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Appendix: Learning Deep ResNet Blocks Sequentially
using Boosting Theory

A. Related Works
A.1. Loss function and architecture selection

In neural network optimization, there are many commonly-used loss functions and criteria, e.g., mean squared error,
negative log likelihood, margin criterion, etc. There are extensive works (Girshick, 2015; Rubinstein & Kroese, 2013;
Tygert et all, 2015) on selecting or modifying loss functions to prevent empirical difficulties such as exploding/vanishing
gradients or slow learning (Balduzzi et al., 2017). However, there are no rigorous principles for selecting a loss function
in general. Other works consider variations of the multilayer perceptron (MLP) or convolutional neural network (CNN)
by adding identity skip connections (He et al., 2016), allowing information to bypass particular layers. However, no theo-
retical guarantees on the training error are provided despite breakthrough empirical successes. Hardt et al. (Hardt & Ma,
2016) have shown the advantage of identity loops in linear neural networks with theoretical justifications; however the
linear setting is unrealistic in practice.

A.2. Learning algorithm design

There have been extensive works on improving BP (LeCun et al., [1989). For instance, momentum (Qian, [1999), Nes-
terov accelerated gradient (Nesterov, [1983), Adagrad (Duchi et al., 2011) and its extension Adadelta (Zeiler, [2012). Most
recently, Adaptive Moment Estimation (Adam) (Kingma & Ba, 2014), a combination of momentum and Adagrad, has re-
ceived substantial success in practice. All these methods are modifications of stochastic gradient descent (SGD), but our
method only requires an arbitrary oracle, which does not necessarily need to be an SGD solver, that solves a relatively
simple shallow neural network.

B. Proof for Lemma [3.2: the strong learner is a ResNet

Proof. In our algorithm, the input of the next module is the output of the current module

gi+1(x) = fi(ge(x)) + g¢(z), (8

we thus obtain that each weak learning module is

he(x) = arpiwiy (figi(@)) + gi(x)) — cvw gi(x) (©))
= 1w/l g1 (1) — cww/ gio(x), (10)

and similarly
her1 = QryaWi oge42(T) — 1w/ g (2). (1n

Therefore the sum over h:(z) and hyyq () is
he(x) + hip1 () = oW/ o gi40(x) — vw/ go(x) (12)

And we further see that the weighted summation over all h;(x) is a telescoping sum

T
Y hi(@) = arpwigra (@) — arw] g1(z) = arpwgygr (@), (13)
t=1

C. Proof for Theorem [4.2: binary class telescoping sum boosting theory

Proof. We will use a 0-1 loss to measure the training error. In our analysis, the 0-1 loss is bounded by exponential loss.
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The training error is therefore bounded by

L (plariiwr19r1(2)) # i) (14)
Z (U5 (ars1wr i gr41(2i)) # yi} (15)
m T
i=1 t=1
m T

<) Di(i) exp{—inht(:ri)} (17)
i=1 t=1

=Y Dra() ][] 2 (18)
i=1 t=1
T

=11% (19)
t=1

where Z; = > Dy(3) exp (—yihe(z;)).
i=1

We choose ;41 to minimize Z;.

07 =~
dores — ; Dy(i)yior41 exp (—yihe(z:)) (20)
=2y Di1(i)yios(i) = 0 1)
=1

Furthermore each learning module is bounded as we see in the following analysis. We obtain

m
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= < B ”Yt> 5 (29)
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Equation is due to the non-positive correlation between exp(—yos4+1(z)) and exp(yo.(x)). Jensen’s inequality in
Equation (26) holds only when |y;0:+1(x;)| < 1 which is satisfied by the definition of the weak learning module.

The algorithm chooses a;4; to minimize Z;. We achieve an upper bound on Z;, 11 7” by minimizing the bound in
-1
Equation (29)
Zt|at+1:argmin A S Z |O¢t+1 1 ln(rrjyt) (30)
70¢t+1 + eat+1 e*at+1 _ eat+1 B eat + e*at
< + t> 3D
( 2 2 lavn=gm(352)

1-57 /
— = /1—9? (32)
=37, '
Therefore over the 7' modules, the training error is upper bounded as follows
< 1

iI:YD(P(aTHw;HQTH(% # i) < H V1-197< H V1—9%=exp (—§T72> (33)

t=1 t=1
Overall, Algorithm[Illeads us to consistent learning of ResNet. o

D. Proof for Corollary 4.3: Generalization Bound

Rademacher complexity technique is powerful for measuring the complexity of 4 any family of functions h : X — R,

based on easiness of fitting any dataset using classifiers in H (where X is any space). Let S =< z1, ..., 2, > be a sample
of m points in X. The empirical Rademacher complexity of H with respect to S is defined to be
. 1 &
Re(H) EE, |sup = o:h(x; (34)
() Sy | mup 5 oih(a)

where o is the Rademacher variable. The Rademacher complexity on m data points drawn from distribution D is defined
by

Rm(H) = Es~p [Rs(H)] . (35)
Proposition D.1. (Theorem 1 (Cortes et all, |2014)) Let H be a hypothesis set admitting a decomposition H = Ué:IHi

for some | > 1. H; are distinct hypothesis sets. Let S be a random sequence of m points chosen independently from X
according to some distribution D. For @ > 0 and any H = Zthl ht, with probability at least 1 — 6,

Pr (yH(x) < 0) < Pr (yH (x Z () 2[R

m

4 02m )\, logl log2
lo 260, 785
+ \/(92 °8 < ogl> m + 2m (36)
Sorall hy € Hy,.

Lemma D.2. Let h = w ' f, where w € R", f € R™. Let H and F be two hypothesis sets, and h € H., ;€ F,Vj € [n).
The Rademacher complexity of’H and F with respect to m points from D are related as follows

R (H) = |W]1 R (F). (37)

D.1. ResNet Module Hypothesis Space

Let n be the number of channels in ResNet, i.e., the number of input or output neurons in a module f;(g:(x)). We have
proved that ResNet is equivalent as

Fla)=w"> f(gi(x)) (38)
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We define the family of functions that each neuron f; ;, Vj € [n] belong to as
={z 2 w1j(0ofi1)(@)w-1; € R" w1l < Apy—1,fi1 € Fi1} (39)

where u;_1 ; denotes the vector of weights for connections from unit j to a lower layer t — 1, oo f;_; denotes element-wise
nonlinear transformation on f;_;. The output layer of each module is connected to the output layer of previous module.
We consider 1-layer modules for convenience of analysis.

Therefore in ResNet with probability at least 1 — 4,

0 m

4 02m \,logT log2
| 4
+ \/[92 °8 <logT>1 m + 2m (40)

T
logT
Pr(yF(z) <0) < Pr(yF(a annm (Fi) + 22

for all f; € F;.

Define the maximum infinity norm over samples as roo & Egp [max;e ) ||7i]lo | and the product of {1 norm bound on

weights as A E Ht, 1 2A 1. According to lemma 2 of (Cortes et al),2016), the empirical Rademacher complexity is
bounded as a function of r,, A; and n:

log(2
Ron(F2) < ooy 220 @1
2m
Overall, with probability at least 1 — 4,
Pr(yF(z) < 0) < Pr(yF( )<9)+4HWH1T°° Tl ZA
If y r) s =~ Sr y Tr) s t

2 [logT 4 02m \,logT log2
R -l | 4
+9 m +\/(6’2 ©8 <logT>1 m + 2m (“42)
for all f; € F;.

E. Proof for Theorem [E: Margin and Generalization Bound

Theorem E.1. | Generalization error bound | Given algorithml[L, the fraction of training examples with margin at most 0

is at most (1 + %)g exp(—1~%T). And the generalization error Prp(yF (z) < 0) satisfies
VIT+1

Iz)r(yF(x) <0)<(1+ L)% P(—EWQT)

2
Yr+1

4007‘00 /1og (2n) ZA + /1ogT+ﬁ(9 m, T, 0) 43)

with probability at least 1 — 0 for 5(6, m, T, ) = o \/[ log (logT)—‘ logT | log i

m 2m

Now the proof for Theorem[Elis the following.
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Proof. The fraction of examples in sample set S being smaller than 6 is bounded

1 m
BIF () <0) < 3 Uk (e:) <0)

— Z 1{y; Z hi(z;) < Oariq}

IN

% Z exp(—y; Z hi(zi) + Oaria)

=exp(@ari1)— Zexp —Yi Z he(x;))

T
= exp(fary1) H
To bound exp(far41) = (ﬂ—;ﬁ)(’, we first bound 4711: We know that Zthl HtT/:t+1(1 -

for all V¢ > 72 + €if v2 > 15, Therefore V ¢ > 72 + e and 4% > 1<

Vo1 = (L= )% + %

T T T

=3 II =2+ ][0 -2
t=1t'=t+1 t=1
T

<Y (=P + (1 =95
t=1
T—1

Therefore
T
Pr(yF(z) < ) < exp(flar 1) H Z,
- T
1
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(1 —Yr+1 tl_[l o
2 1
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Jre1
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As T — oo, Prs(yF(z) < 6) < 0 as exp(—372T) decays faster than (1 + 2
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F. Telescoping Sum Boosting for Multi-calss Classification

Recall that the weak module classifier is defined as
hi(2) = ap110041 (x) — azor(x) € RY, (60)

where o, () € A1,

The weak learning condition for multi-class classification is different from the binary classification stated in the previous
section, although minimal demands placed on the weak module classifier require prediction better than random on any
distribution over the training set intuitively.

We now define the weak learning condition. It is again inspired by the slightly better than random idea, but requires a more
sophisticated analysis in the multi-class setting.

F.1. Cost Matrix

In order to characterize the training error, we introduce the cost matrix C € R™*¢ where each row denote the cost incurred
by classifying that example into one of the C' categories. We will bound the training error using exponential loss, and under
the exponential loss function defined as in Definition[G.1] the optimal cost function used for best possible training error is
therefore determined.

Lemma F.1. The optimal cost function under the exponential loss is

, exp (s¢(wi, 1) — se(@i, vi) ifl#yi
Coli:l) = = 3 exp (selwi, ') = se(wi, i) il =y (61)
U#y;
t
where si(x) = Y h.(x).
T=1
F.2. Weak Learning Condition
— 35 <Ci(i) 0041 (2:)> — 3 <Cioa(i)0i(wi)>

Definition F.2. Let 44,1 = —=15 and yy = —=% . A multi-class weak module classifier

> 2 Gl > X Cia(ind)

=117y, =117y,

2 2

he(x) = apr10i41(x) — apor(x) satisfies the y-weak learning condition if 7‘1*_17]“ > 42 > 0, and Cov(< Cq(i,:

—_ —

)y 0r1 (i) >, < Cy(i, 1), 0041 (2) >) > 0.

We propose a novel learning algorithm using the optimal edge-over-random cost function for training ResNet under multi-
class classification task as in Algorithm 3]

Theorem F.3. The training error of a T-module ResNet using AlgorithmBand decays exponentially with the depth of the
ResNet T,

c-1

m

ZL;W(ST(@)) <(C- 1)(3_%T"Y2 (62)
i=1

if the weak module classifier hy(x) satisfies the y-weak learning condition Vt € [T).

The exponential loss function defined as in Definition[G.1]
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Algorithm 3 BoostResNet: telescoping sum boosting for multi-class classification
Input: Given (z1,¥1),...(Tm,ym) where y; € ¥ = {1,...,C} and a threshold ~y

Output: {f:(-),Vt} and Wriq > Discard wy 1, Ve £ T
1: Initialize t < 0,9 < 1, g <= 0,09 < 0 € RY, s(z4,1) = 0,Vi € [m],l € Y
: Initialize cost function Cy(,1) < { 1_C ifl =y,

2

3: while v, > v do
4 () g1, Wept, 0p41 () < AlgorithmB(g:(z), Cy, 01(x), o)

— > Ci(iy:)-0p41 (i)

2 _ X2
5: Compute y; + %ﬁ% > where Jp1 ¢ ——
Vi ;1 L; (i,1)

6: Update St+1($i, Z) — St(Ii, Z) + ht(ZCi, Z) > where ht(Ii, Z) = Oét+10t+1( Z) — Q(tO¢ (Il, Z)

eSt+1(wi,l)—stp1 (@i yq) if 1 # y;
7: Update cost function Cy11(7,1) + { -3 estr1(zal ) =ser1(zi,yi)  §f ] = n

U'#yi

8: t+—t+1
9: end while
10: T+ t—1

Algorithm 4 BoostResNet: oracle implementation for training a ResNet module (multi-class)

Input: g;(x),s;,0:(x) and o
Olltpllt .ft( ) Q4 1, WtJrl and 0t+1( )

(fh Qgi1, Wt+1) ¢ arg min Z Z @VT[f(.(]t(M)J)—f(.(]t(wi)7yi)+gt(11:71)—.%(Ii,yi)]
(fe,V) =1 1y,

2: 0p1(2) < Wiy [fi(9e(2)) + ge(2)]

F.3. Oracle Implementation

We implement an oracle to minimize Z < Z > est(@il)=se(zi,yi) ghe (zi,1)=he(24,4:) gjven current state s, and hypothesis
i=11#y;
module o;(z). Therefore minimizing Z; is equivalent to the following.

min Zze&(wwl) st(wisyi) g—at(0s(ws,l) —0u(wi,:)) aVT[f(Qt(ml) D—f(ge(zi),yi)+ge (i, 0)—ge (xi,y4)] (63)
(FeV) i iz,
= min Zzeav*[f 9+(2:),D)= F (e (@:),9i)+ g (2.0 = ge (i,:)] (64)
(FeV) i iz,
= mfin e*Oc’UT[f(miyyi)‘i’gt(miyyi)] Z eavT[f(zi,l)Jrgt(zi,l)] (65)
@iz 1#y:

G. Proof for Theorem [E.3 multiclass boosting theory

Proof. To characterize the training error, we use the exponential loss function

Definition G.1. Define loss function for a multiclass hypothesis H(x;) on a sample (x;,y;) as

L5P(H (22), 1) = 3 exp (H i, 1) — H(, i) ©o
1#y;
Define the accumulated weak learner s;(x;,l) = > hy(z;,l) and the loss Z; = Z > exp(si(wi, 1) —
t'=1 =LAy

s¢(wi, yi)) exp(he(zi, 1) — he(zi, y3)).-
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t
Recall that s¢(z;,1) = > hy(zi,1) = aq1 WtTHgtH (z;), the loss for a T-module multiclass ResNet is thus
t=1

ZF[I; (p (O‘TJer;JrlgTJrl(xz ) # i) < ZLGIP st(xi))

Note that Zy = % as the initial accumulated weak learners so(z;, ) = 0.

Z Zt—Zt—1

The loss fraction between module t and ¢ — 1, %, is related to Z; — Ztil ==z + 1.
The Z; is bounded
=30 exp(si(@i, 1) = 500, yi) + ha(wi, 1) = he (i, i)
i=11#y;
< Z Z St (i) =se(Tiyi) gt 10041 (wisl) —arpr0e41(2i i) Z Z se(@isl)=se(2i,y3) g—aror (i, ) +aror(zi,ys)
i=1 l#y; i=1 l#y;
m —Ot41 + eOlt+1 e—Olt+1 _ eOtt+1
< Z Z &5t (z4,0)—se(xiyi) ( 5 + 5 (Ot+1($i, yz) — Ot+1(1’i, l)))
i=1 l#£y;
Z Z eSt—1(@il)=se—1(zi i) 760” te ™
2
i=1 l#y;
e~ M+l L e+l _ 9 eQtt1 _ g—art1 0 et L e~
=( Zy 1+ — < Cy(wiy 1), 0041 (wiy 1) >) | ——=——
2 2 2
i=1
e—Ott+1 + eOtt+1 _ 2 eOlr+1 _ e—Olr+1 eat + e—Ott
S( B) Ly g+ —F Z < Ct ‘Th: ) ’Yr(xlv :) >) (f)
e—Ott+1 + eOtt+1 _ 2 eOlt+1 _ e—Olt+1 Olt + e—Ott
= Z _ - (-~ Z _ _—
(e w)tl)( )
Therefore
Z e Qt+1 4+ edt+1 e+l pQt+1 B eot 4+ et
i < + Vi
Zi_q 2 2 2
The algorithm chooses a4 to minimize Z;. We achieve an upper bound on Z;, %

by minimizing the bound in Equation (Z6))

Zt|ozt+1:argminZt S Zt|at+1 11 (1+";t)

e—Olt+1 + eOlr+1 e—Olt+1 _ eOlt+1 eOtt + e—Olt
2 t

2 2

| 1-72 \/7
1-97,4 '

arni=}in(122)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)
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Therefore over the 7" modules, the training error is upper bounded as follows

T
Pr (p(ariiwp g1 (i) # ) < [[V1-7 < [[VI-2?=exp iy (80)
D T+ ¢ Y= t= 2

t=1 t=1

Overall, Algorithm[3land H1eads us to consistent learning of ResNet. o

H. Experiments
H.1. Training error degradation of e2eBP on ResNet

We investigate e2eBP training performance on various depth ResNet. Surprisingly, we observe a training error degradation
for e2eBP although the ResNet’s identity loop is supposed to alleviate this problem. Despite the presence of identity loops,
the e2eBP eventually is susceptible to spurious local optima. This phenomenon is explored further in Figures [5aland
which respectively show how training and test accuracies vary throughout the fitting process. Our proposed sequential
training procedure, BoostResNet, relieves gradient instability issues, and continues to perform well as depth increases.

——ResNet 5
——ResNet 10
ResNet 15
——ResNet 20
——ResNet 25
ResNet 30

o

ResNet 5

~—ResNet 10
ResNet 15

——ResNet 20 0.3

——ResNet 25

ResNet 30 02

o o

Training Accuracy
Y

Test Accuracy

Number of Batches x10* Number of Batches x10*

(a) e2eBP training accuracy (b) e2eBP test accuracy

Figure 5: Convergence of e2¢BP (baseline) on multilayer perceptron residual network (of various depths) on MNIST
dataset.



