Supplementary Material for
International Conference on Machine Learning (ICML 2018)

Anonymous Authors

Lemma 1 (covariance error to projection error (modified)).
\[\|A - \pi_B^k(A)\|_F^2 \leq \|A - [A]_k\|_F^2 + 2k \cdot \|A^T A - B^T B\|_2. \]

Proof. For any \(x \) with \(\|x\| = 1 \), we have
\[\|Ax\|^2 - \|Bx\|^2 = \|x^T (A^T A - B^T B) x\| \leq \|A^T A - B^T B\|_2 \]
Let \(u_i \) and \(w_i \) be the \(i \)th right singular vector of \(B \) and \(A \) respectively
\[\|A - \pi_B^k(A)\|_F^2 = \|A\|_F^2 - \|\pi_B^k(A)\|_F^2 \]
\[= \|A\|_F^2 - \sum_{i=1}^k \|Au_i\|^2 \quad \text{Pathagorean theorem} \]
\[\leq \|A\|_F^2 - \sum_{i=1}^k \|Bu_i\|^2 + k \cdot \|A^T A - B^T B\|_2 \]
by Eq. (1)
\[\leq \|A\|_F^2 - \sum_{i=1}^k \|Bu_i\|^2 + k \cdot \|A^T A - B^T B\|_2 \]
because \(\sum_{i=1}^k \|Bu_i\|^2 \leq \sum_{i=1}^k \|Bu_i\|^2 \)
\[\leq \|A\|_F^2 - \sum_{i=1}^k \|Au_i\|^2 + 2k \cdot \|A^T A - B^T B\|_2 \]
by Eq. (1)
\[= \|A - [A]_k\|_F^2 + 2k \cdot \|A^T A - B^T B\|_2. \]
\[\square \]

Row sampling.

Theorem 1. For any \(A \in \mathbb{R}^{n \times d} \) and \(F > 0 \), we sample each row \(A_i \) with probability \(p_i = \frac{\|A_i\|_F^2}{\alpha F^2} \); if it is sampled, scale it by \(1/\sqrt{p_i} \). Let \(B \) be the (rescaled) sampled rows, then w.p. \(0.99 \), \(\|A^T A - B^T B\|_2 \leq 10\alpha \sqrt{F} \|A\|_F \), and \(\|B\|_F \leq 10 \|A\|_F \). The expected number of rows sampled is \(O(\|A\|_F^2) \).

Proof. Since spectral norm is no larger than the Frobenius norm, it is sufficient to prove \(\|A^T A - B^T B\|_2 \leq 10\alpha \sqrt{F} \|A\|_F \).
For each \(j \in [n] \), let
\[x_j = \begin{cases} 1 & \text{if the } j \text{th rows of } A \text{ is sampled} \\ 0 & \text{otherwise.} \end{cases} \]
We have \((A^T A)_{i,j} = \sum_{t=1}^n a_{t,i}a_{t,j} \), while
\[(B^T B)_{i,j} = \sum_{t=1}^n \frac{x_t^2 \cdot a_{t,i}a_{t,j}}{p_t}. \]
So \(\mathbb{E}[(B^T B)_{i,j}] = (A^T A)_{i,j} \). We also have
\[\mathbb{V}[r] = \mathbb{V} \left[\sum_{t=1}^n \frac{x_t^2 \cdot a_{t,i}a_{t,j}}{p_t} \right] \]
\[= \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2 \cdot \mathbb{V}[x_t^2]}{p_t^2} \]
\[\leq \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2}{p_t}. \]
where we use the fact \(\mathbb{V}[x_t^2] = p_t (1 - p_t) \leq p_t \). So we have
\[\mathbb{E} \left[((A^T A)_{i,j} - (B^T B)_{i,j})^2 \right] = \mathbb{V}[(B^T B)_{i,j}] \]
\[\leq \sum_{t=1}^n \frac{a_{t,i}^2 a_{t,j}^2}{p_t}. \]
Therefore,
\[
\mathbb{E} \left[\| A^T A - B^T B \|_F^2 \right] = \sum_{i,j} \mathbb{E} \left[\left((A^T A)_{i,j} - (B^T B)_{i,j} \right)^2 \right]
\]
\[
\leq \sum_{i,j} \sum_{t=1}^n \frac{a^2_t \| A_t \|^2}{p_t}
\]
\[
= \sum_{i=1}^n \| A_i \|^2 \| A_i \|^2
\]
\[
= \sum_{i=1}^n \alpha^2 F \| A_i \|^2 = \alpha^2 F \| A \|^2.
\]

We adjust \(\alpha \) by a constant, and using Markov’s inequality
\[
\Pr \left[\| A^T A - B^T B \|_F^2 \geq 100 \alpha^2 F \| A \|^2 \right] \leq 0.01,
\]
which is equivalent to
\[
\Pr \left[\| A^T A - B^T B \|_F \geq 10 \sqrt{F} \| A \|_F \right] \leq 0.01.
\]

The success probability can be boosted by a similar argument as in (2) via McDiarmid’s inequality (see e.g. (2)). It is not hard to verify that
\[
\mathbb{E} \left[\| B \|_F^2 \right] = \| A \|_F^2.
\]
So by another Markov inequality, we prove the second part. \(\square \)

Input-sparsity time lower rank approximation algorithm.

Theorem 2 (weak low rank approximation). For any integers \(\ell, d \), given \(A \in \mathbb{R}^{\ell \times d} \), there is an algorithm that uses \(O(\text{nnz}(A) \log(1/\delta)) + O(\ell k^3) \) time and \(O(\ell (k^2 + \log 1/\delta)) \) space, and outputs a matrix \(Z \in \mathbb{R}^{\ell \times k} \) with orthonormal rows such that with probability \(1 - \delta \), \(\| A - Z^T Z A \|_F^2 \leq O(1) \| A - [A]_k \|_F^2 \).

Proof. Let \(J \) be a \(O(k) \times t_1 \) matrix with iid Gaussian random variables, and \(C \) be a \(t_1 \times \ell \) sparse subspace embedding matrix (see (2) for details), with \(t_1 = O(k^2) \). It was proved that, with constant probability, the column space of \(S = AC^T J^T \) contains a \(O(1) \) rank-\(k \) approximation to \(A \) (see e.g., Lemma 4.2 and Remark 4.1 in (2)), moreover \(S = AC^T J^T \) can be computed in time \(O(\text{nnz}(A)) + O(\ell k^3) \). In particular, let \(z_1, \cdots, z_{O(k)} \) be the an orthonormal basis of the column space of \(S \), then there exists \(X \) with \(\text{rank}(X) \leq k \) such that
\[
\| A - Z^T X \|_F^2 \leq O(1) \| A - [A]_k \|_F^2,
\]
where \(Z \) is the matrix whose rows are \(z_1, \cdots, z_{O(k)} \). Hence,
\[
\| A - Z^T Z A \|_F^2 \leq \| A - Z^T Z A \|_F^2 + \| Z^T Z A - Z^T X \|_F^2
\]
\[
= \| A - Z^T X \|_F^2 \leq O(1) \| A - [A]_k \|_F^2.
\]

Note that \(Z \) can be computed from \(S \) with \(O(\ell k^2) \) time. To boost the success probability to \(1 - \delta \), we repeat the algorithm \(\gamma = \log(1/\delta) \) times, which compute \(Z^{(1)}, \cdots, Z^{(\gamma)} \) and pick the best one. This needs \(O(\text{nnz}(A) \log 1/\delta) + O(\ell k^3) \) time. However, it will take too much time to compute \(A - Z^T Z A \|_F^2 \). To avoid this, we instead just compute a constant approximation using Johnson-Lindenstrauss Transform. Let \(\Phi \in \mathbb{R}^{\ell \times d} \) be a Johnson-Lindenstrauss matrix, where \(t = O(\log(1/\delta)) \). We have \(\Pr[\| \Phi x \| = O(1) \cdot \| x \| \geq 1 - \frac{\delta}{\ell} \) for any fixed \(x \). By union bound, with probability at least \(1 - \delta \), it holds simultaneously for all \(i \) that
\[
\|(I - Z^{(i)^T} Z^{(i)}) A \Phi^T \|_F^2 = O(1) \| A - Z^{(i)^T} Z^{(i)} A \|_F^2.
\]

Note that \(A \Phi^T \) can be computed in \(O(\text{nnz}(A) \log 1/\delta) \) time. Given this, each \(\|(I - Z^{(i)^T} Z^{(i)}) \Phi^T \|_F^2 \) can be computed in \(O(kt \log 1/\delta) \) time. So the total running time is \(O(\text{nnz}(A) \log 1/\delta) + O(\ell k^3) \). Since each \(Z^{(i)} \) is good with constant probability, with probability at least \(1 - \delta \), there exists an \(i' \) such that
\[
\| A - Z^{(i')^T} Z^{(i')} A \|_F^2 \leq O(1) \| A - [A]_k \|_F^2.
\]
Hence,
\[
\|(I - Z^{(i')^T} Z^{(i')}) \Phi^T \|_F^2 = O(1) \| A - [A]_k \|_F^2.
\]
Because we pick \(Z^{(j)} \) minimizing
\[
\|(I - Z^{(j)^T} Z^{(j)}) \Phi^T \|_F^2,
\]
with probability \(1 - \delta \), then
\[
\|(I - Z^{(j)^T} Z^{(j)}) A \|_F^2 = O(1) \|(I - Z^{(j)^T} Z^{(j)}) \Phi^T \|_F^2
\]
\[
\leq \|(I - Z^{(i')^T} Z^{(i')}) \Phi^T \|_F^2
\]
\[
= O(1) \| A - [A]_k \|_F^2,
\]
which proves the correctness.

For space, computing each \(S = AC^T J^T \) and \(Z \) needs \(O(\ell k^2) \) space. We do not store all \(Z^{(i)} \), but compute one at a time. We only need to store the current best at any time, so this does not increase space. We also need to store \(A \Phi \), which takes \(O(\ell \log 1/\delta) \) space. \(\square \)