷ ︸
>0

·
{
f ′
(
r∗(x†, y(max)(x†))

)
− f ′

(
r∗(x†, y(adv)(x†))

)}

︸ ︷︷ ︸
<0

+O(ϵ2) < 0 (71)

Thus, we have

Eq. (69) < p(x†, y(adv)(x†)) · f(r∗(x†, y(adv)(x†))) + p(x†, y(max)(x†)) · f(r∗(x†, y(max)(x†)))

= R.H.S. of Eq. (60). (72)

In both Eqs. (70) and (72), by taking an integral in S , Eq. (60) holds.

In summary, since Eqs. (60), (61) and (62) all hold, the newly constructed, rnew(·, ·), is still in Uf .

We now show that rnew(·, ·) actually gives larger objective of Eq. (49) than r∗(·, ·), which contradicts Eq. (49). Since the
value of rnew(·, ·) is mostly the same as that of r∗(·, ·) except that we have Eqs. (56) and (57), we only need to consider
the part they differ. Therefore, it is sufficient to show
∫

x∈S
p(x)r∗(x)

{
p(y(adv)(x)|x)rnew(y(adv)(x)|x)ℓ(g(adv)(x), y(adv)(x)) + p(y(max)(x)|x)rnew(y(max)(x)|x)ℓ(g(adv)(x), y(max)(x))

}

︸ ︷︷ ︸
(a)

dx

>

∫

x∈S
p(x)r∗(x)

{
p(y(adv)(x)|x)r∗(y(adv)(x)|x)ℓ(g(adv)(x), y(adv)(x)) + p(y(max)(x)|x)r∗(y(max)(x)|x)ℓ(g(adv)(x), y(max)(x))

}

︸ ︷︷ ︸
(b)

dx.

(73)

Subtracting (b) from (a) in Eq. (73), and using Eqs. (56) and (57), we have

p(y(adv)(x†)|x†)ℓ(g(adv)(x†), y(adv)(x†))
{
rnew(y

(adv)(x†)|x†)− r∗(y(adv)(x†)|x†)
}

+ p(y(max)(x†)|x†)ℓ(g(adv)(x†), y(max)(x†))
{
rnew(y

(max)(x†)|x†)− r∗(y(max)(x†)|x†)
}

= ϵ · p(y(adv)(x†)|x†)p(y(max)(x†)|x†)
{
−ℓ(g(adv)(x†), y(adv)(x†)) + ℓ(g(adv)(x†), y(max)(x†))

}
. (74)

We now show ℓ(g(adv)(x†), y(max)(x†)) > ℓ(g(adv)(x†), y(adv)(x†)). Suppose ℓ(g(adv)(x†), y(max)(x†)) ≤
ℓ(g(adv)(x†), y(adv)(x†)). Construct g′ ∈ RK by swapping the y(max)-th and y(adv)-th elements of g(adv)(x†), while re-
taining other elements to be exactly the same. Then, because of the assumption that ℓ(·, ·) is invariant to class permutation,
we have ℓ(g′, y(max)(x†)) = ℓ(g(adv)(x†), y(adv)(x†)) and ℓ(g′, y(adv)(x†)) = ℓ(g(adv)(x†), y(max)(x†)). Combining this
with Eq. (54), we have

p(y(adv)(x†)|x†)r∗(y(adv)(x†)|x†) · ℓ(g′, y(adv)(x†)) + p(y(max)(x†)|x†)r∗(y(max)(x†)|x†) · ℓ(g′, y(max)(x†))

< p(y(adv)(x†)|x†)r∗(y(adv)(x†)|x†) · ℓ(g(adv)(x†), y(adv)(x†)) + p(y(max)(x†)|x†)r∗(y(max)(x†)|x†) · ℓ(g(adv)(x†), y(max)(x†)),
(75)

which is in contradiction with the fact that g(adv) achieves the minimal value of Eq. (50). Therefore, we have
ℓ(g(adv)(x†), y(max)(x†)) > ℓ(g(adv)(x†), y(adv)(x†)). Hence, Eq. (74) is positive. Multiplying Eq. (74) by p(x)r∗(x)
and taking an integral in S , it is still positive because of Eq. (51). Thus, we have Eq. (73).
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In conclusion, using rnew(·, ·) gives larger objective of Eq. (49) than r∗(·, ·). This contradicts the fact that r∗(·, ·) is the
solution of Eq. (49). Therefore, g(adv), which is obtained via ARM in Eq. (47), is Bayes optimal and coincides with g∗

that is obtained via ordinary RM in Eq. (46).

So far, we showed that g(adv), which is any solution of ARM, coincides with the Bayes optimal classifier almost surely
over q∗(x). We now turn our focus to the region

S ′ ≡ {x | x ∈ X , p(x) > 0, q∗(x) = 0} . (76)

Because g(adv) is chosen from all measurable functions, its function value at x is obtained in a point-wise manner:

g(adv)(x) = argmin
ŷ∈RK

∑

y∈Y
p(y|x)r∗(y|x)ℓ(ŷ, y). (77)

For x ∈ S ′, we immediately have r∗(x) = q∗(x)/p(x) = 0. Then, for all x ∈ S ′, we have r∗(x, y) = 0 for any
r(y|x), y ∈ Y . Therefore, for x ∈ S ′, we can virtually set r∗(y|x) = 1 for all y ∈ Y . Substituting this to Eq. (77), we have

g(adv)(x) = argmin
ŷ∈RK

∑

y∈Y
p(y|x)ℓ(ŷ, y), for x ∈ S ′. (78)

If follows from Eq. (78) and the use of the classification-calibrated loss that

argmax
y

g(adv)y (x) = argmax
y

p(y|x), for x ∈ S ′. (79)

This particular g(adv) coincides with the Bayes optimal classifier for all x ∈ S ′. Define

Sdiff ≡
{
x

∣∣∣∣ x ∈ X , p(x) > 0, argmax
y∈Y

p(y|x) ̸= argmax
y∈Y

g(adv)y (x)

}
.

= S ∪
{
x

∣∣∣∣ x ∈ X , p(x) > 0, q∗(x) = 0, argmax
y∈Y

p(y|x) ̸= argmax
y∈Y

g(adv)y (x)

}

︸ ︷︷ ︸
≡S′

diff

. (80)

Then we have
∫

x∈Sdiff

p(x)dx =

∫

x∈S
p(x)dx+

∫

x∈S′
diff

p(x)dx

︸ ︷︷ ︸
=0 ∵ Eq. (79).

=

∫

x∈S

q∗(x)

r∗(x)
dx

≤ 1

minx∈S r∗(x)

∫

x∈S
q∗(x)dx

= 0. (81)

Therefore, the particular g(adv) coincides with the Bayes optimal classifier almost surely over p(x).

Finally, we consider binary classification, where the key differences to multi-class classification are that the prediction
function is X → R, Y = {+1,−1}, and the prediction is made based on the sign of the output of the prediction function.
Therefore, we need to replace all ‘argmax’ in the above proof with ‘sign’. In addition, to show ℓ(g(adv)(x†), y(max)(x†)) >
ℓ(g(adv)(x†), y(adv)(x†)), we construct g′ in Eq. (75) by −g(adv)(x†). With these two modifications, all the arguments for
multi-class classification hold for binary classification.
Remark 2. Here, we show that if the KL divergence is used for the f -divergence, the prediction of any solution g(adv) of
ARM coincides with that of the Bayes optimal classifier almost surely over p(x).

In the following, assume the KL divergence is used. Given prediction function g, the density ratio put by the adversary
becomes

r∗(x, y) =
1

Z(γ)
exp

(
ℓ(g(x), y)

γ

)
, (82)
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where

Z(γ) = Ep(x,y)

[
exp

(
ℓ(g(x), y)

γ

)]
, (83)

and γ is chosen so that the following equality holds:

Ep(x,y) [r
∗(x, y) log r∗(x, y)] = δ. (84)

From Eq. (82), we see that r∗(·, ·) is a positive function for any g as long as ℓ(·, ·) is bounded. Thus, q∗(x) ≡∑
y∈Y r∗(x, y)p(x, y) is also positive for x ∈ X such that p(x) > 0. On the other hand, because we assume q ≪ p,

p(x) = 0 implies q(x) = 0. Thus, we have q∗(x) > 0 iff p(x) > 0.

Now, assume that q∗(x) > 0 iff p(x) > 0, and g(adv) coincides with the Bayes optimal classifier almost surely over q∗(x).
Then, we have

∫

x∈S
q∗(x)dx = 0, (85)

where

S ′ ≡
{
x

∣∣∣∣ x ∈ X , p(x) > 0, q∗(x) > 0, argmax
y∈Y

p(y|x) ̸= argmax
y∈Y

g(adv)y (x)

}
. (86)

Because r∗(x) ≡ q∗(x)/p(x) is positive, ϵ ≡ minx∈S r∗(x) is also positive. Then, we have
∫

x∈S
p(x)dx =

∫

x∈S

q∗(x)

r∗(x)
dx

≤ 1

ϵ

∫

x∈S
q∗(x)dx

= 0. (87)

Therefore, g(adv) coincides with the Bayes optimal classifier almost surely over the training density p(x).

C. Proof of Lemma 1
By assumption, ℓ(ŷ, y) is a convex margin loss. Thus, we can let ℓ(ŷ, y) = φ(yŷ), where φ(·) is a convex function. On
the other hand, by Definition 1, for some non-constant, non-decreasing and non-negative function h(·), the steeper loss
ℓsteep(ŷ, y), satisfies

∂ℓsteep(ŷ, y)

∂ŷ
= h(ℓ(ŷ, y))

∂ℓ(ŷ, y)

∂ŷ

= h(φ(yŷ))
∂φ(yŷ)

∂ŷ
. (88)

From Eq. (88), it is easy to see that ℓsteep(ŷ, y) is also a margin loss and can be written as ℓsteep(ŷ, y) = φsteep(yŷ). Our
first goal is to show that φsteep(·) is convex. To this end, it is sufficient to show that ∂φsteep(yŷ)

∂ŷ = h(φ(yŷ))∂φ(yŷ)∂ŷ is
non-decreasing in ŷ, Y = {+1,−1}.

Since φ(yŷ) is convex in ŷ, φ(yŷ)
∂ŷ is non-decreasing in ŷ. Let ŷα be the smallest ŷα such that ℓ(ŷα,yi)

∂ŷ = 0, if such ŷα exists.

In the following, we analyze φ(yŷ)∂φ(yŷ)∂ŷ , considering two cases: 1) ŷ ≤ ŷα and 2) ŷα ≤ ŷ. Note that ŷα may not always

exist because φ(yŷ)
∂ŷ can be negative for any finite ŷ, which is the case for the widely-used classification losses such as the

exponential loss and the logistic loss. In such a case, we only consider the first case, letting ŷα arbitrarily large.

Case 1 ŷ ≤ ŷα: By convexity of φ(yŷ), for ŷ ≤ ŷα, φ(yŷ)
∂ŷ ≤ 0 holds and therefore, φ(yŷ) is non-increasing in ŷ. Since h(·)

is a non-decreasing function, h(φ(yŷ)) is non-increasing in ŷ for ŷ ≤ ŷα. In summary, for ŷ ≤ ŷα, φ(yŷ)
∂ŷ is a non-positive
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non-decreasing function of ŷ, and h(φ(yŷ)) is a non-negative non-increasing function of ŷ. Thus, for ŷ ≤ ŷα, their product
h(φ(yŷ))φ(yŷ)∂ŷ is a non-decreasing function of ŷ.

Case 2 ŷα ≤ ŷ: By convexity of φ(yŷ), for ŷα ≤ ŷ, φ(yŷ)
∂ŷ ≥ 0 holds and therefore, φ(yŷ) is non-decreasing in ŷ. Since

h(·) is a non-decreasing function, h(φ(yŷ)) is non-decreasing in ŷ for ŷ ≤ ŷα. In summary, for ŷα ≤ ŷ, φ(yŷ)
∂ŷ is a non-

negative non-decreasing function of ŷ, and h(φ(yŷ)) is a non-negative non-decreasing function of ŷ. Thus, for ŷ ≤ ŷα,
their product h(φ(yŷ))φ(yŷ)∂ŷ is a non-decreasing function of ŷ.

Therefore, for any ŷ, h(φ(yŷ))φ(yŷ)∂ŷ is a non-decreasing function of ŷ, which directly indicates that the steeper loss,
φsteep(yŷ), is convex.

We now utilize the fact that a convex margin loss ψ(yŷ) is classification calibrated iff ψ′(0) < 0 [Theorem 6 in (Bartlett
et al., 2006)]. Using this fact, because φ(yŷ) is classification calibrated, we have φ′(0) < 0. Furthermore, from the
assumption, we have h(φ(0)) > 0. Therefore, we have φ′steep(0) = h(φ(0))φ′(0) < 0. Using the fact again, we
immediately have that φsteep(yŷ) is classification calibrated.
Remark 3. In the proof, we need to assume h(φ(0)) > 0. From Appendix D, we know that h(ℓ) corresponds to the weight
put by the adversary to data points with a loss value of ℓ. We see from Eq. (22) that when the KL divergence is used, the
adversary will only assign positive weights to data losses. Therefore, Lemma 1 always holds when the KL divergence is
used.

D. Proof of Theorem 3
Let θ∗ be the stationary point of Eq. (7). By using a chain rule and Danskin’s theorem (Danskin, 1966), θ∗ satisfies

1

N

N∑

i=1

r∗i
∂ℓ(ŷ, yi)

∂ŷ

∣∣∣∣
ŷ=gθ∗ (xi)

· ∇θgθ(xi)|θ=θ∗ ∈ 0, (89)

where r∗ is the solution of inner maximization of Eq. (7) at the stationary point.

Now, we analyze r∗, which is the solution of Eq. (7) at the stationary point θ∗. For notational convenience, for 1 ≤ i ≤ N ,
let us denote ℓi(θ∗) by ℓ∗i . Then, r∗ is the solution of the following optimization problem.

max
r∈Ûf

1

N

N∑

i=1

riℓ
∗
i , (90)

Ûf =

{
r

∣∣∣∣∣
1

N

N∑

i=1

f (ri) ≤ δ,
1

N

N∑

i=1

ri = 1, r ≥ 0

}
, (91)

Note that Eq. (90) is a convex optimization problem because it has a linear objective with a convex constraint; thus, any
local maximum is the global maximum. Nonetheless, there can be multiple solutions that attain the same global maxima.
Among those solutions, we now show that there exists r∗ such that elements of r∗ has the monotonic relationship to the
corresponding data losses, i.e., for any 1 ≤ j ̸= k ≤ N ,

ℓ∗j < ℓ∗k ⇒ 0 ≤ r∗j ≤ r∗k, (92)

ℓ∗j = ℓ∗k ⇒ 0 ≤ r∗j = r∗k. (93)

To prove this, we assume we obtain one of optimal solutions of Eq. (90), which we denote as r′∗. If this r′∗ satisfies
Eqs. (92) and (93) for any j and k, then we are done. In the following, we assume r′∗ does not satisfy either Eqs. (92) or
(93).

First, assume that r′∗ does not satisfy Eq. (92). Then, there exist 1 ≤ j ̸= k ≤ N such that ℓ∗j < ℓ∗k but r′∗j > r′∗k . Define
r′′∗ such that

r′′∗i =

⎧
⎪⎨

⎪⎩

r′∗i if i ̸= j, k

r′∗j if i = k

r′∗k if i = j

for 1 ≤ i ≤ N. (94)
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Then, it is easy to see r′′∗ ∈ Ûf , and the following holds:

1

N

N∑

i=1

r′′∗i ℓ∗i −
1

N

N∑

i=1

r′∗i ℓ
∗
i =

1

N

(
r′′∗j ℓ∗j + r′′∗k ℓ∗k − r′∗j ℓ

∗
j − r′∗k ℓ

∗
k

)

=
1

N

(
r′∗k ℓ

∗
j + r′∗j ℓ

∗
k − r′∗j ℓ

∗
j − r′∗k ℓ

∗
k

)

=
1

N

(
r′∗j − r′∗k

) (
ℓ∗k − ℓ∗j

)

> 0. (95)

Therefore, the newly defined r′′∗ attains the larger objective value of Eq. (90), which contradicts the assumption that r′∗ is
the optimal solution of Eq. (90). Thus, r′∗ always satisfies Eq. (92).

Second, assume that r′∗ does not satisfy Eq. (93). Then, there exist 1 ≤ j ̸= k ≤ N such that ℓ∗j = ℓ∗k but r′∗j ̸= r′∗k .
Define r′′∗ such that

r′′∗i =

{
r′∗i if i ̸= j, k

(r′∗i + r′∗j )/2 if i = j, k
for 1 ≤ i ≤ N. (96)

Then, it is easy to see r′′∗ ∈ Ûf because

1

N

N∑

i=1

f (r′′∗i ) =
1

N

⎧
⎨

⎩

⎛

⎝
∑

i ̸=j,k

f (r′′∗i )

⎞

⎠+ f
(
r′′∗j
)
+ f (r′′∗k )

⎫
⎬

⎭

=
1

N

⎧
⎨

⎩

⎛

⎝
∑

i ̸=j,k

f (r′∗i )

⎞

⎠+ f
(
(r′∗j + r′∗k )/2

)
+ f

(
(r′∗j + r′∗k )/2

)
⎫
⎬

⎭

≤ 1

N

⎧
⎨

⎩

⎛

⎝
∑

i ̸=j,k

f (r′∗i )

⎞

⎠+ f
(
r′∗j
)
+ f (r′∗k )

⎫
⎬

⎭ (∵ convexity of f(·).)

=
1

N

N∑

i=1

f (r′∗i )

≤ δ.
(
∵ r′∗ ∈ Ûf .

)
(97)

Also, it is easy to see that r′′∗ attain the same maximum value as r′∗; thus, r′′∗ is the optimal solution of Eq. (90), and
notably, we have r′′∗j = r′′∗k for ℓ∗j = ℓ∗k. In general, we can start from any r′∗ ∈ Ûf and equally distribute the weights to
the same losses to obtain r′′∗, which is still in Ûf and attains exactly the same global optimal value in Eq. (90).

In the following, we assume we have r∗ that satisfies Eqs (92) and (93) for any 1 ≤ j ̸= k ≤ N . Then, there exits a
non-decreasing non-negative function r∗(·) : R→ R, such that

r∗(ℓ∗i ) = r∗i , for 1 ≤ i ≤ N. (98)

Let us construct a new loss function ℓDRSL(ŷ, y) by its derivative:

∂ℓDRSL(ŷ, y)

∂ŷ
≡ r∗(ℓ(ŷ, y))

∂ℓ(ŷ, y)

∂ŷ
. (99)

Then, from Eqs. (89), (98) and (99), we immediately have

1

N

N∑

i=1

∂ℓDRSL(ŷ, yi)

∂ŷ

∣∣∣∣
ŷ=gθ∗ (xi)

· ∇θgθ(xi)|θ=θ∗ ∈ 0. (100)

This readily implies that θ∗ is a stationary point of Eq. (13), i.e., ERM using ℓDRSL(ŷ, y). Furthermore, from Eq. (99)
and the non-negativeness and non-decreasingness of r∗(·), we see that the newly constructed loss, ℓDRSL(ŷ, y), is steeper
than the original loss, ℓ(ŷ, y) (see Definition 1 for the definition of the steeper loss). Here we see that h(·) in Definition 1
exactly corresponds to r∗(·) defined in Eq. (98).
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E. Derivation of the Decomposition of the Adversarial Risk
Here, we derive Eq. (18) for the PE divergence.

Rs-adv(θ)−R(θ) ≡ sup
w∈WPE

Ep(x,y,z) [{w(z)− 1}ℓ(gθ(x), y)]

= sup
w∈WPE

Ep(z)

[
{w(z)− 1}Ep(x,y|z) [ℓ(gθ(x), y)]

]

= sup
w∈WPE

∑

z∈Z
p(z){w(z)− 1}Rz(θ). (101)

It follows from Eq. (23) that for z ∈ Z , we have the adversarial weight as11

w∗(z) =

√
δ∑

z′∈Z p(z′)(Rz′(θ)−R(θ))2
(Rz(θ)−R(θ)) + 1. (102)

Hence, Eq. (101) becomes

∑

z∈Z
p(z){w∗(z)− 1}Rz(θ) =

√
δ∑

z′∈Z p(z′)(Rz′(θ)−R(θ))2

∑

z∈Z
p(z)(Rz(θ)−R(θ))Rz(θ)

=

√
δ∑

z′∈Z p(z′)(Rz′(θ)−R(θ))2

∑

z∈Z
p(z)(Rz(θ)−R(θ))2

=
√
δ ·
√∑

z∈Z
p(z)(Rz(θ)−R(θ))2, (103)

which concludes our derivation.

F. Comparison between the Use of Different f -divergences
We qualitatively compare the use of different f -divergences. For 1 ≤ x, the f functions for the PE, KL divergences are
(x − 1)2, x log x, respectively. The function f in Eq. (20) penalizes the deviation of the adversarial weights from the
uniform weights, 1S . With the quadratic penalty of the PE divergence, it is hard for the adversary to concentrate large
weights onto a small portion of latent categories. In contrast, when the KL divergence is used, the adversary tends to put
large weights to a small portion of latent categories. Hence, users can choose the appropriate divergence depending on
their belief on how concentrated the distribution shift occurs.

G. Formal Statement of the Convergence Rate

Denote by pz = p(z) and wz = w(z) for z ∈ Z and define a set-valued function Φ : RS → 2R
S

as

Φ(u) =
{
w ∈ RS |

∑
s(ps + us)f(ws) ≤ δ,

∑
s(ps + us)ws = 1, ws ≥ 0

}
.

Then, Wf = Φ(0) and Ŵf = Φ(u) where us = ns/N − ps for s = 1, . . . , S. Similarly, denote by lz = Ep(x,y)[p(z |
x, y)ℓ(gθ(x), y)] and define a function Rθ : RS → R indexed by θ as

Rθ(u′) =
∑

s ws(ls + u′
s).

Then, Ep(x,y,z)[wzℓ(gθ(x), y)] = Rθ(0) and R̂(w, θ) = Rθ(u′) where u′
s = nsℓs(θ)/N − ls for s = 1, . . . , S. Finally,

the perturbed objective function can be defined by

J(θ,u,u′) = supw∈Φ(u) Rθ(u′) + λ(u,u′)Ω(θ),

11Here, we need to assume that δ is not so large. Then, we can validly drop the non-negativity inequality constraint of Ŵf , which is
needed to obtain the analytic solution in Eq. (23).



Does Distributionally Robust Supervised Learning Give Robust Classifiers?

where the function λ(u,u′) ≥ 0 serves as the regularization parameter, so that the truly optimal θ∗ is the minimizer of
J(θ,0,0) and the empirically optimal θ̂ is the minimizer of J(θ,u,u′) with the aforementioned perturbations u and u′.

According to the central limit theorem (Chung, 1968), us = Op(1/
√
N), and u′

s = Op(1/
√
N) if the loss ℓ is finite.

Therefore, we only consider perturbations u and u′ such that ∥u∥2 ≤ ϵ and ∥u′∥2 ≤ ϵ in our analysis, where 0 < ϵ ≤
δ/(5
√
S|f ′(1)|) is a sufficiently small constant.

We make the following assumptions:

(a) gθ(x) is linear in θ, and for all θ under consideration, ∥∇θgθ∥∞ = supx ∥∇θgθ(x)∥2 <∞, which implies ∥gθ∥∞ =
supx |gθ(x)| <∞;12

(b) ∂ℓ(t, y)/∂t is bounded from below and above for all t such that |t| ≤ ∥gθ∥∞;13

(c) f(t) is twice differentiable, and this second derivative is bounded from below by a positive number for all t such that
0 ≤ t ≤ sup∥u∥2≤ϵ supw∈Φ(u) maxs ws;14

(d) Ω(θ) is Lipschitz continuous, and λ(u,u′) converges to λ(0,0) in O(∥u∥2 + ∥u′∥2).

We also assume either one of the two conditions holds:

(e1) Ω(θ) is strongly convex in θ and λ(0,0) > 0;
(e2) ℓ(t, y) is twice differentiable w.r.t. t, and ∂2ℓ(t, y)/∂t2 is lower bounded by a positive number for all t such that

|t| ≤ ∥gθ∗∥∞. If t is vector-valued, ∂2ℓ(t, y)/∂t2i is lower bounded for all dimensions of t such that ∥t∥∞ ≤
supx ∥gθ∗(x)∥∞.15

Theorem 5 (Perturbation analysis). Assume (a), (b), (c), (d), and (e1) or (e2). Let θ∗ be the minimizer of J(θ,0,0) and
θu,u′ be the minimizer of J(θ,u,u′). Then, for all u and u′ such that ∥u∥2 ≤ ϵ and ∥u′∥2 ≤ ϵ,

∥θu,u′ − θ∗∥2 = O(∥u∥1/22 + ∥u′∥2),

∥J(θu,u′ ,0,0)− J(θ∗,0,0)∥2 = O(∥u∥1/22 + ∥u′∥2).

The convergence rate of the model parameter and the order of the estimation error are immediate corollaries of Theorem 5.
Theorem 6 (Convergence rate and estimation error). Assume (a), (b), (c), (d), and (e1) or (e2). Let θ∗ be the minimizer of
the adversarial expected risk and θ̂N be the minimizer of the adversarial empirical risk given some training data of size
N . Then, as N →∞,

∥θ̂N − θ∗∥2 = O(N−1/4),

and
∣∣∣
∣∣∣Rs-adv(θ̂N )−Rs-adv(θ

∗)
∣∣∣
∣∣∣
2
= O(N−1/4)

H. Proof of the Convergence Rate
We begin with the growth condition of J(θ,0,0) at θ = θ∗.
Lemma 2 (Second-order growth condition). There exists a constant CJ ′′ > 0 such that

J(θ,0,0) ≥ J(θ∗,0,0) + CJ ′′∥θ − θ∗∥22.

Proof. First consider the assumption (e1). Let CJ ′′ = (1/2)λ(0,0), so that J(θ,0,0) is strongly convex with parameter
CJ ′′ , i.e.,

J(θ,0,0) ≥ J(θ∗,0,0) +∇θJ(θ
∗,0,0)⊤(θ − θ∗) + CJ ′′∥θ − θ∗∥22.

12This makes ℓ(gθ(x), y) convex in θ for all ℓ(t, y) convex in t and ∇2
θℓ(gθ(x), y) easy to handle.

13This is a sufficient condition for the Lipschitz continuity of ℓ. In fact, it must be valid given (a) since ℓ is continuously differentiable
w.r.t. t.

14This is for the Lipschitz continuity of J(θ,u,u′)− J(θ,0,0). It is satisfied by the KL divergence since f ′′(t) = 1/t and Φ(u) is
bounded and then sup∥u∥2≤ϵ supw∈Φ(u) maxs ws < ∞, and by the PE divergence since f ′′(t) = 2

15This makes J(θ,0,0) locally strongly convex in θ around θ∗. It is satisfied by the logistic loss with the
lower bound as 1/(2 + exp(∥gθ∗∥∞) + exp(−∥gθ∗∥∞)) and the softmax cross-entropy loss with the lower bound as
miny minti=± supx ∥gθ∗∥∞ exp(ty)

∑
i ̸=y exp(ti)/(

∑
i exp(ti))

2.
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The lemma follows from the optimality condition which says∇θJ(θ∗,0,0) = 0.

Second consider the assumption (e2) if (e1) does not hold. Without loss of generality, assume that λ(0,0) = 0. Let
w∗ = arg supw∈Φ(0) Rθ∗(0), then according to Danskin’s theorem (Danskin, 1966),

∇θJ(θ
∗,0,0) = Ep(x,y,z)[w

∗
z∇θℓ(gθ∗(x), y)]

= Ep(x,y,z)[w
∗
zℓ

′(gθ∗(x), y)∇θgθ∗(x)]

where ℓ′(gθ∗(x), y) means ∂ℓ(t, y)/∂t|t=gθ∗ (x). The assumption (a) guarantees that ∇θgθ∗(x) is no longer a function of
θ, and thus

∇2
θJ(θ

∗,0,0) = Ep(x,y,z)[w
∗
z∇θℓ

′(gθ∗(x), y)∇θgθ∗(x)⊤]

= Ep(x,y,z)[w
∗
zℓ

′′(gθ∗(x), y)∇θgθ∗(x)∇θgθ∗(x)⊤]

where ℓ′′(gθ∗(x), y) means ∂2ℓ(t, y)/∂t2|t=gθ∗ (x).

Let Cℓ′′ = inf |t|≤∥gθ∗∥∞ miny ℓ′′(t, y), and by assumption Cℓ′′ > 0. Also let Cλ,z be the smallest eigen-
value of Ep(x|z)[∇θgθ(x)∇θgθ(x)⊤] at θ = θ∗ for z ∈ Z . Note that p(x | z) generates infinite number
of x, and Ep(x|z)[∇θgθ(x)∇θgθ(x)⊤] as an average of infinitely many independent positive semi-definite matrices
∇θgθ(x)∇θgθ(x)⊤ (they are independent as long as ∇θgθ(x) depends on x) is positive definite. Thus, Cλ,z > 0 for
all z ∈ Z , and subsequently,

(θ − θ∗)⊤∇2
θJ(θ

∗,0,0)(θ − θ∗)

≥
(

inf
|t|≤∥gθ∗∥∞

min
y
ℓ′′(t, y)

)
· (θ − θ∗)⊤Ep(x,y,z)[w

∗
z∇θgθ∗(x)∇θgθ∗(x)⊤](θ − θ∗)

= Cℓ′′ · (θ − θ∗)⊤Ep(x,z)[w
∗
z∇θgθ∗(x)∇θgθ∗(x)⊤](θ − θ∗)

= Cℓ′′ · (θ − θ∗)⊤
(

S∑

s=1

psw
∗
sEp(x|z=s)[∇θgθ∗(x)∇θgθ∗(x)⊤]

)
(θ − θ∗)

= Cℓ′′

(
S∑

s=1

psw
∗
s(θ − θ∗)⊤Ep(x|z=s)[∇θgθ∗(x)∇θgθ∗(x)⊤](θ − θ∗)

)

≥ Cℓ′′

(
S∑

s=1

psw
∗
sCλ,s∥θ − θ∗∥22

)

≥ Cℓ′′ min
s

Cλ,s

(
S∑

s=1

psw
∗
s

)
∥θ − θ∗∥22

= Cℓ′′ min
s

Cλ,s∥θ − θ∗∥22.

This completes the proof by letting CJ ′′ = Cℓ′′ mins Cλ,s.

We then study the Lipschitz continuity of J(θ,u,u′).

Lemma 3 (Lipschitz continuity of the perturbed objective). For all u and u′ such that ∥u∥2 ≤ ϵ and ∥u′∥2 ≤ ϵ,
J(θ,u,u′) is Lipschitz continuous with a (not necessarily the best) Lipschitz constant independent of u and u′.

Proof. Define F (θ,u,u′) = supw∈Φ(u) Rθ(u′) and let w∗ = arg supw∈Φ(u) Rθ(u′). According to Danskin’s theorem
(Danskin, 1966), ∇θF (θ,u,u′) =

∑
s w

∗
s∇θls where

∇θls = Ep(x,y)[p(z = s | x, y)ℓ′(gθ(x), y)∇θgθ(x)].
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The assumptions (a) and (b) say that ∥∇θgθ∥∞ <∞ and |ℓ′(gθ(x), y)| <∞ so that

∥∇θls∥2 ≤ ∥∇θgθ∥∞

(
sup

|t|≤∥gθ∥∞

max
y

|ℓ′(t, y)|
)
Ep(x,y)[p(z = s | x, y)]

= ∥∇θgθ∥∞

(
sup

|t|≤∥gθ∥∞

max
y

|ℓ′(t, y)|
)
ps

<∞,

and it is clear that w∗
s <∞. Hence,

∥∇θF (θ,u,u′)∥2 ≤
S∑

s=1

w∗
s∥∇θls∥2 <∞,

which means F (θ,u,u′) is Lipschitz continuous with a Lipschitz constant independent of u and u′.

By the assumption (d), Ω(θ) is Lipschitz continuous and there exists a constant Cλ > 0 such that

λ(u,u′) ≤ λ(0,0) + Cλ(∥u∥2 + ∥u′∥2)
≤ λ(0,0) + 2Cλϵ

<∞.

As a result, λ(u,u′)Ω(θ) possesses a Lipschitz constant independent of u and u′ as well.

From now on, we investigate the Lipschitz continuity of the difference function

D(θ) = J(θ,u,u′)− J(θ,0,0),

which is the most challenging task in our perturbation analysis. Define

D1(θ) = F (θ,u,u′)− F (θ,u,0),

D2(θ) = F (θ,u,0)− F (θ,0,0),

where F (θ,u,u′) = supw∈Φ(u) Rθ(u′) defined in Lemma 3, and then D(θ) can be decomposed as

D(θ) = D1(θ) +D2(θ) + (λ(u,u′)− λ(0,0))Ω(θ).

Given the assumption (d), the third function (λ(u,u′)−λ(0,0))Ω(θ) is Lipschitz continuous with a Lipschitz constant of
order O(∥u∥2 + ∥u′∥2). We are going to prove the same property for D1(θ) and D2(θ) using the assumptions (a), (b) and
(c).
Lemma 4 (Lipschitz continuity of the difference function, I). For any fixed u and all u′ such that ∥u′∥2 ≤ ϵ, D1(θ) is
Lipschitz continuous with a Lipschitz constant of order O(∥u′∥2).

Proof. According to the chain rule in calculus,

∥∇θD1(θ)∥2 =

∥∥∥∥∥

S∑

s=1

∂D1(θ)

∂ls
∇θls

∥∥∥∥∥
2

≤

∣∣∣∣∣

S∑

s=1

∂D1(θ)

∂ls

∣∣∣∣∣ ·max
s
∥∇θls∥2

= O
(∣∣∣∣∣

S∑

s=1

∂D1(θ)

∂ls

∣∣∣∣∣

)
,

since we have proven that ∥∇θls∥2 <∞ given the assumptions (a) and (b) in Lemma 3.
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By definition,

D1(θ) = sup
w∈Φ(u)

Rθ(u
′)− sup

w∈Φ(u)
Rθ(0)

= sup
w∈Φ(u)

S∑

s=1

ws(ls + u′
s)− sup

w∈Φ(u)

S∑

s=1

wsls.

Let w∗ = arg supw∈Φ(u)

∑
s wsls and v∗ = arg supw∈Φ(u)

∑
s ws(ls + u′

s), then according to Danskin’s theorem
(Danskin, 1966), ∂D1(θ)/∂ls = v∗s − w∗

s and
∣∣∣∣∣

S∑

s=1

∂D1(θ)

∂ls

∣∣∣∣∣ ≤
S∑

s=1

|v∗s − w∗
s |

≤
√
S∥v∗ −w∗∥2,

which means O(∥∇θD1(θ)∥2) = O(∥v∗ −w∗∥2).

Consider the perturbation analysis of the following optimization problem

min
w
−

S∑

s=1

ws(ls + u′
s) s.t. w ∈ Φ(u), (104)

whose objective is perturbed and feasible region is unperturbed. Let

L(w,α,α′,u′) = −
S∑

s=1

ws(ls + u′
s) + α

(
S∑

s=1

(ps + us)f(ws)− δ
)

+ α′

(
S∑

s=1

(ps + us)ws − 1

)

be the Lagrangian function, where α ≥ 0 and α′ are Lagrange multipliers, and for simplicity the nonnegative constraints
are omitted. Note that given the assumption (c), if α ̸= 0,

∂2

∂wi∂wj
L(w,α,α′,u′) =

{
αf ′′(wi) > 0, i = j,

0, i ̸= j,

namely, L(w,α,α′,u′) is locally strongly convex in w. Thus,

• if α∗ > 0, the second-order sufficient condition (see Definition 6.2 in (Bonnans & Shapiro, 1998)) holds at w∗ that
implies the corresponding second-order growth condition according to Theorem 6.3 in (Bonnans & Shapiro, 1998);

• if α∗ = 0, (104) is locally a standard linear programming around w∗ and it is fairly easy to see ∥v∗ − w∗∥2 =
O(∥u′∥2) according to Theorem 1 in (Robinson, 1977).

In the former case, it is obvious that for (104),

• the objective −
∑

s ws(ls + u′
s) is Lipschitz continuous with a Lipschitz constant ∥l∥2 + ϵ independent of u′;

• the difference function −
∑

s wsu′
s is Lipschitz continuous with a Lipschitz constant of order O(∥u′∥2).

Therefore, ∥v∗ −w∗∥2 = O(∥u′∥2) by applying Proposition 6.1 in (Bonnans & Shapiro, 1998).

In order to prove the same property for D2(θ), we need several lemmas.

Lemma 5. Denote by f ′(w) = (f ′(w1), . . . , f ′(wS))⊤. There exists a constant Ccos > 0, such that cos(d ◦ f ′(w),d) ≤
1− Ccos for all u satisfying ∥u∥2 ≤ ϵ, w satisfying

∑
s(ps + us)f(ws) = δ and

∑
s(ps + us)ws = 1, and d > 0.

Proof. Suppose the lemma is false, i.e., for any sufficiently large n, there exists some wn such that cos(d ◦ f ′(wn),d) =
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1− 1/(2n2). Let ζn = ∥d ◦ f ′(wn)∥2 and ηn = ζn/∥d∥2, then

∥d ◦ f ′(wn)− ηnd∥22 = ∥d ◦ f ′(wn)∥22 + η2n∥d∥22 − 2ηn(d ◦ f ′(wn))
⊤d

= 2ζ2n − 2ηn cos(d ◦ f ′(wn),d)∥d ◦ f ′(wn)∥2∥d∥2
= 2ζ2n − 2(1− 1/(2n2))ζ2n

= ζ2n/n
2.

In other words, for s = 1, . . . , S,

|f ′(wn,s)− ηn| = |dsf ′(wn,s)− ηnds|/ds
≤ ∥d ◦ f ′(wn)− ηnd∥2/ds
= (ζn/n)/ds
≤ ζ ′n/n,

where ζ ′n = ζn/mins ds. Consequently, for any 1 ≤ i, j ≤ S and i ̸= j,

|f ′(wn,i)− f ′(wn,j)| ≤ |f ′(wn,i)− ηn|+ |f ′(wn,j)− ηn|
≤ 2ζ ′n/n.

Let Cf ′′ > 0 be the lower bound of f ′′(t) mentioned in the assumption (c). This assumption also guarantees that f ′(t) is
continuous, and by the mean value theorem, there is some t between wn,i and wn,j such that

|wn,i − wn,j | =
∣∣∣∣
f ′(wn,i)− f ′(wn,j)

f ′′(t)

∣∣∣∣

≤ 2ζ ′n/(Cf ′′n).

Let η′n =
∑

s wn,s/S, then |wn,s − η′n| ≤ 2ζ ′n/(Cf ′′n) for s = 1, . . . , S.

Recall that
∑

s(ps + us)wn,s = 1, then

(
1 +

S∑

s=1

us

)
η′n − 1 =

S∑

s=1

(ps + us)η
′
n −

S∑

s=1

(ps + us)wn,s

=
S∑

s=1

(ps + us)(η
′
n − wn,s),

and hence
∣∣∣∣∣

(
1 +

S∑

s=1

us

)
η′n − 1

∣∣∣∣∣ ≤
2ζ ′n
Cf ′′n

S∑

s=1

(ps + us)

=
2ζ ′n
Cf ′′n

(
1 +

S∑

s=1

us

)
.

This ensures |η′n − 1/(1 +
∑

s us)| ≤ 2ζ ′n/(Cf ′′n) and implies |wn,s − 1/(1 +
∑

s us)| ≤ 4ζ ′n/(Cf ′′n) for s = 1, . . . , S.
Since f(t) is twice differentiable and ∥wn∥2 < ∞, we must have ζ ′n < ∞ and then limn→∞ wn,s = 1/(1 +

∑
s us) for

all s = 1, . . . , S.

The Taylor expansion of f(t) at t = 1 is f(t) = f ′(1)(t− 1) +O((t− 1)2) since f(1) = 0, and if t = 1/(1 +
∑

s us),

f

(
1

1 +
∑S

s=1 us

)
= −f ′(1) ·

∑S
s=1 us

1 +
∑S

s=1 us

+O

⎛

⎝
( ∑S

s=1 us

1 +
∑S

s=1 us

)2
⎞

⎠ .
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When ∥u∥2 ≤ ϵ, |
∑

s us| ≤ ∥u∥1 ≤
√
Sϵ, and

f

(
1

1 +
∑S

s=1 us

)
≤ |f ′(1)|

√
Sϵ

1−
√
Sϵ

+O(ϵ2)

≤ 2
√
S|f ′(1)|ϵ.

As a result,

lim
n→∞

S∑

s=1

(ps + us)f(wn,s) =
S∑

s=1

(ps + us)f

(
1

1 +
∑S

s=1 us

)

=

(
1 +

S∑

s=1

us

)
f

(
1

1 +
∑S

s=1 us

)

≤ (1 +
√
Sϵ) · 2

√
S|f ′(1)|ϵ

≤ 4
√
S|f ′(1)|ϵ.

However, this is impossible since
∑

s(ps + us)f(wn,s) = δ ≥ 5
√
S|f ′(1)|ϵ.

Based on Lemma 5, we derive the convergence rate of Φ(u) to Φ(0).

Lemma 6. Let dH(V,W ) be the Hausdorff distance between two sets V and W :

dH(V,W ) = max

{
sup
v∈V

inf
w∈W

∥v −w∥2, sup
w∈W

inf
v∈V
∥v −w∥2

}
.

Then dH(Φ(u),Φ(0)) = O(∥u∥2) for all u satisfying ∥u∥2 ≤ ϵ.

Proof. We are going to prove supw∈Φ(0) infv∈Φ(u) ∥v−w∥2 = O(∥u∥2), and the other direction can be proven similarly.

Pick an arbitrary w0 ∈ Φ(0). Let β = δ/(δ + ∥f(w0)∥2∥u∥2) and consider v1 = βw0 + (1− β)1,

∥v1 −w0∥2 = ∥(β − 1)w0 + (1− β)1∥2
= (1− β)∥w0 − 1∥2
≤ ∥f(w0)∥2∥u∥2∥w0 − 1∥2/δ
= O(∥u∥2).

Moreover,

S∑

s=1

(ps + us)f(v1,s) =
S∑

s=1

(ps + us)f(βw0,s + (1− β))

≤
S∑

s=1

(ps + us)(βf(w0,s) + (1− β)f(1))

= β

(
S∑

s=1

psf(w0,s) +
S∑

s=1

usf(w0,s)

)

≤ β(δ + ∥f(w0)∥2∥u∥2)
= δ,

where the second line is due to the convexity of f(t), the third line is because f(1) = 0, and the fourth line is according to
Jensen’s inequality. This means v1 belongs to the set V1 = {w ∈ RS |

∑
s(ps + us)f(ws) ≤ δ, ws ≥ 0}.
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However, v1 does not belong to the set V2 = {w ∈ RS |
∑

s(ps + us)ws = 1, ws ≥ 0}. Since V2 is a hyperplane, we can
easily project v1 onto V2 to obtain v2, and

∥v2 − v1∥2 =
1

∥p+ u∥2

∣∣∣∣∣

S∑

s=1

(ps + us)v1,s − 1

∣∣∣∣∣

≤ 2

∥p∥2

∣∣∣∣∣

S∑

s=1

(ps + us)(βw0,s + 1− β)− 1

∣∣∣∣∣

≤
√
4S

∣∣∣∣∣β
S∑

s=1

psw0,s + β
S∑

s=1

usw0,s + (1− β)
S∑

s=1

ps + (1− β)
S∑

s=1

us − 1

∣∣∣∣∣

=
√
4S

∣∣∣∣∣β + β
S∑

s=1

usw0,s + (1− β) + (1− β)
S∑

s=1

us − 1

∣∣∣∣∣

≤
√
4Sβ

∣∣∣∣∣

S∑

s=1

usw0,s

∣∣∣∣∣+O(∥u∥22)

= O(∥u∥2).

After this projection, v2 ̸∈ V1 again.

Let v3 be the projection of v2 onto Φ(u) = V1∩V2, TwV1(v3) be the tangent hyperplane to V1 at v3 of S−1 dimensions,
and Tw(V1 ∩ V2)(v3) be that to V1 ∩ V2 at v3 of S − 2 dimensions. As a consequence, v3 − v2 ∈ V2 is one of normal
vectors to Tw(V1∩V2)(v3) at v3, which is also the projection of the normal vector to TwV1(v3) at v3 onto V2. This means
the normal vector to TwV1(v3) at v3 belongs to the 2-dimensional plane determined by v3 − v2 and v1 − v2, since the
latter is a normal vector to V2 at v2.

Consider the triangle (v1 − v2,v3 − v2,v1 − v3). This is a right-angled triangle since v1 − v2 ⊥ V2 and v3 − v2 ∈ V2,
so that

∥v1 − v3∥2 =
∥v1 − v2∥2

sin(v2 − v3,v1 − v3)
.

Subsequently, let v4 be the intersection of v1 − v2 and TwV1(v3), due to the convexity of V1,

sin2(v2 − v3,v1 − v3) ≥ sin2(v2 − v3,v4 − v3)

= 1− cos2(v2 − v3,v4 − v3)

= 1− cos2(p+ u, (p+ u) ◦ f ′(v3)),

where p + u is a normal vector to V2 containing v2 − v3, (p + u) ◦ f ′(v3) is a normal vector to TwV1(v3) containing
v4−v3, and both of them belong to the 2-dimensional plane determined by v3−v2 and v1−v2 as we have proven above.
By definition, v3 is on the boundary of V1 such that

∑
s(ps + us)f(v3,s) = δ, and according to Lemma 5,

1− cos2(p+ u, (p+ u) ◦ f ′(v3)) ≥ 1− (1− Ccos)
2

= Ccos(2− Ccos),

which implies

∥v1 − v3∥2 ≤
∥v1 − v2∥2√
Ccos(2− Ccos)

= O(∥v1 − v2∥2)
= O(∥u∥2).

Combining ∥v1 − w0∥2 = O(∥u∥2) and ∥v1 − v3∥2 = O(∥u∥2) gives us ∥v3 − w0∥2 = O(∥u∥2), and thus
infv∈Φ(u) ∥v −w0∥2 ≤ ∥v3 −w0∥2 = O(∥u∥2). Since w0 is arbitrarily picked from Φ(0), the proof is completed.
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Table 2: Summary of dataset statistics.

Dataset #Points #classes Dimension
blood 748 2 4
adult 32561 2 123
fourclass 862 2 2
phishing 11055 2 68
20news 18040 20 50
satimage 4435 6 36
letter 20000 26 16
mnist 70000 10 50

Lemma 7 (Lipschitz continuity of the difference function, II). For all u such that ∥u∥2 ≤ ϵ, D2(θ) is Lipschitz continuous
with a Lipschitz constant of order O(∥u∥1/22 ).

Proof. The proof goes along the same line with Lemma 4. Let w∗ = arg supw∈Φ(0)

∑
s wsls and v∗ =

arg supw∈Φ(u)

∑
s wsls, and consider the perturbation analysis of the following optimization problem

min
w
−

S∑

s=1

wsls s.t. w ∈ Φ(u),

whose objective is unperturbed and feasible region is perturbed. According to Lemma 6, we have dH(Φ(u),Φ(0)) =
O(∥u∥2), which ensures that the multifunction u 6→ Φ(u) is upper Lipschitz continuous and that dH({w∗},Φ(u)) =

O(∥u∥2). Hence, ∥v∗ −w∗∥2 = O(∥u∥1/22 ) by applying Proposition 6.4 in (Bonnans & Shapiro, 1998).

Let us summarize what we have obtained so far:

• a second-order growth condition of J(θ,0,0) at θ = θ∗;
• the Lipschitz continuity of J(θ,u,u′) with a Lipschitz constant independent of u and u′;
• the Lipschitz continuity of D(θ) with a Lipschitz constant of order O(∥u∥1/22 + ∥u′∥2).

Note that θ is unconstrained, by applying Proposition 6.1 in (Bonnans & Shapiro, 1998), we can obtain

∥θu,u′ − θ∗∥2 = O(∥u∥1/22 + ∥u′∥2).

This immediately implies

∥J(θu,u′ ,0,0)− J(θ∗,0,0)∥2 = O(∥u∥1/22 + ∥u′∥2),

due to the Lipschitz continuity of J(θ,0,0).

I. Datasets
We obtained six classification datasets from the UCI repository16 and also obtained 20newsgroups17 and MNIST datasets.
We used the raw features for the datasets from the UCI repository. For the 20newgroups dataset, we removed stop words
and retained the 2000 most frequent words. We then removed documents with fewer than 10 words. We extracted tf-idf
features and applied Principle Component Analysis (PCA) to reduce the dimensionality to 50. For the MNIST dataset, we
applied PCA on the raw features to reduce the dimensionality to 50. The dataset statistics are summarized in Table 2.

J. Details of the Subcategory Shift Scenario
In this section, we give details on how we converted the original multi-class classification problems into multi-class classi-
fication problems with fewer classes.

16http://archive.ics.uci.edu/ml/index.html
17http://qwone.com/ jason/20Newsgroups/



Does Distributionally Robust Supervised Learning Give Robust Classifiers?

Table 3: Experimental comparisons of the three methods w.r.t. the estimated ordinary risk and the estimated structural
adversarial risk using the surrogate loss (the logistic loss). The lower these values are, the better the performance of the
method is. The KL divergence is used and distribution shift is assumed to be (a) class prior change and (b) sub-category
prior change. Mean and standard deviation over 50 random train-test splits were reported. The best method and comparable
ones based on the t-test at the significance level 1% are highlighted in boldface.

(a) Class prior change.

Dataset Estimated ordinary risk Estimated adversarial risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM ERM AERM Structural AERM

blood 0.52 (0.05) 0.69 (0.0) 0.62 (0.02) 1.04 (0.1) 0.69 (0.0) 0.97 (0.03) 0.86 (0.23) 0.69 (0.0) 0.63 (0.19)
adult 0.33 (0.0) 0.65 (0.03) 0.39 (0.0) 1.28 (0.02) 0.69 (0.01) 1.42 (0.01) 0.59 (0.3) 0.67 (0.01) 0.4 (0.38)
fourclass 0.51 (0.05) 0.69 (0.0) 0.54 (0.05) 0.91 (0.04) 0.69 (0.0) 0.88 (0.04) 0.65 (0.13) 0.69 (0.0) 0.56 (0.13)
phishing 0.15 (0.01) 0.41 (0.08) 0.15 (0.0) 0.86 (0.01) 0.59 (0.08) 0.85 (0.01) 0.18 (0.06) 0.41 (0.02) 0.16 (0.05)
20news 1.05 (0.01) 1.49 (0.04) 1.22 (0.02) 3.42 (0.02) 3.0 (0.04) 3.58 (0.03) 1.43 (0.1) 1.74 (0.19) 1.32 (0.13)
satimage 1.01 (0.01) 1.26 (0.02) 1.29 (0.01) 2.54 (0.02) 2.15 (0.02) 2.86 (0.02) 1.41 (0.05) 1.59 (0.01) 1.38 (0.04)
letter 0.37 (0.01) 0.47 (0.03) 0.51 (0.02) 1.65 (0.02) 1.19 (0.03) 2.27 (0.03) 0.77 (0.17) 0.77 (0.09) 0.58 (0.21)
mnist 0.35 (0.0) 0.59 (0.05) 0.45 (0.0) 1.96 (0.01) 1.38 (0.04) 1.85 (0.01) 0.49 (0.06) 0.73 (0.02) 0.47 (0.04)

(b) Sub-category prior change.

Dataset Estimated ordinary risk Estimated adversarial risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM ERM AERM Structural AERM

20news 0.61 (0.01) 0.84 (0.06) 0.76 (0.05) 2.76 (0.02) 2.03 (0.05) 2.91 (0.03) 1.02 (0.14) 1.08 (0.29) 0.89 (0.21)
satimage 0.63 (0.0) 0.69 (0.0) 0.68 (0.0) 0.99 (0.01) 0.69 (0.0) 0.74 (0.0) 0.81 (0.02) 0.69 (0.0) 0.69 (0.02)
letter 0.47 (0.0) 0.69 (0.0) 0.64 (0.02) 1.05 (0.03) 0.69 (0.0) 0.86 (0.01) 0.93 (0.02) 0.69 (0.0) 0.68 (0.06)
mnist 0.31 (0.0) 0.68 (0.01) 0.39 (0.0) 1.28 (0.01) 0.69 (0.0) 1.25 (0.0) 0.49 (0.05) 0.68 (0.0) 0.42 (0.03)

For the datasets from the UCI repository, we systematically grouped the class labels into binary categories by the following
procedure. First, class labels are sorted by the number of data points in the classes. Then, 1, 3, 5, . . . -th labels are assigned
to a positive category and the others are assigned to a negative category. For MNIST, we considered a binary classification
between odd and even numbers and set the original classes as subcategories. For 20newsgroups, we converted the original
20-class classification problem into a 7-class one with each class corresponding to a high-level topic: comp, rec, sci, misc,
alt, soc, and talk. We then set the original classes as subcategories.

K. Experimental Results measured by Surrogate Loss
In this section, we report the experimental results measured by the surrogate loss (the logistic loss). We used the KL and
the PE divergences, where we set δ = 0.5. We used the same f -divergence and the same δ during training and testing.
The experimental results using the KL and the PE divergences are reported in Tables 3 and 4, respectively. We empirically
confirmed that in terms of the surrogate loss, each method indeed achieved the best performance in terms of the metric it
optimizes for.

L. Experimental Results with the PE divergence
In this section, we report the experimental results using the PE divergence, where we set δ = 0.5. The experimental results
are reported in Table 5.
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Table 4: Experimental comparisons of the three methods w.r.t. the estimated ordinary risk and the estimated structural
adversarial risk using the surrogate loss (the logistic loss). The lower these values are, the better the performance of the
method is. The PE divergence is used and distribution shift is assumed to be (a) class prior change and (b) sub-category
prior change. Mean and standard deviation over 50 random train-test splits were reported. The best method and comparable
ones based on the t-test at the significance level 1% are highlighted in boldface.

(a) Class prior change.

Dataset Estimated ordinary risk Estimated adversarial risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM ERM AERM Structural AERM

blood 0.52 (0.05) 0.67 (0.02) 0.61 (0.03) 0.77 (0.04) 0.69 (0.0) 0.81 (0.02) 0.71 (0.07) 0.69 (0.0) 0.62 (0.07)
adult 0.33 (0.0) 0.41 (0.02) 0.39 (0.01) 0.69 (0.01) 0.61 (0.01) 0.77 (0.01) 0.49 (0.02) 0.51 (0.0) 0.4 (0.03)
fourclass 0.52 (0.05) 0.66 (0.02) 0.53 (0.05) 0.73 (0.02) 0.69 (0.01) 0.77 (0.04) 0.6 (0.04) 0.67 (0.0) 0.54 (0.06)
phishing 0.15 (0.01) 0.2 (0.02) 0.15 (0.0) 0.43 (0.01) 0.4 (0.02) 0.43 (0.01) 0.17 (0.02) 0.21 (0.01) 0.15 (0.01)
20news 1.04 (0.01) 1.15 (0.11) 1.17 (0.02) 1.99 (0.01) 1.95 (0.1) 2.2 (0.02) 1.29 (0.03) 1.36 (0.06) 1.24 (0.04)
satimage 1.01 (0.01) 1.1 (0.01) 1.1 (0.01) 1.81 (0.01) 1.72 (0.02) 2.0 (0.01) 1.26 (0.02) 1.32 (0.01) 1.17 (0.02)
letter 0.36 (0.01) 0.4 (0.01) 0.42 (0.02) 0.89 (0.02) 0.81 (0.02) 1.0 (0.02) 0.6 (0.04) 0.59 (0.03) 0.53 (0.05)
mnist 0.35 (0.0) 0.41 (0.01) 0.43 (0.0) 0.96 (0.01) 0.87 (0.01) 1.04 (0.01) 0.45 (0.02) 0.5 (0.01) 0.44 (0.01)

(b) Sub-category prior change.

Dataset Estimated ordinary risk Estimated adversarial risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM ERM AERM Structural AERM

20news 0.61 (0.01) 0.67 (0.01) 0.68 (0.02) 1.34 (0.01) 1.22 (0.01) 1.4 (0.01) 0.86 (0.04) 0.86 (0.03) 0.81 (0.05)
satimage 0.63 (0.0) 0.69 (0.0) 0.68 (0.0) 0.86 (0.01) 0.69 (0.0) 0.73 (0.0) 0.76 (0.01) 0.69 (0.0) 0.69 (0.01)
letter 0.47 (0.0) 0.67 (0.0) 0.57 (0.04) 0.79 (0.01) 0.69 (0.0) 0.73 (0.01) 0.74 (0.01) 0.69 (0.0) 0.66 (0.03)
mnist 0.31 (0.0) 0.4 (0.02) 0.36 (0.0) 0.72 (0.0) 0.6 (0.01) 0.72 (0.0) 0.44 (0.01) 0.48 (0.0) 0.41 (0.01)

Table 5: Experimental comparisons of the three methods w.r.t. the estimated ordinary risk and the estimated structural
adversarial risk using the 0-1 loss (%). The lower these values are, the better the performance of the method is. The PE
divergence is used and distribution shift is assumed to be (a) class prior change and (b) sub-category prior change. Mean
and standard deviation over 50 random train-test splits were reported. The best method and comparable ones based on the
t-test at the significance level 1% are highlighted in boldface.

(a) Class prior change.

Dataset Estimated ordinary risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM

blood 22.2 (0.6) 22.4 (0.5) 33.0 (2.0) 47.4 (1.6) 49.1 (1.1) 36.6 (2.4)
adult 15.3 (0.1) 15.3 (0.1) 18.7 (0.2) 24.9 (0.3) 24.8 (0.3) 19.1 (0.3)
fourclass 23.7 (1.2) 23.5 (1.2) 27.0 (1.3) 32.7 (1.7) 32.6 (1.8) 28.7 (1.7)
phishing 6.0 (0.2) 6.1 (0.2) 5.9 (0.2) 7.1 (0.3) 7.4 (0.3) 6.4 (0.3)
20news 28.8 (0.3) 29.7 (0.3) 33.7 (0.3) 37.9 (0.3) 38.4 (0.4) 37.5 (0.4)
satimage 25.1 (0.2) 26.7 (0.3) 28.1 (0.3) 33.7 (0.4) 35.6 (0.4) 32.0 (0.4)
letter 14.2 (0.5) 14.5 (0.5) 15.5 (0.5) 26.5 (0.9) 25.6 (0.9) 20.8 (0.7)
mnist 10.0 (0.1) 10.1 (0.1) 12.2 (0.1) 13.3 (0.1) 13.2 (0.1) 13.1 (0.1)

(b) Sub-category prior change.

Dataset Estimated ordinary risk Estimated structural adversarial risk
ERM AERM Structural AERM ERM AERM Structural AERM

20news 19.0 (0.3) 19.6 (0.4) 20.8 (0.4) 29.2 (0.4) 29.7 (0.4) 27.3 (0.4)
satimage 36.4 (0.3) 41.1 (1.9) 39.6 (0.5) 53.9 (0.4) 56.7 (2.7) 47.0 (0.5)
letter 17.4 (0.4) 18.5 (0.5) 23.1 (3.3) 38.0 (0.5) 39.5 (0.6) 38.9 (1.0)
mnist 13.3 (0.1) 13.5 (0.1) 15.6 (0.2) 20.0 (0.2) 20.2 (0.2) 18.6 (0.2)


