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1 Proof of Proposition 1
For categorical probabilities p and q, their Kullback-Leiber divergence is defined as

DKL(p‖q) =

N∑
n=1

pn log
pn
qn
,

and their total variation distance is defined as

DTV(p‖q) =
1

2

N∑
n=1

|pn − qn|.

The key to prove Proposition 1 is the fact that the cooccurrence probabilityΩ can be obtained by marginalizing
Xt−1 in the triple-occurrence probabilityΩ3, i.e.,

Ω(i, j) =

N∑
n=1

Ω3(n, i, j).

Similarly, this holds for the cumulative estimates described in §2 of the main paper as well,

Ω̂(i, j) =

N∑
n=1

Ω̂3(n, i, j).

Using the log sum inequality, we have that

Ω(i, j) log
Ω(i, j)

Ω̂(i, j)
≤

N∑
n=1

Ω3(n, i, j) log
Ω3(n, i, j)

Ω̂3(n, i, j)
.

Summing both sides over i and j, we result in

DKL(Ω̂‖Ω) ≤ DKL(Ω̂3‖Ω3)

Using Hölder’s inequality with L1-norm and L∞-norm, we have that

|Ω(i, j)− Ω̂(i, j)| ≤
N∑
n=1

|Ω3(n, i, j)− Ω̂3(n, i, j)|.

Summing both sides over i and j and then dividing by 2, we obtain

DTV(Ω̂‖Ω) ≤ DTV(Ω̂3‖Ω3)

Q.E.D.
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2 Proof of Proposition 2
The volume of a hyper-ball in Rn with radius R is

π
n
2

Γ(n2 + 1)
Rn.

The elliptical cone C∗ = {x : ‖x‖ ≤ 1>x/
√
K − 1} intersecting with the hyperplane 1>x = 1 is a hyperball in RK−1

with radius
√

1
K(K−1) . Therefore, the volume of the inner-ball is

Vb =
π

K−1
2

Γ(K+1
2 )

(K(K − 1))−
K−1

2 .

The nonnegative orthan intersecting with 1>x = 1 is a regular simplex in RK−1 with side length
√

2. Its volume is

Vs =

√
K

(K − 1)!
=

√
K

Γ(K)
.

Their ratio is

Vb
Vs

=

π
K−1

2

Γ( K+1
2 )

(K(K − 1))−
K−1

2

√
K

Γ(K)

=
1√
K

(
π

K(K − 1)

)K−1
2 Γ(K)

Γ(K+1
2 )

=
1√
K

(
π

K(K − 1)

)K−1
2 Γ(K2 )

21−K√π

=
1√
πK

(
4π

K(K − 1)

)K−1
2

Γ

(
K

2

)
Q.E.D.

This function of volume ratio is plotted in Figure 1. As we can see, as K increases, the volume ratio indeed goes to
zero at a super-exponential rate.

3 Derivation of THETAUPDATE

It is described in [Boyd and Vandenberghe, 2004, §10.2] that for solving a convex equality constrained problem

minimize
x

f(x)

subject to Ax = b

using the Newton’s method, we start at a feasible point x, and the iterative update takes the form x ← x − α∆ntx,
where the Newton direction is calculated from solving the KKT system[

∇2f(x) A>

A 0

] [
∆ntx
d

]
=

[
−∇f(x)

0

]
.

Assuming∇2f(x) � 0 and A has full row rank, then the KKT system can be solved via elimination, as described
in [Boyd and Vandenberghe, 2004, Algorithm 10.3]. Suppose A ∈ Rm×n, if∇2f(x) is diagonal, the cost of calculating
∆ntx is dominated by forming and inverting the matrix ADA>with D being diagonal.
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Figure 1: The volume ratio between the hyperball obtained by intersecting C and the hyperplane 1>x = 1 and the
probability simplex, as K increases.

Now we follow the steps of [Boyd and Vandenberghe, 2004, Algorithm 10.3] to derive explicit Newton iterates for
solving (11). First, we re-write the part of (11) that involveΘ here:

minimize
Θ>0

N∑
n,`=1

K∑
k,j=1

−Ωn`Πr
n`kj logΘkj + λ

K∑
k,j=1

ΞrkjΘkj

subject to 1>Θ1 = 1,Θ1 = Θ>1 .

Let θ = vec(Θ), then equality constraint has the formAθ = b where

A =

[
1>⊗ 1>

1>⊗ I − I ⊗ 1>

]
.

MatrixA does not have full row rank, because the last row ofA is implied by the rest. Therefore, we can discard the
last equality constraint. We will keep it when calculating matrix multiplications for simpler expression, and discard the
corresponding entry or column/row for other operations.

ObviouslyAθ has the form

Aθ =

[
1>Θ1

Θ1 −Θ>1

]
,

which costs O(K2) flops. For a slightly more complicated multiplication

ADiag(θ)A>=

[
1>Θ1 1>R>− 1>Θ

Θ1 −Θ>1 Diag(Θ1 +Θ>1 )−Θ −Θ>
]
,

which also costs O(K2) flops to compute. For [ d0 d
> ]>∈ RK+1,

A>[ d0 d
> ]>= vec

(
d011

>+ d1>− 1d>
)
.

At point θ, the negative gradient is −∇f(θ) = vec(G) where

Gkj =

∑N
n,`=1Ωn`Π

r
n`kj

Θkj
− λΞrkj ,

and the inverse of the Hessian
(
∇2f(θ)

)−1
= Diag(vec(R)) where

Rkj =
Θ2
kj∑N

n,`=1Ωn`Π
r
n`kj

.
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Let

H =

[
1>R1 1>R>− 1>R

R1 −R>1 Diag(R1 +R>1 )−R−R>
]

and then delete the last column and row ofH , and

Skj = RkjGkj

g =

[
1>S1

S1 − S>1

]
and then delete the last entry of g. We can first solve for d by

d = H−1g = [ d0 d̃
> ]>.

Then we append a zero at the end of d and define

[ d> 0 ]>→ d = [ d0 d̃
> ]>.

The Newton direction ∆ntθ can then be obtained via

∆ntθ =
(
∇2f(θ)

)−1 (
A>d+∇f(θ)

)
.

In matrix form, it is equivalent to

∆ntΘ = R ∗
(
d011

>+ d̃1>− 1 d̃>−G
)
.

The in-line implementation of THETAUPDATE is given here.

Algorithm 1 THETAUPDATE

Require: Θ, Θ̃, λ, ρ
1: Ξ ← |detΘ|Θ−>
2: repeat
3: G← Θ̃

/
Θ − λΞ

4: R← Θ ∗Θ
/
Θ̃

5: H ←
[

1>R1 1>R>−1>R
R1−R>1 Diag(R1+R>1 )−R−R>

]
6: delete the last column and row ofH

7: g ←
[

1>(R ∗G)1
(R ∗G)1 − (R ∗G)>1

]
8: delete the last entry of g
9: d←H−1g

10: [ d0 d̃
> ]>← [ d> 0 ]>

11: ∆ntΘ = R ∗
(
d011

>+ d̃1>− 1 d̃>−G
)

12: Θ ← Θ −∆ntΘ
13: until convergence
14: return Θ

4 Proof of Proposition 3
The form of Algorithm 1 falls exactly into the framework of block successive convex approximation (BSCA) algorithm
proposed by Razaviyayn et al. [2013] with only one block of variables. Invoking [Razaviyayn et al., 2013, Theorem 4],
we have that every limit point of Algorithm 1 is a stationary point of Problem (7). Additionally, since the constraint
set of Problem (7) is compact, any sub-sequence has a limit point, which is also a stationary point. This proves that
Algorithm 1 converges to a stationary point of Problem (7). Q.E.D.
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Figure 2: The total variation difference between the ground truth and estimated transition probability (left) and emission
probability (middle), and the elapsed time (right) for N = 16 and K = 4. The total variation difference of the emission
probabilities is calculated as 1

2K ‖M\ −M?‖1, since each column of the matrices indicates a (conditional) probability,
and the total variation difference is equal to one half of the L1-norm; and similarly for that of the transition probabilities
after rescaling the rows ofΩ\ andΩ? to sum up to one. The result is averaged over 10 random problem instances.
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Figure 3: The elapsed time for the synthetic experiment with N = 100 and K = 20 as in the main paper.

5 Additional Synthetic Experiments
In this section we conduct a similar synthetic experiment to identify HMM parameters, but with a much smaller problem
size, so that we can include the classical Baum-Welch algorithm [Baum et al., 1970] as another baseline. Fixing N = 16
and K = 4, the transition probabilities are synthetically generated from a random exponential matrix of size K ×K
followed by row-normalization; for the emission probabilities, the top K ×K part of the N ×K random exponential
matrices are set to be the identity matrix before column normalization, so that it is guaranteed to be sufficiently scattered.
We let the number of HMM realizations go from 103 to 105, and compare the estimation error for the transition matrix
and emission matrix by the aforementioned methods. We show the total variation distance between the ground truth
probabilities Pr[Xt+1|Xt] and Pr[Yt|Xt] and their estimations P̂r[Xt+1|Xt] and P̂r[Yt|Xt] using various methods.
The result is shown in Figure 2.

Similar to the experiment shown in the main paper, the proposed method works the best in terms of estimating
the HMM parameters, without sacrificing too much computational times. Much to one’s surprise, the Baum-Welch
algorithm is not working very well in terms of estimation error. This is possibly because we limit the maximum number
of EM iterations to be 500 (default setting of the MATLAB implementation), which may not be enough for convergence.
What is expected is that the computational time of Baum-Welch grows linearly with respect to the length of the HMM
observations, while other methods are independent from it.

An interesting remark is that when T = 12, 800, the per-iteration elapsed time of Baum-Welch is approximately 1
second. Recall that each iteration of Baum-Welch calls for the forward-backward algorithm, with complexity O(K2T ).
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Figure 4: The perplexity of different models as number of topics K increases.

This means for the problem size considered in the main paper, each iteration of Baum-Welch takes approximately 4
minutes to 7 hours, depending on the realization length. This is clearly not feasible in practice.

We also present the elapsed time of the four algorithms excluding the Baum-Welch algorithm for the case considered
in the main paper, i.e., N = 100 and K = 20. Similar to the timing result shown in Figure 2, the proposed method
takes the longest time compared to the other three, but not significantly; also recall that the propose method works
considerably better in terms of estimation accuracy.

6 Additional HTMM Evaluations
In the main body of the paper we showed that HTMM is able to learn topics with higher quality using pairwise word
cooccurrences. The quality of topics is evaluated using coherence, which is defined as follows. For each topic, a set of
words V is picked (here we pick the top 20 words with the highest probability of appearing). We calculate the number of
documents each word v1 appears freq(v1) and the number of documents two words v1 and v2 both appear freq(v1, v2).
The coherence of that topic is calculated as ∑

v1,v2∈V
log

(
freq(v1, v2) + ε

freq(v1)

)
.

The intuition is that if both v1 and v2 both have high probability of appearing in a topic, then they have high probability
of co-occurring in a document as well; hence a higher value of coherence indicates a more indicative topic. The
coherence of the individual topics are then averaged to get the coherence for the entire topic matrix.

Here we show some more evaluation results. Using the learned topic matrix, we can see how it fits the data directly
from perplexity, defined as Blei et al. [2003]

exp

(
−
∑
d log p(docd)∑

d Ld

)
.

A smaller perplexity means the probability model fits the data better. As seen in Figure 4, HTMM gives the smallest
perplexity. Notice that since HTMM takes word ordering into account, it is not fair for the other methods to take the
bag-of-words representation of the documents. The bag-of-words model is essentially multinomial, whose pdf includes
a scaling factor n!

n1!...nK ! for different combinations of observation orderings. In our case this factor is not included
since we do know the word ordering in each document. For HTMM the log-likelihood is calculated efficiently using the
forward algorithm.
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This result is not surprising. Even using the same topic matrix, a bag-of-words model tries to find a K-dimensional
representation for each document, whereas HTMM looks for a K2-dimension representation. One may wonder if it is
causing over-fitting, but we argue that it is not. First of all, we have see that in terms of coherence, HTMM learns a
topic matrix with higher quality. For learning feature representations for each document, we showcase the following
result. Once we have the topic-word probabilities and topic weights or topic transition probability, we can infer the
underlying topic for each word. For bag-of-words models, each word only has one most probable topic in a document,
no matter where it appears. For HTMM, once we learn the transition and emission probability, the topic of each word
can be optimally estimated using the Viterbi algorithm. For one specific news article from the Reuters21578 data set,
the topic inference given by pLSA is:

china daily vermin eat pct grain stocks survey provinces and cities showed vermin consume and pct china grain
stocks china daily that each year mln tonnes pct china fruit output left rot and mln tonnes pct vegetables paper
blamed waste inadequate storage and bad preservation methods government had launched national programme
reduce waste calling for improved technology storage and preservation and greater production additives paper gave
details

The word topic inference given by HTMM is:

china daily vermin eat pct grain stocks survey provinces and cities showed vermin consume and pct china grain
stocks china daily that each year mln tonnes pct china fruit output left rot and mln tonnes pct vegetables paper
blamed waste inadequate storage and bad preservation methods government had launched national programme
reduce waste calling for improved technology storage and preservation and greater production additives paper gave
details

As we can see, HTMM gets much more consistent and smooth inferred topics, which agrees with human under-
standings.

7 Learning HMMs from Triple-occurrences
Finally, we show a stronger identifiability result for learning HMMs using triple-occurrence probabilities.

Theorem 1. Consider a HMM with K hidden states and N observable states. Suppose the emission probability
Pr[Yt|Xt] is generic (meaning probabilities not satisfying this condition form a set with Lebesgue measure zero),
the transition probabilities Pr[Xt+1|Xt] are linearly independent from each other, and each conditional probability
Pr[Xt+1|Xt] contains no more thanN/2 nonzeros. Then this HMM can be uniquely identified from its triple-occurrence
probability Pr[Yt−1, Yt, Yt+1], up to permutation of the hidden states, for K ≤ N2

16 .

Proof. It is clear that identifiability holds when K ≤ N , so we focus on the case that N < K ≤ N2

16 .
As we explained in §1.1, the triple-occurrence probability can be factored into

Pr[Yt−1, Yt, Yt+1] =

K∑
k=1

Pr[Xt = xk] Pr[Yt−1|Xt = xk] Pr[Yt|Xt = xk] Pr[Yt+1|Xt = xk].

Using tensor notations, this is equivalent to

Ω3 = [[p;L,M ,N ]],

where

pk = Pr[Xt = xk],

Lnk = Pr[Yt−1 = yn|Xt = xk],

Nnk = Pr[Yt+1 = yn|Xt = xk].
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LetΘ denote the row scaled version ofΘ so that each row sums to one, thenΘ denotes the transition probability. Then
we have

L = MΘ
>
. (1)

Since M is generic and Θ is full rank, both L and N are generic as well. The latest tensor identifiability result
by Chiantini and Ottaviani [2012, Theorem 1.1] shows that for a N ×N ×N tensor with generic factors, the CPD
Ω3 = [[p;L,M ,N ]] is essentially unique if

K ≤ 22blog2Nc−2,

or with a slightly worse bound

K ≤ N2

16
.

This does not mean that any non-singular Θ can be uniquely recovered in this case. Equation (1) is under-
determined. A natural assumption to achieve identifiability is that each row of Θ, i.e., each conditional transition
probability Pr[Xt+1|Xt], can take at most N/2 non-zeros. In the context of HMM, this means that at a particular
hidden state, there are only a few possible states for the next step, which is very reasonable. For a genericM ,

spark(M) = krank(M) + 1 = N + 1.

Donoho and Elad [2003] showed that for such aM , and a vector θ with at most N/2 nonzeros, θ is the unique solution
with at most N/2 nonzeros that satisfiesMθ = `. Therefore, if we seek for the sparsest solution to the linear equation
(1), we can uniquely recoverΘ as well.
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