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Abstract

For data-driven decision-making, one promising
approach, called predictive optimization, is to
solve maximization problems i n which the objec-
tive function to be maximized is estimated from
data. Predictive optimization, however, suffers
from the problem of a calculated optimal solu-
tion’s being evaluated too optimistically, i.e., the
value of the objective function is overestimated.
This paper investigates such optimistic bias and
presents two methods for correcting it. The first,
which is analogous to cross-validation, success-
fully corrects the optimistic bias but results in
underestimation of the true value. Our second
method employs resampling techniques to avoid
both overestimation and underestimation. We
show that the second method, referred to as the
parameter perturbation method, achieves asymp-
totically unbiased estimation. Empirical results
for both artificial and real-world datasets demon-
strate that our proposed approach successfully
corrects the optimistic bias.

1. Introduction
Data-driven decision-making has become the subject of
increased interest and been used in a number of practical ap-
plications. One of the most promising approaches is mathe-
matical programming based on predictive models generated
by machine learning. Recent advances in machine learning
have made it easier to create accurate predictive models,
and resulting predictions have been used to build mathemat-
ical programming problems (we refer to such approaches
as predictive optimization). Predictive optimization is em-
ployed in applications for which frequent trial-and-error
process are not practical, such as water distribution op-
timization (Draper et al., 2003), energy generation plan-
ning (Baos et al., 2011), retail price optimization (Johnson
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et al., 2016; Ito & Fujimaki, 2016), supply chain manage-
ment (Thomas et al., 1996; Jung et al., 2004; Bertsimas &
Thiele, 2004), and portfolio optimization (Markowitz, 1952;
Chan et al., 1999; Konno & Yamazaki, 1991). Another
important use for data-driven decision-making is in rein-
forcement learning (Kaelbling et al., 1996; Sutton & Barto,
2013). Here it is employed in situations mainly in which
frequent trial-and-error operations are possible, except for
batch reinforcement learning (Lange et al., 2012). The fo-
cus of this paper is on the first approach, i.e., predictive
optimization.

In many practical applications of predictive optimization, it
is essential to estimate the quality of the computed strategy
because executing a strategy is often costly and risky. For
example, predictive price optimization has been used to es-
timate revenue functions through regressions of demand as
functions of product prices, and then, to optimize pricing
strategies by maximizing estimated revenue functions (John-
son et al., 2016; Ito & Fujimaki, 2016; 2017; Yabe et al.,
2017). In practice, users need to assess the return for the
computed “optimal” strategy before changing prices, in or-
der to prevent unforeseen heavy losses. In a situation in
which costs for trial-and-error processes are unrealistically
high, a key challenge in predictive optimization is how to
assess the quality (or expected return) of the “optimal” solu-
tion by means of an estimated objective function.

Predictive optimization consists of two steps: estimation
and optimization. In the estimation step, we construct an
estimated objective function f(z, θ̂) for the true objective
function f(z, θ∗), where θ is a parameter of f , and z is a de-
cision variable corresponding to the strategy to be optimized.
In the optimization step, we compute the estimated optimal
strategy ẑ = arg maxz∈Z f(z, θ̂), where Z is the domain of
z. Because it would be expensive to observe f(ẑ, θ∗) (i.e.,
to perform ẑ in a real environment), we usually estimate
it by f(ẑ, θ̂), which we call simple evaluation, in order to
assess the quality of ẑ.

It has been empirically seen, however, that this simple evalu-
ation tends to be too optimistic. For example, in the contexts
of algorithmic investment and portfolio optimization, it has
been reported (Michaud, 1989; Chapados, 2011; Harvey
& Liu, 2015) that f(ẑ, θ̂) is much better than the acutual
return. Michaud (Michaud, 1989) argued that this bias ap-
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pears because the mean-variance optimizers act as “error
maximizers”, i.e., optimizers tend to choose solutions con-
taining large errors. According to (Harvey & Liu, 2015), a
common practice in evaluating trading strategies is simple
heuristics that discount the estimated objective to 50%, i.e.,
consider 0.5f(ẑ, θ̂) to be an estimator of f(ẑ, θ∗). Heuris-
tics referred to as portfolio resampling techniques (Michaud,
1998; Scherer, 2002) have been studied for nearly 20 years
but have not yet to be theoretically justified. A few recent
studies (Bailey & Marcos, 2016; Bailey et al., 2014; Har-
vey & Liu, 2015) have statistically analyzed and proposed
algorithms to mitigate the bias issue, but their algorithms
are restricted to particular applications (e.g., algorithmic in-
vestment) and, as far as we know, there exists no principled
algorithm for an unbiased estimator of f(z, θ∗) in general
predictive optimization problems.

The goal of this study is to address this optimistic bias issue,
and to propose methods for unbiased estimation of true
objective values. Our key contributions are summarized as
follows.

First, we prove that the estimated optimal value f(ẑ, θ̂) is
biased even if the estimated objective function f(z, θ̂) is an
unbiased estimator of the true objective function f(z, θ∗).
Further, we correlate the bias issue to overfitting in machine
learning, which yields a valuable insight into bias correction
methods.

Second, we propose two algorithms for estimating the value
of true objective functions under mild assumptions. The
first algorithm is based on a procedure similar to cross-
validation and has been inspired by the analogy between
our problem and overfitting in supervised learning. This
algorithm corrects the optimistic bias, but suffers from pes-
simistic bias, i.e., the estimated value is biased in a direction
suggesting a poorer result, similar to that which occurs in
cross-validation. The magnitude of this pessimistic bias
tends to be larger than that of cross-validation, and hence,
it is not negligible in many cases. To mitigate this issue,
we propose another algorithm, which we refer to as a pa-
rameter perturbation method. This algorithm employs a
resampling technique and is theoretically proven here to
achieve asymptotically unbiased estimation.

Our experimental results show that the proposed algorithms
are able to estimate the value of a true objective function
more accurately than a state-of-the-art hold-out validation
technique commonly used in algorithmic investment (Bailey
& Marcos, 2016; Bailey et al., 2014). In a simulation exper-
iment with real-world retail datasets for price optimization,
we have observed that our evaluation algorithms estimate
a 17% increase in the gross profit, which seems to be more
realistic and convincing than the value estimated without
bias correction.

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the framework of the combination of
machine learning and mathematical optimization in exam-
ples of usage. We also show that such a framework suffers
from bias w.r.t. optimal values. Section 4 gives solutions
to this problem and theoretical guarantees for them. In
Section 5, the empirical performance of our algorithms is
demonstrated.

2. Predictive Optimization
Suppose we have a sequence of training data x =
(x1, . . . , xN ) ∈ XN , where N is the number of data in-
stances. Each xn is generated from a probabilistic model
{p(x|θ) : θ ∈ Θ} parameterized by θ ∈ Θ. We further sup-
pose having a set of objective functions {f(z, θ) : θ ∈ Θ}
where z ∈ Z is a decision variable that corresponds to strate-
gies to be optimized. The goal of predictive optimization
is to find z∗ ∈ arg maxz∈Z f(z, θ∗), where θ∗ is the true
parameter. However, such a true parameter is unknown in
practice, and therefore we estimate θ∗ by θ̂ from x, and com-
pute the estimated optimal solution ẑ ∈ arg maxz∈Z f(z, θ̂)
rather than z∗. This section discusses three examples of pre-
dictive optimization problems in order to provide a better
picture of the process.

Example 1 (Coin-Tossing). Suppose that we have a coin
coming up heads with probability θ∗ and tails with proba-
bility 1− θ∗, where θ∗ ∈ Θ := [0, 1]. Consider predicting
heads or tails for this coin. If we predict the subsequent
face correctly, we win $1, and, otherwise, nothing. Pre-
dicting heads, then, will result in earning $1 with proba-
bility θ∗ and $0 with probability 1 − θ∗, and hence, the
expectation value of the earnings for predicting heads is
f(‘head’, θ∗) = 1 · θ∗+ 0 · (1− θ∗) = θ∗. Similarly, the ex-
pected earnings for predicting tails is f(‘tail’, θ∗) = 1− θ∗.
If we knew the true parameter θ∗, we could maximize the
expected earnings by choosing z∗ ∈ arg maxz∈Z f(z, θ∗),
where Z = {‘head’, ‘tail’} stands for a set of feasible strate-
gies. Since we do not know the true parameter θ∗, however,
we use, rather, past data x ∈ XN := {‘head’, ‘tail’}N of
N tossings, for estimating θ∗.

Table 1 illustrates how the optimistic bias occurs in predic-
tive optimization. Suppose θ∗ = 1/2 (a) and that there are
four cases of the observed pattern for three tossings (b). The
estimators of θ∗ might then be obtained as (c), using max-
imum likelihood estimation. On the basis of θ̂, the “best”
strategies are estimated as (d), and the estimated and true
optimal values are summarized in (e) and (f). It is worth
noting that the expectation of (e) over four cases (bottom
middle), which is 3/4, is larger than the true expectation
(bottom right), which is 1/2 even if the θ̂ is unbiased, i.e.,
the expectation of θ̂ matches θ∗ (bottom left).

Example 2 (Portfolio optimization (Markowitz, 1952)).
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Table 1. Example of optimistic bias in coin-tossing.
Case 1 Case 2 Case 3 Case 4

(a) θ∗ 1/2 1/2 1/2 1/2
(b) x {HHH} {HHT} {HTT} {TTT}
(c) θ̂ 1 2/3 1/3 0
(d) ẑ H H T T
(e) f(ẑ, θ̂) 1 2/3 2/3 1
(f) f(ẑ, θ∗) 1/2 1/2 1/2 1/2

E[θ̂] E[f(ẑ, θ̂)] E[f(ẑ, θ∗)]

1/2 = θ∗ 3/4 1/2

Suppose that there are d assets, and let Rj stand for the
return on each component asset for j ∈ {1, . . . , d}. Let
µ∗ = (µ∗1, . . . , µ

∗
d)
> ∈ Rd be the expected return for each

asset, i.e., µ∗j = E[Rj ]. Then the portfolio expressed as
Rz =

∑d
j=1 zjRj , where zj ≥ 0 is the weighting of the

j-th component asset and z = (z1, . . . , zd)
> ∈ Rd≥0, has

expected return E[Rz] =
∑d
j=1 zjµ

∗
j = µ∗>z. Variance in

the portfolio return can be expressed as var[Rz] = z>Σ∗z,
where Σ∗ is the covariance matrix of (R1, . . . , Rd). Denote
θ∗ = (µ∗,Σ∗). Then, with a given risk tolerance λ ≥ 0, the
optimal portfolio is obtained as the solution of the following
problem:

Maximize f(z, θ∗) := µ∗>z − λz>Σ∗z, (1)

subject to
d∑
j=1

zj = 1, zj ≥ 0 (j = 1, . . . , d).

In practice, however, since θ∗ is never available, we estimate
it from historical data x = (x1, . . . , xN ), where xn ∈ Rd
is an observation of past returns for individual component
assets (Qiu et al., 2015; Agarwal et al., 2006; Li & Hoi,
2012). Under the assumption that xn follow the same dis-
tribution,1 the estimators of µ∗ and Σ∗ are obtained by
µ̂ = 1

N

∑N
n=1 xn and Σ̂ = 1

N−1
∑N
n=1(xn− µ̂)(xn− µ̂)>.

We obtain the optimal solution by solving (1) with the re-
placement of µ∗ and Σ∗ by µ̂ and Σ̂, respectively.

Example 3 (Predictive price optimization(Ito & Fujimaki,
2017; 2016)). Suppose we have d products whose prices are
denoted by z = (z1, . . . , zd). Let us denote their sales quan-
tities by q∗(z) = (q∗j (z))dj=1 ∈ Rd, which are functions
of the price z. The gross revenue function is then defined
by f(z, θ∗) = q∗(z)>z, and the true optimal solution is
obtained by solving the following problem:

Maximize q∗(z)>z subject to z ∈ Z, (2)

where Z ⊆ Rd is a pre-defined domain of prices (e.g.,
list price, 3%-off, 5%-off, and so on). However, we can
never know the true demand-price relationship q∗(z), and

1This condition can easily be relaxed.

the predictive price optimization approximates q∗(z) by the
following regression functions:

q(z, θ) =

K∑
k=1

θkψk(z) + ε, ε ∼ N(0,Σ), (3)

where {ψk : Rd → Rd}Kk=1 are fixed basis functions and
{θk}Kk=1 ⊆ R are regression coefficients. We estimate
θ = (θ1, . . . , θK) as a standard regression problem and then
solve (2) after replacing q∗(z) by q(z, θ̂), where θ̂ is the
estimator of θ∗.

3. Optimistic Bias in the Optimal Value
3.1. Existence of Optimistic Bias

This section formally proves the existence of optimistic bias
in estimated optimal values. In the above examples, the
objective functions f(z, θ) w.r.t. θ were affine functions and
θ̂ were unbiased estimators of θ∗. Hence, the constructed
objective function f(z, θ̂) was an unbiased estimator of the
true objective function f(z, θ∗), i.e., it holds that

Ex[f(z, θ̂)] = Ex[f(z, θ∗)], z ∈ Z. (4)

From this equation, one might expect that Ex[f(ẑ, θ̂)] and
f(ẑ, θ̂) would be reasonable estimators of Ex[f(ẑ, θ∗)] and
f(ẑ, θ∗), respectively. However, the following proposition
contradicts this intuition.

Proposition 1 (Optimistic Bias). Suppose (4) holds. For
ẑ ∈ arg maxz∈Z f(z, θ̂) and z∗ ∈ arg maxz∈Z f(z, θ∗), it
holds that

Ex[f(ẑ, θ̂)] ≥ f(z∗, θ∗) ≥ Ex[f(ẑ, θ∗)]. (5)

The right inequality is strict if ẑ is suboptimal w.r.t. the true
objective function f(z, θ∗) with non-zero probability.

Proof. By taking the expectation of both sides of f(ẑ, θ̂) ≥
f(z∗, θ̂), we obtain the left inequality of (5) as follows:

Ex[f(ẑ, θ̂)] ≥ Ex[f(z∗, θ̂)] = f(z∗, θ∗),

where the equality comes from (4). Similarly, the right in-
equality of (5) comes from f(z∗, θ∗) ≥ f(ẑ, θ∗). Further, if
ẑ /∈ arg maxz∈Z f(z, θ∗) holds with non-zero probability,
then f(z∗, θ∗) > f(ẑ, θ∗) holds with non-zero probabil-
ity and f(z∗, θ∗) ≥ f(ẑ, θ∗) always holds, which implies
f(z∗, θ∗) > E[f(ẑ, θ∗)].

This proposition implies that the estimated optimal value
f(ẑ, θ̂) is not an unbiased estimator of f(ẑ, θ∗) even if the
estimated objective function f(z, θ̂) is an unbiased estimator
of the true objective function f(z, θ∗). This optimistic bias
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has been empirically learned in the context of portfolio opti-
mization (Michaud, 1989). Recently, (Harvey & Liu, 2015;
Harvey et al., 2016) have proposed bias correction methods
based on statistical tests, though their methods are appli-
cable only to cases in which the objective function is the
Sharpe ratio. Other recent studies (Bailey & Marcos, 2016;
Bailey et al., 2014) have also focused on the Sharpe ratio
and proposed a hold-out validation method. Although their
methods apply to general predictive optimization problems,
they have not been proven to obtain unbiased estimators.
Note that a similar inequality has been discovered in the
context of stochastic programs,2 one that corresponds to the
left inequality of (5). For the special case in which Z is a
finite set, the same inequality as (5) has been shown in the
context of decision analysis (Smith & Winkler, 2006).

3.2. Connection to Empirical Risk Minimization

This subsection discusses the connection of the opti-
mistic bias issue to overfitting in machine learning, which
connection has led to the ideas underlying our pro-
posed algorithms. In supervised machine learning, we
choose the prediction rule ĥ from a hypothesis space
H by minimizing the empirical error, i.e., we let ĥ ∈
arg minh∈H

1
n

∑N
n=1 `(h, xn), where xn is the observed

data generated from a distribution D and ` is a loss function.
The empirical error 1

N

∑N
n=1 `(h, xn) is an unbiased esti-

mator of the generalization error `D(h) := Ex∼D[`(h, x)]
for arbitrary fixed prediction rule h, i.e., it holds that
Exn∼D[ 1

N

∑N
n=1 `(h, xn)] = `D(h) for any fixed h. De-

spite this equation, the empirical error 1
N

∑N
n=1 `(ĥ, xn) for

the computed parameter ĥ is smaller than the generalization
error `D(ĥ) in most cases, because ĥ overfits the observed
samples, as is well known (Vapnik, 2013). The analogy
between the optimistic bias in our setting and the overfitting
issue in machine learning suggests the reuse of datasets for
estimation of their objective functions and evaluation of
objective values.

A comparison between empirical risk minimization (ERM)
and our prediction-based optimization is summarized in Ta-
ble 2. As is shown in the Table, our problem concerning
bias in predictive optimization has a structure similar to that
of the problem of overfitting in empirical risk minimiza-
tion. Typical methods for estimating generalization error
in machine learning would be cross-validation and such
asymptotic bias correction as AIC (Akaike, 1973). This
paper follows the concept of cross-validation in the con-
text of predictive optimization and, in the following section,
proposes a more accurate algorithm.

2 In stochastic programs, the objective is a random function,
and it has been shown in, e.g., (Mak et al., 1999), that the expec-
tation of the minimum of the objective is a lower bound of the
minimum of the expectation of the objective.

Table 2. Correspondence of empirical risk minimization and pre-
dictive optimization

ERM Optimization
Decision variable Predictor h Strategy z
True objective Ex∼D[`(h, x)] f(z, θ∗)

Estimated objective 1
N

∑N
n=1 `(h, xn) f(z, θ̂)

4. Bias Correction Algorithms
Our goal is to construct unbiased estimators for the value
f(ẑ, θ∗) of the true objective function, i.e., to construct
ρ : Xn → R such that Ex[ρ(x)] = Ex[f(ẑ, θ∗)], where
ẑ ∈ arg max

z∈Z
f(z, θ̂) is the computed strategy. We assume

the following conditions.

Assumption 2. (i) f(z, θ) is affine in θ, i.e., ∃a : Z → R,
∃b : Z → R, f(z, θ) = θ>a(z) + b(z).

(ii) The optimal solution z(θ) ∈ arg maxz∈Z f(z, θ) is
uniquely determined for almost all θ.

(iii) One of the following holds: (iii.a) Z is a finite set,
or (iii.b) Z is a compact subset of Rd, and z 7→
(a(z), b(z)) is a continuous injective function.

(iv) θ̂ is an unbiased estimator of θ∗, i.e., we have Ex[θ̂] =
θ∗.

The assumptions (i)-(iii) are conditions on mathematical
programming problems, and such typical ones as (mixed-
integer) linear/quadratic/semidefinite programming prob-
lems satisfy these conditions. Assumption (iv) is a condi-
tion on the machine learning algorithm for estimating the
objective function in the optimization problem, and we can
employ any standard unbiased estimation algorithm. Note
that the examples in Section 3 satisfy all these assumptions.
We assume (i) and (iv) in Section 4.1, and assume (i)-(iv) in
Section 4.2.

4.1. Cross-Validation Method

As noted in Section 3.2, our problem is closely related to the
problem of estimating generalization error. Inspired by the
cross-validation method, one of the most popular methods
for estimating generalization error in machine learning, we
propose a cross-validation method for estimating the value
of the true objective function in predictive optimization. In
the context of algorithmic investment, a similar method,
referred to as the hold-out method is mentioned in (Bailey
et al., 2014). The method discussed below is essentially
an extension of the hold-out method for general predictive
optimization problems.

One of the reasons that the value f(ẑ, θ̂) contains biases
is that ẑ and θ̂ are dependent random variables. Indeed,
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Algorithm 1 k-fold cross-validation
Input: data x ∈ XN , the number K ≥ 2 of partition
Divide data x into K parts x1, . . . ,xK .
for k = 1 to K do

Compute θ̂k, θ̃k from xk,x−k respectively, where we
define x−k to be all samples in x except for xk, and
compute z̃k ∈ arg maxz∈Z f(z, θ̃k).

end for
Output ρCV (x) := 1

K

∑K
k=1 f(z̃k, θ̂k).

if ẑ and θ̂ are independent, Ex[f(ẑ, θ̂)] = Ex[f(ẑ, θ∗)]
straightforwardly holds from assumptions (i) and (iv). The
main idea of the cross-validation method (as with the stan-
dard cross-validation in machine learning) is to divide the
data x ∈ XN into two parts x1 ∈ XN1 ,x2 ∈ XN2 ,
where N1 + N2 = N . Note that each element in x1 and
x2 follows p(x, θ∗) independently, and, hence, x1 and x2

are independent random variables. Let us denote the es-
timators based on x1 and x2 by θ̂1 and θ̂2, respectively.
Also, the optimal strategy on each estimator is denoted by
ẑi := arg maxz∈Z f(z, θ̂i) for i = 1, 2. Then ẑ1 and θ̂2
are independent (the opposite also holds), and we have
Ex[f(ẑ1, θ̂2)] = Ex1 [f(ẑ1,Ex2 [θ̂2])] = Ex1 [f(ẑ1, θ

∗)].
Further, if N1 is sufficiently close to N , Ex1

[f(z̃1, θ
∗)] is

close to Ex[f(ẑ, θ∗)]. This idea can be extended to k-fold
cross-validation, in which we divide data x ∈ RN into K
parts x1, . . . ,xK ∈ RN ′

, where KN ′ = N . We compute
z̃k from {x1, . . . ,xK} \ {xk}, and compute θ̂k from xk.
Then the value ρCV (x) := 1

K

∑K
k=1 f(z̃k, θ̂k) satisfies

Ex[ρCV (x)] = Ex′ [f(z̃, θ∗)], (6)

where z̃ stands for the strategy computed from (K − 1)N ′

samples, under assumptions (i) and (iv).

A major drawback to Algorithm 1 is that it can only estimate
the objective value attained byN −N ′ samples, as is shown
in (6), even though the value attained by all N samples
is desired. In machine learning, to mitigate this gap, a
leave-one-out method (i.e., setting N ′ = 1) can be used. In
predictive optimization, however, the number N ′ of hold-
out samples needs to be large enough to compute another
estimator, θ̂k, which limits the accuracy of the estimation
of f(ẑ, θ∗). The accuracy of Algorithm 1 is considered in
Sec. 5 in an empirical evaluation.

4.2. Parameter perturbation method

This subsection proposes another algorithm that addresses
the drawbacks of Algorithm 1. Denote the error in the
estimated parameter by δ := θ̂−θ∗. The error δ depends on
the training data x and can be regarded as a random variable
when x is considered to be a random variable. For γ ≥ 0,

let us first define η(γ) as follows:

η(γ) = Eδ[f(z(θ∗ + γδ), θ∗)],

where z(θ) := arg maxz∈Z f(z, θ). Since ẑ = z(θ̂) =
z(θ∗ + δ), we have η(1) = E[f(ẑ, θ∗)]. Hence, our goal,
unbiased estimation of f(ẑ, θ∗), is equivalent to unbiased
estimation of η(1). Let us next define φ(γ) as follows:

φ(γ) = Eδ[f(z(θ∗ + γδ), θ∗ + γδ)]. (7)

Note that we have φ(1) = E[f(ẑ, θ̂)]. Further, φ(γ)
and η(γ) satisfy φ(0) = η(0) = f(z∗, θ∗) and φ(γ) ≥
f(z∗, θ∗) ≥ η(γ) for all γ ≥ 0, which can be proved in a
way similar to that of the proof of Proposition 1.

The following proposition plays a key role in our second
algorithm.
Proposition 3. Suppose that assumptions (i)-(iv) hold. For
all γ > 0, φ(γ) is differentiable, and its derivative φ′(γ)
satisfies

η(γ) = φ(γ)− γφ′(γ). (8)

The proof of this proposition is summarized in the supple-
mentary material.

Let us explain this proposition using Figure 1, which is
based on the simulation experiment for portfolio optimiza-
tion used in Section 5 and shows how the values of φ and η
behave for some γ ≥ 0. The tangent to φ(γ) at γ = γ0 (the
blue broken-line) has a y-intercept (the red broken-line)
equal to the value of η(γ0), for all γ0 > 0. From this re-
lationship, the derivative φ′(1) of φ(γ) at γ = 1 satisfies
φ′(1) = φ(1) − η(1) = E[f(ẑ, θ̂)] − E[f(ẑ, θ∗)], i.e., the
value of φ′(1) is equal to the value of the bias in our predic-
tive optimization problem.

Our problem is now to obtain an unbiased estimator ζ of
φ′(1) that will give us an unbiased estimator of f(ẑ, θ∗), i.e.
ρ = f(ẑ, θ̂)− ζ. From the definition of the derivative, the
value of φ′(1) can be approximated by (φ(1+h)−φ(1))/h
for small h. Further, from the definition of φ, the estimated
optimal value f(ẑ, θ̂) is an unbiased estimator of φ(1). Also,
the value of φ(1 + h) = E[maxz∈Z f(z, θ∗ + (1 + h)δ)]
is the expectation of the optimal value for the objective
function with a parameter having an “enhanced” error. If we
get samples θ̂h following the distribution of θ∗ + (1 + h)δ,
we can develop an estimator of φ(1 + h), and accordingly,
we can estimate η(1) = E[f(ẑ, θ∗)].

Suppose that θ̂(1)h , . . . , θ̂
(s)
h follows the distribution of θ∗ +

(1 + h)δ, and define

ρh :=
1 + h

h
max
z∈Z

f(z, θ̂)− 1

hs

s∑
j=1

max
z∈Z

f(z, θ̂
(j)
h ). (9)

The value ρh, then, has the following property.
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Figure 1. Comparison among φ(γ), η(γ) and f(z∗, θ∗). The blue
broken-line is the tangent to φ(γ) at γ = 1, and the red broken-line
represents its y-intercept.

Algorithm 2 Parameter perturbation method
Input: data x ∈ Xn, parameters h > 0, s ∈ {1, 2, . . .}
Compute θ̂ from x and set v̂0 = maxz∈Z f(z, θ̂).
Generate {θ̂(j)h }sj=1 by (i) for asymptotic normal estima-
tors or (ii) for M-estimators.

(i) Set θ̂(j)h to be the estimator computed from N/(1 +
h)2 samples randomly chosen from x without re-
placement.

(ii) Generate δ̂j by (10), and set θ̂(j)h = θ̂ + δ̂j .

for j = 1 to s do
Set v̂j = maxz∈Z f(z, θ̂

(j)
h ).

end for
Output ρh := 1+h

h v̂0 − 1
hs

∑s
j=1 v̂j .

Proposition 4. Under assumptions (i)-(iv), the value ρh
defined by (9) is an asymptotically unbiased estimator of
f(ẑ, θ∗), i.e., it holds that limh→0 E [ρh] = E[f(ẑ, θ∗)].

Proof. From the definition of ρh and φ(γ), we have
E[ρh] = ρ(1) − φ(1+h)−φ(1)

h . Hence, we have
limh→0 E [ρh] = φ(1) − φ′(1). From Proposition 3, this
value is equal to η(1) = E[f(ẑ, θ∗)].

The remaining problem is how to obtain samples θ̂h, with
enhanced errors, from the distribution of θ∗+(1+h)δ. If θ̂ is
an asymptotically normal estimator of θ∗, its distribution can
be approximated by the normal distribution N (θ∗, 1

NΣ∗),
where Σ∗ is a constant matrix not dependent on N . Further,
when we compute an estimator θ̂h fromN/(1+h)2 data, the
distribution of θ̂h can be approximated byN (θ∗, (1+h)

2

N Σ∗).
This is an approximation of the distribution of θ∗ + (1 +

h)δ. This procedure for generating θ̂h is used in (i) of
Algorithm 2.

If θ̂ is an M-estimator, an asymptotically normal estimator
commonly used in machine learning, we can eliminate repet-
itive computation in (i) of Algorithm 2. For M-estimators,

Σ̂ is given in a closed form, as described in (van der Vaart,
1998), such that N (0, 1

N Σ̂) approximates the error distri-
bution of the estimator. Once we have computed Σ̂, we
generate samples from an approximated distribution of
θ∗ + (1 + h)δ, by adding δ̂ to θ̂, which is obtained by

δ̂ ∼ N (0,
(1 + h)2 − 1

N
Σ̂). (10)

We can, in fact, confirm that the distribution of θ̂+ δ̂ approx-
imates that of θ∗+ (1 +h)δ by applying the normal approx-
imation to θ̂− θ∗ = δ. From the normal approximation δ ∼
N (0, 1

N Σ̂), we obtain θ∗+(1+h)δ ∼ N (θ∗, (1+h)
2

N Σ̂) and

θ̂+ δ̂ ∼ N (θ∗+0, 1
N Σ̂+ (1+h)2−1

N Σ̂) = N (θ∗, (1+h)
2

N Σ̂).
This procedure corresponds to (ii) in Algorithm 2.

5. Experiments
We have compared our Algorithm 1 and Algorithm 2 with
the hold-out method (Bailey & Marcos, 2016; Bailey et al.,
2014) and the portfolio resampling method (Scherer, 2002)
by means of the simulation models of the examples in Sec-
tion 2. We used GUROBI Optimizer 6.0.43 for portfolio
optimization, and the algorithm in (Ito & Fujimaki, 2016)
for price optimization.

5.1. Predictive Portfolio Optimization

The portfolio optimization problem described in Example
2 of Section 2 was constructed with θ∗ = (µ∗,Σ∗) defined
by µ∗ = 1 + ε and Σ∗ = X>X , where ε ∈ Rd were
generated by N(0, I) and each entry of X ∈ RD×D was
drawn from N (0, D−1). We generated datasets {xn}Nn=1

following N (µ∗,Σ∗), from which we computed θ̂, as in
Example 2, and solved the optimization problem (1) with θ∗

replaced by θ̂, to obtain ẑ. We chose D = 50, N = 20, and
λ = 1.0 for our simulation experiments. When using the
portfolio resampling method, we computed z̄ by means of 10
bootstrap resamplings and outputted f(z̄, θ̂) ≤ f(ẑ, θ̂). For
details regarding portfolio resampling, see, e.g., (Scherer,
2002). For the hold-out validation, we first divided N data
into N ′ and N −N ′, then computed ẑ1 from the former N ′

data and estimated θ̂2 from the letter N −N ′ data, and then
calculated f(ẑ1, θ̂2).

Accuracy Comparisons Figure 2 shows the means and
the standard deviations of computed values of f(z∗, θ∗),
f(ẑ, θ̂) and f(ẑ, θ∗) for 400 randomly-initialized datasets.
We have observed that:

• f(ẑ, θ̂) was much larger than f(ẑ, θ∗), which is consis-
tent with Proposition 1.

• The hold-out method performed much worse than our

3 http://www.gurobi.com/

http://www.gurobi.com/
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Figure 2. Values of the objective function and estimated values of
f(ẑ, θ∗) with Algorithms 1, 2, and the hold-out validation. CV, PR
and HO stand for Algorithm 1, portfolio resampling, and Hold-out
validation, respectively. Blue bars and error bars represent means
and standard deviations, respectively.

CV and perturbation methods, though its performance
improved with an increasingN ′. Also, the variance in the
proposed methods was much smaller. Note that we could
not set N ′ to be larger than N ′ = 18 since the estimation
of θ̂1 and θ̂2 would fail.

• The portfolio resampling method computed slightly less
optimistic value than f(ẑ, θ̂), but a large amount of opti-
mistic bias remained.

• The perturbation method corrected bias better than the
CV method w.r.t. both bias and variance. Indeed, it al-
most perfectly corrected the optimistic bias in expecta-
tion. Note that K = 10 was the largest possible value
because at least two samples are necessary for estimating
the covariance matrix. This means that the value of CV
(K = 10) achieved the minimum bias for the CV method.
• The CV method and the hold-out method produced

conservative estimates. The pessimistic bias in the
CV method came from the difference between ẑ ∈
arg maxz∈Z f(z, θ̂) and z̃ in (6).

Note that E[f(ẑ, θ∗)] was poorer than E[f(z∗, θ∗)], where
the former was the best objective value achieved with the
available finite training samples. This negative difference is
unavoidable with our bias correction, which appears to raise
an interesting open challenge w.r.t. the combination of our
bias correction with robust optimization (Bertsimas et al.,
2011), i.e., the former mitigates the optimistic bias, and the
later mitigates uncertainty in objective functions.

Sensitivity of the Perturbation Method We investigated
the sensitivity of the perturbation method w.r.t. h > 0,
which is the important trade-off parameter in bias and vari-
ance. We applied it to 100 different randomly-initialized
datasets, for which we set h = 0.05, 0.10, . . . , 0.50. Be-
cause s is not sensitive, we fixed it to s = 10. Figure 3
demonstrates the changes in bias and variance (top fig-
ure) and RMSE against f(ẑ, θ∗), over h. As the value
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Figure 3. Bias, variance (top), and RMSE (bottom) values over h
obtained with the perturbation method. The error bars in the top
figure represent the standard derivations.

of h increased, the bias increased though the variance de-
creased (top figure), as was implied in Proposition 4, and this
resulted in significantly larger RMSE values with smaller
values of h. This observation indicates that an appropriate
balance between bias and variance must be determined, and
that a variance-sensitive measure such as RMSE can be used
as a guide to determine the trade-off.

5.2. Predictive Price Optimization

We applied our algorithms to the predictive price optimiza-
tion discussed as Example 3 in Section 2. As reported in
(Ito & Fujimaki, 2017), the optimal value in this problem
contains optimistic bias, which is consistent with Proposi-
tion 1. Unlike in the portfolio optimization, the parameter θ̂
is estimated by regression techniques, and the set of feasible
strategies Z is discrete.

Simulation Experiment In this experiment, we investi-
gated the effect of the optimistic bias and our bias cor-
rection over parameter dimensionality, i.e., the number
of products d. We generated the same simulation data
as in (Ito & Fujimaki, 2017). The sales quantity qi of
the i-th product was generated from the regression model
qi = αi +

∑d
j=1 βijpj , where αi and βij were generated

by uniform distributions, where αi ∈ [d, 3d], βij ∈ [0, 2]
for i 6= j, and βii ∈ [−2d,−d]. The feasible region Z was
defined by Z = {0.6, 0.7, . . . , 1.0}d. We chose N = 500
for our experiments.

Figure 4 shows the change in the objective values normal-
ized by the ideal objective value f(z∗, θ∗) over the number
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Figure 4. Bias and variance over parameter dimensionality. The
horizontal axis represents objective values normalized by the ideal
objective value.

of products d. For Algorithm 1 (CV method), we chose
K = 2 so that the hold-out samples would be sufficient to
estimate parameters {αi} and {βij}. We observed that:

• f(ẑ, θ∗) degraded against f(z∗, θ∗) with increasing d be-
cause the estimation error in machine learning increased.

• The optimistic bias, f(ẑ, θ̂)− f(ẑ, θ∗), rapidly increased
because f(ẑ, θ̂)− f(z∗, θ∗) also increased in addition to
the increase in f(z∗, θ∗)− f(ẑ, θ∗).

• The CV method suffered from pessimistic bias, which
increased as d increased.

• The perturbation method corrected the bias accurately
even if the parameter dimensionality, i.e., d, increased.

These results confirm the robustness of our proposed method
over parameter dimensionality and also its general applica-
bility to a wide range of problems (the portfolio optimiza-
tion in Section 5.1 is continuous and convex while the price
optimization in this section is discrete and non-convex).

Real-World Retail Dataset The real-world retail dataset
used in (Ito & Fujimaki, 2017; 2016) contains sales infor-
mation for a middle-size supermarket located in Tokyo.4

Using this information, we selected 50 regularly-sold beer
products. The data range was approximately the three years
from 2012/01 to 2014/11. We used the first 35 months (1063
samples) for training regression models and simulated the
best price strategy for the next day 2014/12/1. We estimated
parameters in regression models, using the least squares
method. The other settings were same as in (Ito & Fujimaki,
2016).

The actual (non-optimized) gross profit in the past data
was 106, 348 JPY, while the estimated optimal value f(ẑ, θ̂)
was 490, 502 JPY, which represents an approximately 361%
increase in gross profit, but this value was obviously unreal-

4 The data were provided by KSP-SP Co., LTD, http://
www.ksp-sp.com.

istically huge and unreliable (price changes alone could not
increase a profit 4.6 by times!). The bias-corrected optimal
gross profit with the perturbation method at h = 0.1 and
s = 100 was 124, 477 JPY, which represents an approxi-
mately 17% increase in the gross profit. Although we were
unable to confirm the validity of this value since this ex-
periment was conducted on past historical data, intuitively
speaking, a 17% increase in gross profit seems much more
realistic than one of 361%, and considering the facts noted
in the simulation studies, our result would surely seem more
convincing to domain users. One of important remaining
issues in real applications is the estimation of the confidence
region. As noted above, we can never learn the value of
f(ẑ, θ∗) without performing ẑ, but the user has to make a
decision as to whether to perform it or not without knowing
the value. In such a case, it would be helpful to provide a
confidence region w.r.t. the bias-corrected optimal value,
which is available with neither the CV method nor the per-
turbation method.

6. Conclusion
In this paper, we have focused on the framework of a combi-
nation of mathematical optimization and machine learning
with which we solve an optimization problem whose ob-
jective is formulated with the aid of predictive models or
estimators. We have demonstrated that such a framework
suffers from a kind of bias w.r.t. optimal values because of
overfitting of the solution to the constructed objective func-
tion. We have proposed a solution to this bias problem by
means of developed methods that are guaranteed to compute
an asymptotically unbiased estimator of the value of the true
objective function. Empirical results have demonstrated that
the proposed approach results in successful estimates of the
value of the true objective function.

A major open question remaining in this work is how to
evaluate and reduce variance in the estimators of objective
functions. The variance in estimators, i.e., uncertainty in
estimation, is essential information for decision makers in
many situations, and reducing variance in the estimator
would help them make better decisions.
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