
Appendix - Deep Variational Reinforcement Learning for POMDPs

A. Experiments
A.1. Implementation Details

In our implementation, the transition and proposal distributions pθ(zt|ht−1, at−1) and qθ(zt|ht−1, at−1, ot) are multivariate
normal distributions over zt whose mean and diagonal variance are determined by neural networks. For image data, the
decoder pθ(ot|zt, at−1) is a multivariate independent Bernoulli distribution whose parameters are again determined by a
neural network. For real-valued vectors we use a normal distribution.

When several inputs are passed to a neural network, they are concatenated to one vector. ReLUs are used as nonlinearities
between all layers. Hidden layers are, if not otherwise stated, all of the same dimension as h. Batch normalization was used
between layers for experiments on Atari but not on Mountain Hike as they significantly hurt performance. All recurrent
neural networks (RNNs) are GRUs.

Encoding functions ϕo, ϕa and ϕz are used to encode single observations, actions and latent states z before they are passed
into other networks.

To encode visual observations, we use the the same convolutional network as proposed by Mnih et al. (2015), but with only
32 instead of 64 channels in the final layer. The transposed convolutional network of the decoder has the reversed structure.
The decoder is preceeded by an additional fully connected layer which outputs the required dimension (1568 for Atari’s
84× 84 observations).

For observations in R2 we used two fully connected layers of size 64 as encoder. As decoder we used the same structure as
for pθ(z| . . .) and qφ(z| . . .) which are all three normal distributions: One joint fully connected layer and two separated
fully connected heads, one for the mean, one for the variance. The output of the variance layer is passed through a softplus
layer to force positivity.

Actions are encoded using one fully connected layer of size 128 for Atari and size 64 for Mountain Hike. Lastly, z is
encoded before being passed into networks by one fully connected layer of the same size as h.

The policy is one fully connected layer whose size is determined by the actions space, i.e. up to 18 outputs with softmax for
Atari and only 2 outputs for the learned mean for Mountain Hike, together with a learned variance. The value function is
one fully connected layer of size 1.

A2C used ne = 16 parallel environments and ns = 5-step learning for a total batch size of 80. Hyperparameters were
tuned on Chopper Command. The learning rate of both deep variational reinforcement learning (DVRL) and RNN was
independently tuned on the set of values {3× 10−5, 1× 10−4, 2× 10−4, 3× 10−4, 6× 10−4, 9× 10−4} with 2× 10−4

being chosen for DVRL on Atari and 1× 10−4 for DVRL on MountainHike and RNN on both environments. Without further
tuning, we set λH = 0.01 and λV = 0.5 as is commonly used.

As optimizer we use RMSProp with α = 0.99. We clip gradients at a value of 0.5. The discount factor of the control
problem is set to γ = 0.99 and lastly, we use ’orthogonal’ initialization for the network weights.

The source code will be release in the future.

A.2. Additional Experiments and Visualisations

Table 1 shows the results on deterministic and flickering Atari, averaged over 5 random seeds. The values for deep recurrent
Q-network (DRQN) and action-specific deep recurrent Q-network (ADRQN) are taken from the respective papers. Note that
DRQN and ADRQN rely on Q-learning instead of A2C, so the results are not directly comparable.

Figure 1 and 2 show individual learning curves for all 10 Atari games, either for the deterministic or the stochastic version
of the games.

A.3. Computational Speed

The approximate training speed in frames per second (FPS) is on one GPU on a dgx1 for Atari:

• RNN: 124k FPS

• DVRL (1 Particle): 64k FPS

Appendix - Deep Variational Reinforcement Learning for POMDPs

0 2 4

Frames ×107

800

1000

1200

1400

1600

1800

R
et

u
rn

DVRL

RNN

(a) Asteroids

0 2 4

Frames ×107

500

1000

1500

2000

R
et

u
rn

DVRL

RNN

(b) Beam Rider

0 2 4

Frames ×107

22

24

26

28

30

R
et

u
rn

DVRL

RNN

(c) Bowling

0 2 4

Frames ×107

3000

3500

4000

4500

R
et

u
rn

DVRL

RNN

(d) Centipede

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

RNN

(e) Chopper Command

0 2 4

Frames ×107

−15

−10

−5

0

R
et

u
rn

DVRL

RNN

(f) Double Dunk

0 2 4

Frames ×107

200

250

300

R
et

u
rn

DVRL

RNN

(g) Frostbite

0 2 4

Frames ×107

−10

−8

−6

−4

R
et

u
rn

DVRL

RNN

(h) Ice Hockey

0 2 4

Frames ×107

1000

1500

2000

R
et

u
rn

DVRL

RNN

(i) Ms. Pacman

0 2 4

Frames ×107

−20

−10

0

10

20

R
et

u
rn

DVRL

RNN

(j) Pong

Figure 1: Training curves on the full set of evaluated Atari games, in the case of flickering and deterministic environments.

Appendix - Deep Variational Reinforcement Learning for POMDPs

0 2 4

Frames ×107

1000

1200

1400

1600

R
et

u
rn

DVRL

RNN

(a) Asteroids

0 2 4

Frames ×107

500

1000

1500

2000

R
et

u
rn

DVRL

RNN

(b) Beam Rider

0 2 4

Frames ×107

22

24

26

28

30

R
et

u
rn

DVRL

RNN

(c) Bowling

0 2 4

Frames ×107

2500

3000

3500

4000

4500

R
et

u
rn

DVRL

RNN

(d) Centipede

0 2 4

Frames ×107

2000

4000

6000

R
et

u
rn

DVRL

RNN

(e) Chopper Command

0 2 4

Frames ×107

−15

−10

−5

R
et

u
rn

DVRL

RNN

(f) Double Dunk

0 2 4

Frames ×107

150

200

250

R
et

u
rn

DVRL

RNN

(g) Frostbite

0 2 4

Frames ×107

−10

−8

−6

R
et

u
rn

DVRL

RNN

(h) Ice Hockey

0 2 4

Frames ×107

1000

1500

2000

2500

R
et

u
rn

DVRL

RNN

(i) Ms. Pacman

0 2 4

Frames ×107

−20

−10

0

10

20

R
et

u
rn

DVRL

RNN

(j) Pong

Figure 2: Training curves on the full set of evaluated Atari games, in the case of flickering and stochastic environments.

Appendix - Deep Variational Reinforcement Learning for POMDPs

Table 1: Final results on deterministic and flickering Atari environments, averaged over 5 random seeds. Bold numbers indicate statistical
significance at the 5% level when comparing DVRL and RNN. The values for DRQN and ADRQN are taken from the respective papers.

Env DVRL(±std) RNN DRQN ADRQN

Pong 20.07(±0.39) 19.3(±0.26) 12.1(±2.2) 7(±4.6)
Chopper 6619(±532) 4619(±306) 1330(±294) 1608(±707)
MsPacman 2156(±127) 2113(±135) 1739(±942)
Centipede 4171(±127) 4283(±187) 4319(±4378)
BeamRider 1901(±67) 2041(±81) 618(±115)
Frostbite 296(±8.2) 259(±5.7) 414(±494) 2002(±734)
Bowling 29.74(±0.49) 29.38(±0.52) 65(±13)
IceHockey −4.87(±0.24) −6.49(±0.27) −5.4(±2.7)
DDunk −6.08(±3.08) −15.25(±0.51) −14(±2.5) −13(±3.6)
Asteroids 1610(±63) 1750(±97) 1032(±410) 1040(±431)

• DVRL (10 Particles): 48k FPS

• DVRL (30 Particle): 32k FPS

A.4. Model Predictions

In Figure 3 we show reconstructed and predicted images from the DVRL model for several Atari games. The current
observation is in the leftmost column. The second column (’dt0’) shows the reconstruction after encoding and decoding the
current observation. For the further columns, we make use of the learned generative model to predict future observations.
For simplicity we repeat the last action. Columns 2 to 7 show predicted observations for dt ∈ {1, 2, 3, 10, 30} unrolled
timesteps. The model was trained as explained in the main paper. The reconstructed and predicted images are a weighted
average over all 16 particles.

Note that the model is able to correctly predict features of future observations, for example the movement of the cars in
ChopperCommand, the (approximate) ball position in Pong or the missing pins in Bowling. Furthermore, it is able to do so,
even if the current observation is blank like in Bowling. The model has also correctly learned to randomly predict blank
observations.

It can remember feature of the current state fairly well, like the positions of barriers (white dots) in Centipede. On the other
hand, it clearly struggles with the amount of information present in MsPacman like the positions of all previously eaten
fruits or the location of the ghosts.

B. Algorithms
Algorithm 1 details the recurrent (belief) state computation (i.e. history encoder) for DVRL. Algorithm 2 details the recurrent
state computation for RNN. Algorithm 3 describes the overall training algorithm that either uses one or the other to aggregate
the history. Despite looking complicated, it is just a very detailed implementation of n-step A2C with the additional changes:
Inclusion of LELBO and inclusing of the option to not delete the computation graph to allow longer backprop in n-step A2C.

Results for also using the reconstruction loss LENC for the RNN based encoder aren’t shown in the paper as they reliably
performed worse than RNN without reconstruction loss.

Appendix - Deep Variational Reinforcement Learning for POMDPs

(a) ChopperCommand

(b) Pong

(c) Bowling

(d) Centipede

(e) MsPacman

(f) BeamRider

Figure 3: Reconstructions and predictions using the learned generative model for several Atari games. First column: Current obseration
(potentially blank). Second column: Encoded and decoded reconstruction of the current observation. Columns 3 to 7: Predicted
observations using the learned generative model for timesteps dt ∈ {0, 1, 2, 3, 10, 30} into the future.

Appendix - Deep Variational Reinforcement Learning for POMDPs

Algorithm 1 DVRL encoder

Input: Previous state b̂t−1, observation ot, action at−1
Unpack w1:K

t−1 , z
1:K
t−1 , h

1:K
t−1, ĥt−1 ← b̂t−1

xo ← ϕoθ(ot)
xa ← ϕaθ(at−1)
for k = 1 to K do

Sample hkt−1 ∼ h1:Kt−1 based on weights
Sample zkt ∼ qθ(zkt |hkt−1, xo, xa)
xz ← ϕzθ(zt)
wkj ← pθ(z

k
t |hkt−1, xa)pθ(ot|hkt , xz, xa)/qθ(zkt |hkt−1, xo, xa)

hkt ← GRU(hkt−1, x
z, xo, xa)

end for
LELBO
t ← − log

∑
k w

k
t − log(K)

ĥt ← GRU(Concat(wkt , x
z, hkt)

K
k=1passed sequentially)

Pack b̂t ← w1:K
t , z1:Kt , h1:Kt , ĥt

{When V or π is conditioned on b̂t, the summary ĥt is used.}
Output: b̂t,LELBO

t

Algorithm 2 RNN encoder

Input: Previous state hj−1, observation oj , action aj−1
xo ← ϕoθ(ot)
xa ← ϕaθ(at−1)

b̂j ← GRUθ(b̂j−1, xo, xa)
LENC
j ← − log pθ(oj |b̂j−1)

Output: hj ,LENC
j

Appendix - Deep Variational Reinforcement Learning for POMDPs

Algorithm 3 Training Algorithm

Input: Environment Env, Encoder Encθ,φ (either RNN or DVRL)
Initialize observation o1 from Env.
Initialize encoder latent state s0 ← sinit0 as either h0 (for RNN) or b̂0,θ (for DVRL)
Initialize action a0 = 0 to no-op
Set s′0, a

′
0 ← s0, a0.

{The distinction between s′t and st is necessary when the environment resets at time t.}
repeat
LEncj , aj , a

′
j , sj , s

′
j , oj+1, rj+1, donej+1 ← NULL j = 1 . . . n

{Run n steps forward:}
for j = 1 to n do
sj ,LELBO

j ← Encθ,φ(oj , a
′
j−1, s

′
j−1)

Sample aj ∼ πρ(aj |sj)
oj+1, rj+1, donej+1 ← Env(aj)
if donej+1 then
s′j , a

′
j ← sinit0 , 0

{sj is still available to compute Vη(sj)}
oj+1 ← Reset Env()

else
s′j , a

′
j ← sj , aj

end if
end for
{Compute targets}
sn+1 ← Encθ,φ(on+1, a

′
n, s
′
n)

Qtargetn+1 ← Vη(sn+1).detach()
for j = n to 1 do
Qtargetj ← γ ·Qtargetj+1

if donej+1 then
Qtargetj ← 0

end if
Qtargetj ← Qtargetj + rj+1

end for
{Compute losses}
for j = n to 1 do
LVj ← (Qtargetj − Vη(sj))2

LAj ← − log πρ(aj |sj)(Qtargetj − Vη(sj))
LHj ← −Entropy(πρ(·|sj))

end for
J ←

∑
j(λ

V LVj + LAj + λHLHj + λELELBO
j)

TakeGradientStep(∇J)
Delete or save computation graph of sn to determine backpropagation length
a′0, s

′
0 ← an, sn

o1 ← on+1

until converged

	Experiments
	Implementation Details
	Additional Experiments and Visualisations
	Computational Speed
	Model Predictions

	Algorithms

