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Lemma 1 (covariance error to projection error (modified)).

A = 7E5(A)F < 1A~ [Als7 + 2k - |ATA — BT Bl

Proof. For any x with ||z|| = 1, we have

| Al — | Be|? | = | «"(A"A - B B)a |

<||A"A - B"B|; (1)

Let u; and w; be the ith right singular vector of B and A
respectively
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= [|A — [Alull% + 2k - [|ATA — BT B]|2.

Row sampling.

Theorem 1. For any A € R"*? and F > 0, we sample
HA H

each row A; with probability p; > ; if it is sampled,
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scale it by 1/,/p;. Let B be the (rescaled) sampled rows,
< 10aVF|| Al , and
|Bl|F < 10]|A||p. The expected number of rows sampled
is O( HAH?)

a?F

Proof. Since spectral norm is no larger than the Frobe-
nius norm, it is sufficient to prove |[ATA — BT B||p <

10aV/F|| Al .

For each j € [n], let
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We have (AT A); ; =37, ariaq j, while

if the jth rows of A is sampled
otherwise.
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(BT B);.

So E[(BTB); ;] = (AT A); ;. We also have
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where we use the fact Var[z?] = p;
have

(1 —pt) < pi. So we
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Therefore,

where Z is the matrix whose rows are z1, - - - , zo(x)- Hence,
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We adjust « by a constant, and using Markov’s inequality
Pr[||[A" A — BT B|)% > 100 F||A||%] < 0.01,
which is equivalent to

Pr [HATA — BTB||p > 10a\/1?\|AHF} < 0.01.

The success probability can be boosted by a similar argu-
ment as in (?) via McDiarmid’s inequality (see e.g. (?)).

It is not hard to verify that
E[IBIE] = Al

So by another Markov inequality, we prove the second part.
O

Input-sparsity time lower rank approximation algo-
rithm.

Theorem 2 (weak low rank approximation). For any inte-
gers 0, d, given A € R there is an algorithm that uses
O(nnz(A)log(1/6)) + O(£k®) time and O(£(k? + log 1))
space, and outputs a matrix Z € ROF)*E with orthonormal
rows such that with probability 1 — 6, |A — ZT Z A||% <
O(DIA — [A]]%-

Proof. Let J be a O(k) x t; matrix with iid Gaussian ran-
dom variables, and C' be a t; x ¢ sparse subspace embed-
ding matrix (see (?) for details), with t; = O(k?). It was
proved that, with constant probability, the column space of
S = ACT JT contains a O(1) rank-k approximation to A
(see e.g., Lemma 4.2 and Remark 4.1 in (?)), moreover S =
ACT JT can be computed in time O(nnz(A)) + O(¢k?).
In particular, let z1,- -+ , zo(k) be the an orthonormal ba-
sis of the column space of S, then there exists X with
rank(X) < k such that

IA = ZTX||3 < O(1)|| A — [Alx[l,

=lA-Z2"X|%
< O)[|A - [Au]|%-

Note that Z can be computed from S with O(¢k?).

To boost the success probability to 1 — d, we repeat the algo-
rithm y = log(1/6) times, which compute Z(") ... Z("),
and pick the best one. This needs O(nnz(A) log %)+O(€k3)
time. However, it will take too much time to compute
|A — ZT Z A|j3%. To avoid this, we instead just compute a
constant approximation using Johnson-Lindenstrauss Trans-

form. Let ® € R**? be a Johnson-Lindenstrauss matrix,
where t = O(log(é%)). We have Pr[||®zx| = O(1) - ||z||] >

1- % for any fixed z. By union bound, with probability at
least 1 — 4, it holds simultaneously for all ¢ that

I = 29T Zz0) AT ||F = O(1)||A — 29T ZD A7,

Note that A®”" can be computed in O(nnz(A) log ¢) time.
Given this, each ||(I — ZWTZ®)AdT||2, can be com-
puted in O(kllog ) time. So the total running time is
O(nnz(A)log %) + O(¢k?). Since each Z() is good with
constant probability, with probability at least 1 — §, there
exists an ¢’ such that

14— ZOTZ0 AR < O A — [Alkl3-
Hence,
|1 = 272 AT [F. = O()| A — (Al
Because we pick Z/) minimizing
(1 = 29T ZD)ART |3,
with probability 1 — 4, then
(7 = 29T ZD) Al = 0|1 - 297 29) AST 3

< ||(1 - 2T Z0) A7 |3,
= O(1)|A — [Al|%,

which proves the correctness.

For space, computing each S = ACTJ7T and Z needs
O(¢k?) space. We do not store all Z(), but compute one at
a time. We only need to store the current best at any time,
so this does not increase space. We also need to store AP,
which takes O(¢log %) space.
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