Supplementary Material for International Conference on Machine Learning (ICML 2018)

Anonymous Authors¹

Lemma 1 (covariance error to projection error (modified)).

$$||A - \pi_B^k(A)||_F^2 \le ||A - [A]_k||_F^2 + 2k \cdot ||A^T A - B^T B||_2.$$

Proof. For any x with ||x|| = 1, we have

$$| ||Ax||^{2} - ||Bx||^{2} | = | x^{T}(A^{T}A - B^{T}B)x |$$

$$\leq ||A^{T}A - B^{T}B||_{2}$$
 (1)

Let u_i and w_i be the *i*th right singular vector of B and A respectively

$$\begin{split} \|A - \pi_B^k(A)\|_F^2 &= \|A\|_F^2 - \|\pi_B^k(A)\|_F^2 \\ &= \|A\|_F^2 - \sum_{i=1}^k \|Au_i\|^2 \text{Pathagorean theorem} \\ &\leq \|A\|_F^2 - \sum_{i=1}^k \|Bu_i\|^2 + k \cdot \|A^T A - B^T B\|_2 \\ & \text{by Eq. (1)} \\ &\leq \|A\|_F^2 - \sum_{i=1}^k \|Bw_i\|^2 + k \cdot \|A^T A - B^T B\|_2 \\ & \text{because } \sum_{i=1}^k \|Bw_i\|^2 \leq \sum_{i=1}^k \|Bu_i\|^2 \\ &\leq \|A\|_F^2 - \sum_{i=1}^k \|Aw_i\|^2 + 2k \cdot \|A^T A - B^T B\|_2 \\ & \text{by Eq. (1)} \\ &= \|A - [A]_k\|_F^2 + 2k \cdot \|A^T A - B^T B\|_2. \end{split}$$

Row sampling.

Theorem 1. For any $A \in \mathbb{R}^{n \times d}$ and F > 0, we sample each row A_i with probability $p_i \geq \frac{\|A_i\|^2}{\alpha^2 F}$; if it is sampled,

scale it by $1/\sqrt{p_i}$. Let B be the (rescaled) sampled rows, then w.p. 0.99, $||A^TA - B^TB||_2 \leq 10\alpha\sqrt{F}||A||_F$, and $||B||_F \leq 10||A||_F$. The expected number of rows sampled is $O(\frac{||A||_F^2}{\alpha^{2}F})$.

Proof. Since spectral norm is no larger than the Frobenius norm, it is sufficient to prove $||A^T A - B^T B||_F \le 10\alpha\sqrt{F}||A||_F$.

For each $j \in [n]$, let

$$x_j = \begin{cases} 1 & \text{if the } j \text{th rows of } A \text{ is sampled} \\ 0 & \text{otherwise.} \end{cases}$$

We have $(A^T A)_{i,j} = \sum_{t=1}^n a_{t,i} a_{t,j}$, while

$$(B^T B)_{i,j} = \sum_{t=1}^n \frac{x_t^2 \cdot a_{t,i} a_{t,j}}{p_t}.$$

So $\mathsf{E}[(B^TB)_{i,j}] = (A^TA)_{i,j}$. We also have

$$\begin{split} \mathsf{Var}[(B^TB)_{i,j}] &= \mathsf{Var}\left[\sum_{t=1}^n \frac{x_t^2 \cdot a_{t,i}a_{t,j}}{p_t}\right] \\ &= \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2 \cdot \mathsf{Var}\left[x_t^2\right]}{p_t^2} \\ &\leq \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2}{p_t}, \end{split}$$

where we use the fact $\operatorname{Var}[x_t^2] = p_t(1-p_t) \leq p_t$. So we have

$$\begin{split} \mathsf{E}\left[\left((A^TA)_{i,j} - (B^TB)_{i,j}\right)^2\right] &= \mathsf{Var}[(B^TB)_{i,j}]\\ &\leq \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2}{p_t}. \end{split}$$

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

Therefore,

$$\mathsf{E}\left[\|A^{T}A - B^{T}B\|_{F}^{2}\right] = \sum_{i,j} \mathsf{E}\left[\left((A^{T}A)_{i,j} - (B^{T}B)_{i,j}\right)^{2}\right]$$
$$\leq \sum_{i,j} \sum_{t=1}^{n} \frac{a_{t,i}^{2}a_{t,j}^{2}}{p_{t}}$$
$$= \sum_{t=1}^{n} \frac{\|A_{t}\|^{2}\|A_{t}\|^{2}}{p_{t}}$$
$$= \sum_{t=1}^{n} \alpha^{2}F\|A_{t}\|^{2} = \alpha^{2}F\|A\|_{F}^{2}.$$

We adjust α by a constant, and using Markov's inequality

 $\overline{t=1}$

$$\Pr\left[\|A^T A - B^T B\|_F^2 \ge 100\alpha^2 F \|A\|_F^2\right] \le 0.01,$$

which is equivalent to

$$\Pr\left[\|A^T A - B^T B\|_F \ge 10\alpha\sqrt{F}\|A\|_F\right] \le 0.01.$$

The success probability can be boosted by a similar argument as in (?) via McDiarmid's inequality (see e.g. (?)).

It is not hard to verify that

$$\mathsf{E}\left|\|B\|_{F}^{2}\right| = \|A\|_{F}^{2}.$$

So by another Markov inequality, we prove the second part. $\hfill \Box$

Input-sparsity time lower rank approximation algorithm.

Theorem 2 (weak low rank approximation). For any integers ℓ , d, given $A \in \mathbb{R}^{\ell \times d}$, there is an algorithm that uses $O(\operatorname{nnz}(A) \log(1/\delta)) + \tilde{O}(\ell k^3)$ time and $O(\ell(k^2 + \log \frac{1}{\delta}))$ space, and outputs a matrix $Z \in \mathbb{R}^{O(k) \times \ell}$ with orthonormal rows such that with probability $1 - \delta$, $||A - Z^T ZA||_F^2 \leq O(1)||A - [A]_k||_F^2$.

Proof. Let J be a $O(k) \times t_1$ matrix with iid Gaussian random variables, and C be a $t_1 \times \ell$ sparse subspace embedding matrix (see (?) for details), with $t_1 = O(k^2)$. It was proved that, with constant probability, the column space of $S = AC^TJ^T$ contains a O(1) rank-k approximation to A (see e.g., Lemma 4.2 and Remark 4.1 in (?)), moreover $S = AC^TJ^T$ can be computed in time $O(\operatorname{nnz}(A)) + O(\ell k^3)$. In particular, let $z_1, \cdots, z_{O(k)}$ be the an orthonormal basis of the column space of S, then there exists X with $\operatorname{rank}(X) \leq k$ such that

$$||A - Z^T X||_F^2 \le O(1) ||A - [A]_k||_F^2$$

where Z is the matrix whose rows are $z_1, \dots, z_{O(k)}$. Hence,

$$\begin{aligned} |A - Z^T Z A||_F^2 &\leq ||A - Z^T Z A||_F^2 + ||Z^T Z A - Z^T X||_F^2 \\ &= ||A - Z^T X||_F^2 \\ &\leq O(1) ||A - [A]_k||_F^2. \end{aligned}$$

Note that Z can be computed from S with $O(\ell k^2)$.

To boost the success probability to $1 - \delta$, we repeat the algorithm $\gamma = \log(1/\delta)$ times, which compute $Z^{(1)}, \dots, Z^{(\gamma)}$, and pick the best one. This needs $O(\operatorname{nnz}(A) \log \frac{1}{\delta}) + \tilde{O}(\ell k^3)$ time. However, it will take too much time to compute $||A - Z^T ZA||_F^2$. To avoid this, we instead just compute a constant approximation using Johnson-Lindenstrauss Transform. Let $\Phi \in \mathbb{R}^{t \times d}$ be a Johnson-Lindenstrauss matrix, where $t = O(\log(\frac{d}{\delta^2}))$. We have $\Pr[||\Phi x|| = O(1) \cdot ||x||] \ge 1 - \frac{\delta^2}{d}$ for any fixed x. By union bound, with probability at least $1 - \delta$, it holds simultaneously for all i that

$$\|(I - Z^{(i)T}Z^{(i)})A\Phi^T\|_F^2 = O(1)\|A - Z^{(i)T}Z^{(i)}A\|_F^2$$

Note that $A\Phi^T$ can be computed in $O(\operatorname{nnz}(A) \log \frac{d}{\delta})$ time. Given this, each $||(I - Z^{(i)T}Z^{(i)})A\Phi^T||_F^2$ can be computed in $O(k\ell \log \frac{d}{\delta})$ time. So the total running time is $O(\operatorname{nnz}(A) \log \frac{d}{\delta}) + \tilde{O}(\ell k^3)$. Since each $Z^{(i)}$ is good with constant probability, with probability at least $1 - \delta$, there exists an i' such that

$$||A - Z^{(i')T}Z^{(i')}A||_F^2 \le O(1)||A - [A]_k||_F^2.$$

Hence,

$$\|(I - Z^{(i')T}Z^{(i')})A\Phi^T\|_F^2 = O(1)\|A - [A]_k\|_F^2$$

Because we pick $Z^{(j)}$ minimizing

$$||(I-Z^{(j)T}Z^{(j)})A\Phi^T||_F^2,$$

with probability $1 - \delta$, then

$$\begin{split} \|(I - Z^{(j)T}Z^{(j)})A\|_{F}^{2} &= O(1)\|(I - Z^{(j)T}Z^{(j)})A\Phi^{T}\|_{F}^{2} \\ &\leq \|(I - Z^{(i')T}Z^{(i')})A\Phi^{T}\|_{F}^{2} \\ &= O(1)\|A - [A]_{k}\|_{F}^{2}, \end{split}$$

which proves the correctness.

For space, computing each $S = AC^T J^T$ and Z needs $O(\ell k^2)$ space. We do not store all $Z^{(i)}$, but compute one at a time. We only need to store the current best at any time, so this does not increase space. We also need to store $A\Phi$, which takes $O(\ell \log \frac{d}{\delta})$ space.