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Appendix: Learning Deep ResNet Blocks Sequentially
using Boosting Theory

A. Related Works

A.1. Loss function and architecture selection

In neural network optimization, there are many commonly-used loss functions and criteria, e.g., mean squared error,
negative log likelihood, margin criterion, etc. There are extensive works (Girshick, 2015; Rubinstein & Kroese, 2013;
Tygert et al., 2015) on selecting or modifying loss functions to prevent empirical difficulties such as exploding/vanishing
gradients or slow learning (Balduzzi et al., 2017). However, there are no rigorous principles for selecting a loss function
in general. Other works consider variations of the multilayer perceptron (MLP) or convolutional neural network (CNN)
by adding identity skip connections (He et al., 2016), allowing information to bypass particular layers. However, no theo-
retical guarantees on the training error are provided despite breakthrough empirical successes. Hardt et al. (Hardt & Ma,
2016) have shown the advantage of identity loops in linear neural networks with theoretical justifications; however the
linear setting is unrealistic in practice.

A.2. Learning algorithm design

There have been extensive works on improving BP (LeCun et al., 1989). For instance, momentum (Qian, 1999), Nes-
terov accelerated gradient (Nesterov, 1983), Adagrad (Duchi et al., 2011) and its extension Adadelta (Zeiler, 2012). Most
recently, Adaptive Moment Estimation (Adam) (Kingma & Ba, 2014), a combination of momentum and Adagrad, has re-
ceived substantial success in practice. All these methods are modifications of stochastic gradient descent (SGD), but our
method only requires an arbitrary oracle, which does not necessarily need to be an SGD solver, that solves a relatively
simple shallow neural network.

B. Proof for Lemma 3.2: the strong learner is a ResNet

Proof. In our algorithm, the input of the next module is the output of the current module

gt+1(x) = ft(gt(x)) + gt(x), (8)

we thus obtain that each weak learning module is

ht(x) = αt+1w
⊤
t+1(ft(gt(x)) + gt(x))− αtw

⊤
t gt(x) (9)

= αt+1w
⊤
t+1gt+1(x)− αtw

⊤
t gt(x), (10)

and similarly

ht+1 = αt+2w
⊤
t+2gt+2(x)− αt+1w

⊤
t+1gt+1(x). (11)

Therefore the sum over ht(x) and ht+1(x) is

ht(x) + ht+1(x) = αt+2w
⊤
t+2gt+2(x) − αtw

⊤
t gt(x) (12)

And we further see that the weighted summation over all ht(x) is a telescoping sum

T∑

t=1

ht(x) = αT+1w
⊤
T+1gT+1(x)− α1w

⊤
1 g1(x) = αT+1w

⊤
T+1gT+1(x). (13)

C. Proof for Theorem 4.2: binary class telescoping sum boosting theory

Proof. We will use a 0-1 loss to measure the training error. In our analysis, the 0-1 loss is bounded by exponential loss.
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The training error is therefore bounded by

Pr
i∼D1

(p(αT+1w
⊤
T+1gT+1(xi)) ≠ yi) (14)

=
m∑

i=1

D1(i)1{σ̃(αT+1w
⊤
T+1gT+1(xi)) ≠ yi} (15)

=
m∑

i=1

D1(i)1

{

σ̃

(
T∑

t=1

ht(xi)

)

≠ yi

}

(16)

≤
m∑

i=1

D1(i) exp

{

−yi
T∑

t=1

ht(xi)

}

(17)

=
m∑

i=1

DT+1(i)
T∏

t=1

Zt (18)

=
T∏

t=1

Zt (19)

where Zt =
m∑
i=1

Dt(i) exp (−yiht(xi)).

We choose αt+1 to minimize Zt.

∂Zt

∂αt+1
= −

m∑

i=1

Dt(i)yiot+1 exp (−yiht(xi)) (20)

= −Zt

m∑

i=1

Dt+1(i)yiot+1(i) = 0 (21)

Furthermore each learning module is bounded as we see in the following analysis. We obtain

Zt =
m∑

i=1

Dt(i)e
−yiht(xi) (22)

=
m∑

i=1

Dt(i)e
−αt+1yiot+1(xi)+αtyiot(xi) (23)

≤
m∑

i=1

Dt(i)e
−αt+1yiot+1(xi)

m∑

i=1

Dt(i)e
αtyiot(xi) (24)

=
m∑

i=1

Dt(i)e
−αt+1

1+yiot+1(xi)

2 +αt+1
1−yiot+1(xi)

2

m∑

i=1

Dt(i)e
αt

1+yiot(xi)
2 −αt

1−yiot(xi)
2 (25)

≤
m∑

i=1

Dt(i)

(
1 + yiot+1(xi)

2
e−αt+1 +

1− yiot+1(xi)

2
eαt+1

)
·

m∑

i=1

Dt(i)

(
1 + yiot(xi)

2
eαt +

1− yiot(xi)

2
e−αt

)

(26)

=
m∑

i=1

Dt(i)

(
1 + yiot+1(xi)

2
e−αt+1 +

1− yiot+1(xi)

2
eαt+1

)
eαt + e−αt

2
(27)

=
m∑

i=1

Dt(i)

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
yiot+1(xi)

)
eαt + e−αt

2
(28)

=

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2
(29)
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Equation (24) is due to the non-positive correlation between exp(−yot+1(x)) and exp(yot(x)). Jensen’s inequality in
Equation (26) holds only when |yiot+1(xi)| ≤ 1 which is satisfied by the definition of the weak learning module.

The algorithm chooses αt+1 to minimize Zt. We achieve an upper bound on Zt,

√
1−γ̃2

t

1−γ̃2
t−1

by minimizing the bound in

Equation (29)

Zt|αt+1=argminZt ≤ Zt|αt+1= 1
2 ln( 1+γ̃t

1−γ̃t
) (30)

≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2

∣∣∣∣
αt+1= 1

2 ln( 1+γ̃t
1−γ̃t

)
(31)

=

√
1− γ̃2

t

1− γ̃2
t−1

=
√
1− γ2

t (32)

Therefore over the T modules, the training error is upper bounded as follows

Pr
i∼D

(p(αT+1w
⊤
T+1gT+1(xi))) ≠ yi) ≤

T∏

t=1

√
1− γ2

t ≤
T∏

t=1

√
1− γ2 = exp

(
−
1

2
Tγ2

)
(33)

Overall, Algorithm 1 leads us to consistent learning of ResNet.

D. Proof for Corollary 4.3: Generalization Bound

Rademacher complexity technique is powerful for measuring the complexity of H any family of functions h : X → R,
based on easiness of fitting any dataset using classifiers in H (where X is any space). Let S =< x1, . . . , xm > be a sample
of m points in X . The empirical Rademacher complexity of H with respect to S is defined to be

RS(H)
def
= Eσ

[

sup
h∈H

1

m

m∑

i=1

σih(xi)

]

(34)

where σ is the Rademacher variable. The Rademacher complexity on m data points drawn from distribution D is defined
by

Rm(H) = ES∼D [RS(H)] . (35)

Proposition D.1. (Theorem 1 (Cortes et al., 2014)) Let H be a hypothesis set admitting a decomposition H = ∪li=1Hi

for some l > 1. Hi are distinct hypothesis sets. Let S be a random sequence of m points chosen independently from X
according to some distribution D. For θ > 0 and any H =

∑T
t=1 ht, with probability at least 1− δ,

Pr
D

(yH(x) ≤ 0) ≤ Pr
S
(yH(x) ≤ θ) +

4

θ

T∑

t=1

Rm(Hkt) +
2

θ

√
log l

m

+

√

⌈
4

θ2
log

(
θ2m

log l

)
⌉
log l

m
+

log 2
δ

2m
(36)

for all ht ∈ Hkt .

Lemma D.2. Let h̃ = w̃⊤f̃ , where w̃ ∈ Rn, f̃ ∈ Rn. Let H̃ and F̃ be two hypothesis sets, and h̃ ∈ H̃ , f̃j ∈ F̃ , ∀j ∈ [n].
The Rademacher complexity of H̃ and F̃ with respect to m points from D are related as follows

Rm(H̃) = ∥w̃∥1Rm(F̃). (37)

D.1. ResNet Module Hypothesis Space

Let n be the number of channels in ResNet, i.e., the number of input or output neurons in a module ft(gt(x)). We have
proved that ResNet is equivalent as

F (x) = w⊤
T∑

t=1

f(gt(x)) (38)
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We define the family of functions that each neuron ft,j , ∀j ∈ [n] belong to as

Ft = {x→ ut−1,j(σ ◦ ft−1)(x) : ut−1,j ∈ R
n, ∥ut−1,j∥1 ≤ Λt,t−1, ft−1,i ∈ Ft−1} (39)

where ut−1,j denotes the vector of weights for connections from unit j to a lower layer t−1, σ◦ ft−1 denotes element-wise
nonlinear transformation on ft−1. The output layer of each module is connected to the output layer of previous module.
We consider 1-layer modules for convenience of analysis.

Therefore in ResNet with probability at least 1− δ,

Pr
D

(yF (x) ≤ 0) ≤ Pr
S
(yF (x) ≤ θ) +

4

θ

T∑

t=1

∥w∥1Rm(Ft) +
2

θ

√
logT

m

+

√

⌈
4

θ2
log

(
θ2m

logT

)
⌉
logT

m
+

log 2
δ

2m
(40)

for all ft ∈ Ft.

Define the maximum infinity norm over samples as r∞
def
= ES∼D

[
maxi∈[m]∥xi∥∞

]
and the product of l1 norm bound on

weights as Λt
def
=
∏t

t′=1 2Λt′,t′−1. According to lemma 2 of (Cortes et al., 2016), the empirical Rademacher complexity is
bounded as a function of r∞, Λt and n:

Rm(Ft) ≤ r∞Λt

√
log(2n)

2m
(41)

Overall, with probability at least 1− δ,

Pr
D

(yF (x) ≤ 0) ≤ Pr
S
(yF (x) ≤ θ) +

4∥w∥1r∞
√

log(2n)
2m

θ

T∑

t=1

Λt

+
2

θ

√
logT

m
+

√

⌈
4

θ2
log

(
θ2m

logT

)
⌉
logT

m
+

log 2
δ

2m
(42)

for all ft ∈ Ft.

E. Proof for Theorem E: Margin and Generalization Bound

Theorem E.1. [ Generalization error bound ] Given algorithm 1, the fraction of training examples with margin at most θ
is at most (1 + 2

1√
γ̃T+1

−1
)

θ
2 exp(− 1

2γ
2T ). And the generalization error PrD(yF (x) ≤ 0) satisfies

Pr
D
(yF (x) ≤ 0) ≤ (1 +

2
1

γ̃T+1
− 1

)
θ
2 exp(−

1

2
γ2T )

+
4C0r∞

θ

√
log(2n)

2m

T∑

t=1

Λt +
2

θ

√
logT

m
+ β(θ,m, T, δ) (43)

with probability at least 1− δ for β(θ,m, T, δ)
def
=

√⌈
4
θ2 log

(
θ2m
log T

)⌉
log T
m +

log 2
δ

2m .

Now the proof for Theorem E is the following.
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Proof. The fraction of examples in sample set S being smaller than θ is bounded

Pr
S
(yF (x) ≤ θ) ≤

1

m

m∑

i=1

1{yiF (xi) ≤ θ} (44)

=
1

m

m∑

i=1

1{yi
T∑

t=1

ht(xi) ≤ θαT+1} (45)

≤
1

m

m∑

i=1

exp(−yi
T∑

t=1

ht(xi) + θαT+1) (46)

= exp(θαT+1)
1

m

m∑

i=1

exp(−yi
T∑

t=1

ht(xi)) (47)

= exp(θαT+1)
T∏

t=1

Zt (48)

To bound exp(θαT+1) =
√
(1+γ̃T+1

1−γ̃T+1
)θ , we first bound γ̃T+1: We know that

∑T
t=1

∏T
t′=t+1(1− γ2

t′)γ
2
t ≤ (1− γ2)T−tγ2

for all ∀γt ≥ γ2 + ϵ if γ2 ≥ 1−ϵ
2 . Therefore ∀ γt ≥ γ2 + ϵ and γ2 ≥ 1−ϵ

2

γ̃2
T+1 = (1− γ2

T )γ̃
2
T + γ2

T (49)

=
T∑

t=1

T∏

t′=t+1

(1 − γ2
t′)γ

2
t +

T∏

t=1

(1− γ2
t )γ̃

2
1 (50)

≤
T∑

t=1

(1− γ2)T−tγ2 + (1− γ2)T γ̃2
1 (51)

=
T−1∑

t=0

(1− γ2)tγ2 + (1− γ2)T γ̃2
1 (52)

= 1− (1− γ2)T + (1− γ2)T γ̃2
1 (53)

= 1− (1− γ̃2
1)(1− γ2)T (54)

Therefore

Pr
S
(yF (x) ≤ θ) ≤ exp(θαT+1)

T∏

t=1

Zt (55)

= (
1 + γ̃T+1

1− γ̃T+1
)

θ
2

T∏

t=1

Zt (56)

= (
1 + γ̃T+1

1− γ̃T+1
)

θ
2

T∏

t=1

√
1− γ2

t (57)

= (1 +
2

1
γ̃T+1

− 1
)

θ
2 exp(−

1

2
γ2T ) (58)

≤ (1 +
2

1√
1−(1−γ̃2

1)(1−γ2)T
− 1

)
θ
2 exp(−

1

2
γ2T ) (59)

As T →∞, PrS(yF (x) ≤ θ) ≤ 0 as exp(− 1
2γ

2T ) decays faster than (1 + 2
1√

1−(1−γ̃2
1 )(1−γ2)T

−1
)

θ
2 .
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F. Telescoping Sum Boosting for Multi-calss Classification

Recall that the weak module classifier is defined as

ht(x) = αt+1ot+1(x) − αtot(x) ∈ R
C , (60)

where ot(x) ∈ ∆C−1.

The weak learning condition for multi-class classification is different from the binary classification stated in the previous
section, although minimal demands placed on the weak module classifier require prediction better than random on any
distribution over the training set intuitively.

We now define the weak learning condition. It is again inspired by the slightly better than random idea, but requires a more
sophisticated analysis in the multi-class setting.

F.1. Cost Matrix

In order to characterize the training error, we introduce the cost matrix C ∈ Rm×C where each row denote the cost incurred
by classifying that example into one of the C categories. We will bound the training error using exponential loss, and under
the exponential loss function defined as in Definition G.1, the optimal cost function used for best possible training error is
therefore determined.

Lemma F.1. The optimal cost function under the exponential loss is

Ct(i, l) =

{
exp (st(xi, l)− st(xi, yi)) if l ≠ yi
−
∑

l′≠yi

exp (st(xi, l′)− st(xi, yi)) if l = yi (61)

where st(x) =
t∑

τ=1
hτ (x).

F.2. Weak Learning Condition

Definition F.2. Let γ̃t+1 =
−

m∑

i=1
<Ct(i,:),ot+1(xi)>

m∑

i=1

∑

l ̸=yi

Ct(i,l)
and γ̃t =

−
m∑

i=1
<Ct−1(i,:),ot(xi)>

m∑

i=1

∑

l ̸=yi

Ct−1(i,l)
. A multi-class weak module classifier

ht(x) = αt+1ot+1(x) − αtot(x) satisfies the γ-weak learning condition if
γ̃2
t+1−γ̃2

t

1−γ̃2
t
≥ γ2 > 0, and Cov(< Ct(i, :

), ot+1(xi) >,< Ct(i, :), ot+1(xi) >) ≥ 0.

We propose a novel learning algorithm using the optimal edge-over-random cost function for training ResNet under multi-
class classification task as in Algorithm 3.

Theorem F.3. The training error of a T -module ResNet using Algorithm 3and 4 decays exponentially with the depth of the

ResNet T ,

C − 1

m

m∑

i=1

Lexp
η (sT (xi)) ≤ (C − 1)e−

1
2Tγ2

(62)

if the weak module classifier ht(x) satisfies the γ-weak learning condition ∀t ∈ [T ].

The exponential loss function defined as in Definition G.1
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Algorithm 3 BoostResNet: telescoping sum boosting for multi-class classification

Input: Given (x1, y1), . . . (xm, ym) where yi ∈ Y = {1, . . . , C} and a threshold γ
Output: {ft(·),∀t} and WT+1 ◃ Discard wt+1, ∀t ≠ T

1: Initialize t← 0, γ̃0 ← 1, α0 ← 0, o0 ← 0 ∈ RC , s0(xi, l) = 0, ∀i ∈ [m], l ∈ Y

2: Initialize cost function C0(i, l)←
{

1 if l ≠ yi
1− C if l = yi

3: while γt > γ do

4: ft(·),αt+1,Wt+1, ot+1(x)← Algorithm 4(gt(x),Ct, ot(x),αt)

5: Compute γt ←
√

γ̃2
t+1−γ̃2

t

1−γ̃2
t

◃ where γ̃t+1 ←
−

m∑

i=1
Ct(i,:)·ot+1(xi)

m∑

i=1

∑

l ̸=yi

Ct(i,l)

6: Update st+1(xi, l)← st(xi, l) + ht(xi, l) ◃ where ht(xi, l) = αt+1ot+1(xi, l)− αtot(xi, l)

7: Update cost function Ct+1(i, l)←

{
est+1(xi,l)−st+1(xi,yi) if l ≠ yi
−
∑

l′≠yi

est+1(xi,l
′)−st+1(xi,yi) if l = yi

8: t← t+ 1
9: end while

10: T ← t− 1

Algorithm 4 BoostResNet: oracle implementation for training a ResNet module (multi-class)

Input: gt(x),st,ot(x) and αt

Output: ft(·), αt+1, Wt+1 and ot+1(x)

1: (ft,αt+1,Wt+1)← arg min
(f,α,V )

m∑
i=1

∑
l≠yi

eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)]

2: ot+1(x)←W⊤
t+1 [ft(gt(x)) + gt(x)]

F.3. Oracle Implementation

We implement an oracle to minimize Zt
def
=

m∑
i=1

∑
l≠yi

est(xi,l)−st(xi,yi)eht(xi,l)−ht(xi,yi) given current state st and hypothesis

module ot(x). Therefore minimizing Zt is equivalent to the following.

min
(f,α,V )

m∑

i=1

∑

l≠yi

est(xi,l)−st(xi,yi)e−αt(ot(xi,l)−ot(xi,yi))eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)] (63)

≡ min
(f,α,V )

m∑

i=1

∑

l≠yi

eαV
⊤[f(gt(xi),l)−f(gt(xi),yi)+gt(xi,l)−gt(xi,yi)] (64)

≡ min
α,f,v

m∑

i=1

e−αv⊤[f(xi,yi)+gt(xi,yi)]
∑

l≠yi

eαv
⊤[f(xi,l)+gt(xi,l)] (65)

G. Proof for Theorem F.3 multiclass boosting theory

Proof. To characterize the training error, we use the exponential loss function

Definition G.1. Define loss function for a multiclass hypothesis H(xi) on a sample (xi, yi) as

Lexp
η (H(xi), yi) =

∑

l≠yi

exp ((H(xi, l)−H(xi, yi))) . (66)

Define the accumulated weak learner st(xi, l) =
t∑

t′=1
ht′(xi, l) and the loss Zt =

m∑
i=1

∑

l≠yi

exp(st(xi, l) −

st(xi, yi)) exp(ht(xi, l)− ht(xi, yi)).
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Recall that st(xi, l) =
t∑

t′=1
ht′(xi, l) = αt+1W⊤

t+1gt+1(xi), the loss for a T -module multiclass ResNet is thus

Pr
i∼D1

(p(αT+1W
⊤
T+1gT+1(xi)) ≠ yi) ≤

1

m

m∑

i=1

Lexp
η (sT (xi)) (67)

≤
1

m

m∑

i=1

∑

l≠yi

exp (η(sT (xi, l)− sT (xi, yi))) (68)

≤
1

m
ZT (69)

=
T∏

t=1

Zt

Zt−1
(70)

Note that Z0 = 1
m

as the initial accumulated weak learners s0(xi, l) = 0.

The loss fraction between module t and t− 1, Zt

Zt−1
, is related to Zt − Zt−1 as Zt

Zt−1
= Zt−Zt−1

Zt−1
+ 1.

The Zt is bounded

Zt =
m∑

i=1

∑

l≠yi

exp(st(xi, l)− st(i, yi) + ht(xi, l)− ht(xi, yi)) (71)

≤
m∑

i=1

∑

l≠yi

est(xi,l)−st(xi,yi)eαt+1ot+1(xi,l)−αt+1ot+1(xi,yi)
m∑

i=1

∑

l≠yi

est(xi,l)−st(xi,yi)e−αtot(xi,l)+αtot(xi,yi) (72)

≤
m∑

i=1

∑

l≠yi

est(xi,l)−st(xi,yi)

(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
(ot+1(xi, yi)− ot+1(xi, l))

)

m∑

i=1

∑

l≠yi

est−1(xi,l)−st−1(xi,yi)

(
eαt + e−αt

2

)
(73)

=(
e−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2

m∑

i=1

< Ct(xi, :), ot+1(xi, :) >)

(
eαt + e−αt

2

)

≤(
e−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2

m∑

i=1

< Ct(xi, :), Uγ̃t(xi, :) >)

(
eαt + e−αt

2

)
(74)

=(
e−αt+1 + eαt+1 − 2

2
Zt−1 +

eαt+1 − e−αt+1

2
(−γ̃t)Zt−1)

(
eαt + e−αt

2

)
(75)

Therefore
Zt

Zt−1
≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)(
eαt + e−αt

2

)
(76)

The algorithm chooses αt+1 to minimize Zt. We achieve an upper bound on Zt,

√
1−γ̃2

t

1−γ̃t−12

by minimizing the bound in Equation (76)

Zt|αt+1=argminZt ≤ Zt|αt+1= 1
2 ln( 1+γ̃t

1−γ̃t
) (77)

≤
(
e−αt+1 + eαt+1

2
+

e−αt+1 − eαt+1

2
γ̃t

)
eαt + e−αt

2

∣∣∣∣
αt+1= 1

2 ln( 1+γ̃t
1−γ̃t

)
(78)

=

√
1− γ̃2

t

1− γ̃2
t−1

=
√
1− γ2

t (79)
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Therefore over the T modules, the training error is upper bounded as follows

Pr
i∼D

(p(αT+1w
⊤
T+1gT+1(xi))) ≠ yi) ≤

T∏

t=1

√
1− γ2

t ≤
T∏

t=1

√
1− γ2 = exp

(
−
1

2
Tγ2

)
(80)

Overall, Algorithm 3 and 4 leads us to consistent learning of ResNet.

H. Experiments

H.1. Training error degradation of e2eBP on ResNet

We investigate e2eBP training performance on various depth ResNet. Surprisingly, we observe a training error degradation
for e2eBP although the ResNet’s identity loop is supposed to alleviate this problem. Despite the presence of identity loops,
the e2eBP eventually is susceptible to spurious local optima. This phenomenon is explored further in Figures 5a and 5b,
which respectively show how training and test accuracies vary throughout the fitting process. Our proposed sequential
training procedure, BoostResNet, relieves gradient instability issues, and continues to perform well as depth increases.
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(a) e2eBP training accuracy
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(b) e2eBP test accuracy

Figure 5: Convergence of e2eBP (baseline) on multilayer perceptron residual network (of various depths) on MNIST
dataset.


