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Lemma 1 (covariance error to projection error (modified)).

‖A− πkB(A)‖2F ≤ ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

Proof. For any x with ‖x‖ = 1, we have∣∣ ‖Ax‖2 − ‖Bx‖2 ∣∣ =
∣∣ xT (ATA−BTB)x

∣∣
≤ ‖ATA−BTB‖2 (1)

Let ui and wi be the ith right singular vector of B and A
respectively

‖A− πkB(A)‖2F = ‖A‖2F − ‖πkB(A)‖2F

= ‖A‖2F −
k∑
i=1

‖Aui‖2Pathagorean theorem

≤ ‖A‖2F −
k∑
i=1

‖Bui‖2 + k · ‖ATA−BTB‖2

by Eq. (1)

≤ ‖A‖2F −
k∑
i=1

‖Bwi‖2 + k · ‖ATA−BTB‖2

because
k∑
i=1

‖Bwi‖2 ≤
k∑
i=1

‖Bui‖2

≤ ‖A‖2F −
k∑
i=1

‖Awi‖2 + 2k · ‖ATA−BTB‖2

by Eq. (1)

= ‖A− [A]k‖2F + 2k · ‖ATA−BTB‖2.

Row sampling.
Theorem 1. For any A ∈ Rn×d and F > 0, we sample
each row Ai with probability pi ≥ ‖Ai‖2

α2F ; if it is sampled,
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scale it by 1/
√
pi. Let B be the (rescaled) sampled rows,

then w.p. 0.99, ‖ATA − BTB‖2 ≤ 10α
√
F‖A‖F , and

‖B‖F ≤ 10‖A‖F . The expected number of rows sampled
is O(

‖A‖2F
α2F ).

Proof. Since spectral norm is no larger than the Frobe-
nius norm, it is sufficient to prove ‖ATA − BTB‖F ≤
10α
√
F‖A‖F .

For each j ∈ [n], let

xj =

{
1 if the jth rows of A is sampled
0 otherwise.

We have (ATA)i,j =
∑n
t=1 at,iat,j , while

(BTB)i,j =

n∑
t=1

x2t · at,iat,j
pt

.

So E[(BTB)i,j ] = (ATA)i,j . We also have

Var[(BTB)i,j ] = Var

[
n∑
t=1

x2t · at,iat,j
pt

]

=

n∑
t=1

a2t,ia
2
t,j · Var

[
x2t
]

p2t

≤
n∑
t=1

a2t,ia
2
t,j

pt
,

where we use the fact Var[x2t ] = pt(1 − pt) ≤ pt. So we
have

E
[(

(ATA)i,j − (BTB)i,j
)2]

= Var[(BTB)i,j ]

≤
n∑
t=1

a2t,ia
2
t,j

pt
.
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Therefore,

E
[
‖ATA−BTB‖2F

]
=
∑
i,j

E
[(

(ATA)i,j − (BTB)i,j
)2]

≤
∑
i,j

n∑
t=1

a2t,ia
2
t,j

pt

=

n∑
t=1

‖At‖2‖At‖2

pt

=

n∑
t=1

α2F‖At‖2 = α2F‖A‖2F .

We adjust α by a constant, and using Markov’s inequality

Pr
[
‖ATA−BTB‖2F ≥ 100α2F‖A‖2F

]
≤ 0.01,

which is equivalent to

Pr
[
‖ATA−BTB‖F ≥ 10α

√
F‖A‖F

]
≤ 0.01.

The success probability can be boosted by a similar argu-
ment as in (?) via McDiarmid’s inequality (see e.g. (?)).

It is not hard to verify that

E
[
‖B‖2F

]
= ‖A‖2F .

So by another Markov inequality, we prove the second part.

Input-sparsity time lower rank approximation algo-
rithm.

Theorem 2 (weak low rank approximation). For any inte-
gers `, d, given A ∈ R`×d, there is an algorithm that uses
O(nnz(A) log(1/δ)) + Õ(`k3) time and O(`(k2 + log 1

δ ))

space, and outputs a matrix Z ∈ RO(k)×` with orthonormal
rows such that with probability 1 − δ, ‖A − ZTZA‖2F ≤
O(1)‖A− [A]k‖2F .

Proof. Let J be a O(k)× t1 matrix with iid Gaussian ran-
dom variables, and C be a t1 × ` sparse subspace embed-
ding matrix (see (?) for details), with t1 = O(k2). It was
proved that, with constant probability, the column space of
S = ACTJT contains a O(1) rank-k approximation to A
(see e.g., Lemma 4.2 and Remark 4.1 in (?)), moreover S =
ACTJT can be computed in time O(nnz(A)) + O(`k3).
In particular, let z1, · · · , zO(k) be the an orthonormal ba-
sis of the column space of S, then there exists X with
rank(X) ≤ k such that

‖A− ZTX‖2F ≤ O(1)‖A− [A]k‖2F ,

where Z is the matrix whose rows are z1, · · · , zO(k). Hence,

‖A− ZTZA‖2F ≤ ‖A− ZTZA‖2F + ‖ZTZA− ZTX‖2F
= ‖A− ZTX‖2F
≤ O(1)‖A− [A]k‖2F .

Note that Z can be computed from S with O(`k2).

To boost the success probability to 1− δ, we repeat the algo-
rithm γ = log(1/δ) times, which compute Z(1), · · · , Z(γ),
and pick the best one. This needsO(nnz(A) log 1

δ )+Õ(`k3)
time. However, it will take too much time to compute
‖A− ZTZA‖2F . To avoid this, we instead just compute a
constant approximation using Johnson-Lindenstrauss Trans-
form. Let Φ ∈ Rt×d be a Johnson-Lindenstrauss matrix,
where t = O(log( dδ2 )). We have Pr[‖Φx‖ = O(1) · ‖x‖] ≥
1− δ2

d for any fixed x. By union bound, with probability at
least 1− δ, it holds simultaneously for all i that

‖(I − Z(i)TZ(i))AΦT ‖2F = O(1)‖A− Z(i)TZ(i)A‖2F .

Note that AΦT can be computed in O(nnz(A) log d
δ ) time.

Given this, each ‖(I − Z(i)TZ(i))AΦT ‖2F can be com-
puted in O(k` log d

δ ) time. So the total running time is
O(nnz(A) log d

δ ) + Õ(`k3). Since each Z(i) is good with
constant probability, with probability at least 1 − δ, there
exists an i′ such that

‖A− Z(i′)TZ(i′)A‖2F ≤ O(1)‖A− [A]k‖2F .

Hence,

‖(I − Z(i′)TZ(i′))AΦT ‖2F = O(1)‖A− [A]k‖2F .

Because we pick Z(j) minimizing

‖(I − Z(j)TZ(j))AΦT ‖2F ,

with probability 1− δ, then

‖(I − Z(j)TZ(j))A‖2F = O(1)‖(I − Z(j)TZ(j))AΦT ‖2F
≤ ‖(I − Z(i′)TZ(i′))AΦT ‖2F
= O(1)‖A− [A]k‖2F ,

which proves the correctness.

For space, computing each S = ACTJT and Z needs
O(`k2) space. We do not store all Z(i), but compute one at
a time. We only need to store the current best at any time,
so this does not increase space. We also need to store AΦ,
which takes O(` log d

δ ) space.


