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A. Architecture Details (Section 3.2)
We provide architecture details of our AMC-GAN in-
truduced in the main paper (Section 3.2).

A.1. Generator Network (Figure A)

It takes a random noise vector z ∈ Rp sampled from a nor-
mal distributionN (0, I), and the two conditioning variables
ya and ym as input; we set p = 96 for MUG and 128 for
NATOPS. The output is a video x̂|y, generated frame-by-
frame by unrolling a convolutional LSTM (convLSTM) (Shi
et al., 2015) and an image decoder network T − 1 times.

We encode ya using five convolutional layers:
conv2d(32) – leakyReLU – conv2d(64) –
BN – leakyReLU – pool – conv2d(128) –
BN – leakyReLU – pool – conv2d(256) – BN
– leakyReLU – pool – conv2d(256) – BN –
leakyReLU, where conv2d(k) is a 2D convolutional
layer with k filters of 3 × 3 kernel with stride 1, pool is
average pooling on 2 × 2 region with stride 2, and BN is
batch normalization (Ioffe & Szegedy, 2015). The output is
an embedding φ(ya) of size 8× 8× 256.

We unroll the convLSTM (Shi et al., 2015) for T − 1 time
steps to produce the output video. The convLSTM has 256
filters of 3× 3 kernel with stride 1. We initialize its states
using φ(ya).

At each t-th time step, we pass the motion condition ym,t ∈
Rq to a fully connected layer with a gated operation. That
is, we compute the gate value t = sigmoid(fc(q)) ∈ R1

and obtain t ∗ fc(q) + (1 − t) ∗ q. Then, we spatially
tile it to form a 8 × 8 × q tensor, which is the input to
the convLSTM. In our experiments, q = 28 for the MUG
dataset (by concatenating 11 of 2D facial landmarks and
an one-hot vector of 6 emotion class) and q = 42 for the
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Figure A. Generator G network architecture (used in Figure 2 of
the main paper).

NATOPS dataset (by concatenating 9 of 2D body joints and
an one-hot vector of 24 motion class).

We add a skip connection to create a direct path from φ(ya)
to output of the convLSTM via channel-wise concatenation.
We then apply the spatial tiling to the random noise vector
z ∈ Rp for 8 × 8 times (depicted as “tiling” in Figure A)
and concatenate it with the other two tensors (depicted as
“channel-wise concatenation” in Figure A). This makes the
output of the convLSTM a 8× 8× (512+ p) tensor at each
time step; we set p = 96 for the MUG dataset and 128 for
the NATOPS dataset.

The image decoder (the bottom two rows in Figure A) takes
the concatenated output and produces the next frame by a
series of deconvolutions. To avoid the checkerboard artifact
in deconvolution (Odena et al., 2016), we use the upscale-
convolution trick for all deconvolutional steps. The de-
coder architecture is conv2d(256) – BN – leakyReLU
– upsample – gating – conv2d(128) – BN –
leakyReLU – upsample – gating – conv2d(64)
– BN – leakyReLU – upsample – gating –
conv2d(64) – BN – leakyReLU – conv2d(3) –
tanh, where conv2d(k) is a 2D convolutional layer with
k filters of 3× 3 kernel with stride 1, and upsample is the
2× 2 bilinear up-sampling.

To provide a skip-connection from the image encoder
to the decoder, we incorporate a gating operator that
computes a weighted average of two tensors, whose
weights are computed from the output of convLSTM
at each time step. Specifically, we encode the convL-
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STM output with a small network of upsample(2)
– conv2d(256) – leakyReLU – sigmoid for
[Conv11] , upsample(4) – conv2d(128)
– leakyReLU – sigmoid for [Conv12] and
upsample(8) – conv2d(64) – leakyReLU –
sigmoid for [Conv13], where upsample(k) is a
bilinear up-sampling of k × k kernel. The output of these
small networks are used as weights for the gates. We then
perform a weighted average of two tensors element-wise
(depicted as “element-wise gating” in Figure A). Formally,
denoting the output of the small network (e.g., sigmoid
output of [Conv11]) by s, the result of the 2 × 2
upsampling (e.g., output of [Upsample1]) by u, and the
tensor from the encoder via skip connection (e.g., output
of [Conv4]) by e, the element-wise gating computes:
s · u+ (1− s) · e, where · is element-wise multiplication.

A.2. Appearance Discriminator Network (Figure B)

Our appearance discriminator takes four frame images as
input: an appearance condition ya (i.e., the first frame of a
video) and three consecutive frames xt−1:t+1 from either
a real or a generated video. It then outputs a scalar value
indicating whether the quadruplet input is real or fake.

We feed each image into a network of conv2d(64,2)
– BN – leakyReLU – conv2d(128,2) – BN –
leakyReLU – conv2d(256,2) – BN – leakyReLU,
and concatenate the output from ya and xt−1:t+1

channel-wise. We then take deconv2d(256) – BN –
leakyReLU – conv2d(512,2) – BN – leakyReLU
– conv2d(1024,4) – BN – leakyReLU – fc(64) –
BN – leakyReLU – σ(fc(1)), where conv2d(k,s) is
a 2D convolutional layer with k filters of 4× 4 kernel with
stride s, deconv2d(k) is a 2D deconvolutional layer with
k filters of 3× 3 kernel with stride 1 and fc(k) is a fully-
connected layer with k units.

A.3. Motion Discriminator Network (Figure C)

This network takes a video x with matched appearance con-
dition ya, and a motion class category yl

m as input. It pre-
dicts three variables: a scalar indicating whether the video
is real or fake, ŷlm ∈ Rc representing motion categories, and
ŷvm ∈ R2k representing the velocity of k keypoints.

We encode each frame of x and ya with conv2d(64)
– leakyReLU – conv2d(128) – BN – leakyReLU –
conv2d(256) – BN – leakyReLU, where conv2d(k)
is a 2D convolutional layer with k filters of 4 × 4 kernel
with stride of 2. We then use the encoded ya to initialize
the hidden states of the convLSTM, which has 256 filters of
3× 3 kernel with stride 1. At each time step t, we feed the
encoded frame xt to the convLSTM to produce output ot.

In each time step output ot, we feed it to conv2d(64,2)
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Figure B. Appearance discriminator Da network architecture.
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Figure C. Motion discriminator Dm network architecture. Dashed
lines indicate parameter sharing.

– BN – leakyReLU – flatten – tanh(fc(#points
x 2)) to predict the velocity at each time step, where
conv2d(k, s) is a 2D convolutional layer with k fil-
ters of 4 × 4 kernel with stride of s, fc(k) is a fully-
connected layer with k units. Similarly, with the last hid-
den state hT−1, we feed it to conv2d(64,2) – BN –
leakyReLU – flatten – fc(64) – BN – leakyReLU
– fc(#class) – BN – leakyReLU – softmax to pre-
dict the motion class category. Also, for conditional pre-
diction, we share the output of conv2d(64,2) – BN –
leakyReLU step and concatenate the motion class after
replicating them. After that, we feed it to conv2d(64,4)
– BN – leakyReLU – σ(fc(1)) to judge whether given
video have matched motion or not.

B. Experiment Details
B.1. Datasets

MUG facial expression (Aifanti et al., 2010): The dataset
contains 931 video clips performing six basic emotions (Ek-
man, 1992) (anger, disgust, fear, happy, sad, surprise). We
preprocess it so that each video has 32 frames with 64 ×
64 pixels (see below for details). For data augmentation we
perform random horizontal flipping, and we use a random
stride (1, 2, or 3) to sample frames around the “peak” frames.
This results in 3,840 video clips, where we use 472 videos
as test data.

For preprocessing, we use the OpenFace toolkit (Baltrušaitis
et al., 2016) to detect facial landmarks and action unit (AU)
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Figure D. The 68 facial-landmark template used by OpenFace (Baltrušaitis et al., 2016). We used 11 landmarks as facial keypoints
(highlighted in red).
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Figure E. Image-based Motion predictor network architecture

intensities (see Figure D). We consider only those AUs that
are part of the EMFACS prototypes (Friesen & Ekman,
1983), listed in Table A, under each video’s ground truth
emotion category. We identify one peak frame from each
video that contains the maximum AU intensity (regardless
of AU) and sample 32 frames around it (23 frames before
and 8 after). Next, we use facial landmarks to center-align,
rescale, and crop face regions to 64 × 64 pixels. We use 11
facial landmarks (2, 9, 16, 20, 25, 38, 42, 45, 47, 52, 58th)
as the keypoints (shown in Figure D).

NATOPS human action (Song et al., 2011): The dataset
consists of 9,600 video clips performing 24 action categories.
We discard 765 clips that contain less than 32 frames, result-
ing in 8,835 clips; we use 1,810 clips as test data. We crop
the video to 180 × 180 pixels with the chest at the center
position and rescale it to 64 × 64 pixels. We use 9 joint
locations (head, chest, naval, L/R-shoulders, L/R-elbows,
L/R-wrists) available in the dataset as keypoints.

B.2. The Loss Weights for Different Loss Terms

Table B summarizes the loss weights for different loss terms
in our model that we used for each dataset.

B.3. 3D CNN Motion Classifier (Figure E)

We design a c-way motion classifier using a 3D CNN (Tran
et al., 2015) that predicts the motion label yl

m from a video.
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This network takes a video x as input and predicts a motion
category label yl

m. To prevent the classifier from predicting
the label simply by seeing the input frame(s), we discard the
first four frames from the generated videos and use only the
last 28 generated frames as input; we pad the first and last
frame twice, respectively, and feed the 32 frames as input to
the classifier.

We use a 3D CNN architecture of conv3d(64) –
leakyReLU – conv3d(128) – BN – leakyReLU –
conv3d(256) – BN – leakyReLU – conv3d(512),
where BN is batch normalization (Ioffe & Szegedy, 2015)
and conv3d(k) is a 3D convolutional layer (Tran et al.,
2015) with k filters of 4× 4× 4 kernel. We use stride 2 for
the first three conv3d layers and stride 4 for the last one.
The output is an embedding φ(x) of size 2× 2× 512. We
flatten this network to the size of 2048 vectors and then feed
it into fc(128) – BN – leakyReLU – dropout(0.5)
– fc(c) – softmax. We set c = 6 for the MUG facial ex-
pression dataset and c = 24 for the NATOPS human action
dataset.

B.4. Keypoint-based Motion Predictor (Figure F)

This network takes a series of keypoint heatmaps x̃, ob-
tained from a video x as input and predicts the motion class
category yl

m. Similar to the image-based motion predictor,
we discard the first four frames from generated videos in
order to avoid the video classifier learning to categorize
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Base Emotions EMFACS Prototypes
Disgust 9

9 + 16 + 25, 26
9 + 17
10∗

10∗ + 16 + 25, 26
10 + 17

Surprise 1 + 2 + 5B + 26, 27
1 + 2 + 5B
1 + 2 + 26, 27
5B + 26, 27

Anger (4 + 5∗ + 7 + 10∗ + 22 + 23 + 25, 26)∗∗

(4 + 5∗ + 7 + 10∗ + 23 + 25, 26)∗∗

(4 + 5∗ + 7 + 23 + 25, 26)∗∗

(4 + 5∗ + 7 + 17 + 23, 24)∗∗

(4 + 5∗ + 7 + 23, 24)∗∗

Happiness 6 + 12∗

12C/D
Sadness (1 + 4 + 11 + 15B + /− 54 + 64) + /− 25, 26

(1 + 4 + 15∗ + /− 54 + 64) + /− 25, 26
(6 + 15∗ + /− 54 + 64) + /− 25, 26
(1 + 4 + 15B + /− 54 + 64) + /− 25, 26
(1 + 4 + 15B + 17 + /− 54 + 64) + /− 25, 26
(11 + 15B + /− 54 + 64) + /− 25, 26
11 + 17 + /− 25, 26

Fear 1 + 2 + 4 + 5∗ + 20∗ + 25, 26, or 27
1 + 2 + 4 + 5∗ + 25, 26, or 27
1 + 2 + 4 + 5∗ + L or R20∗ + 25, 26, or 27
1 + 2 + 4 + 5∗

1 + 2 + 5Z,+/− 25, 26, 27
5∗ + 20∗ + /− 25, 26, 27

Table A. The EMFACS (emotional facial action coding system) prototype table (Fasel et al., 2004) that we used to select relevant action
units (Section 4.1). * In this combination the AU may be at any level of intensity. ** Any of the prototypes can occur without any one of
the following AUs: 4, 5, 7, or 10.

Loss term MUG NATOPS
Lgan 3.0 1.0
Lrank 100.0 100.0
LCE 0.3 0.03
LMSE 300.0 30.0
‖x|y − x̂|y‖1 0.1 3.0∑

j dj(x|y, x̂|y) 1.0 30.0

Table B. The loss weights for different loss terms to balance the
effect of each term used in our experiments.

them from the ground-truth frames in any case.

To obtain the keypoint heatmaps, we first linearly upscale
all real and generated videos to 128× 128. We feed them
to OpenFace (Baltrušaitis et al., 2016) keypoint extractor,
obtaining 68 keypoints for each frame. Then, we re-scale the
keypoint coordinates so that they can fit into 64× 64 frames
(instead of 128 × 128). For each keypoint, We generate

a Gaussian heatmap with the variance of 1/28. Then, for
each frame, we merge the 68 heatmaps (64 × 64 pixels)
into a single channel by taking the maximum value pixel-
wisely. The heatmaps for the last 28 frames are concatenated
channel-wisely.

We use a 2D CNN architecture of conv2d(32) – BN
– leakyReLU – conv2d(32) – BN – leakyReLU –
conv2d(32) – BN – leakyReLU – conv2d(32) –
BN – leakyReLU – conv(32) – BN – leakyReLU,
where BN is batch normalization (Ioffe & Szegedy, 2015)
and conv2d(k) is a 2D convolutional layer (Tran et al.,
2015) with k filters of 4 × 4 kernel. We use stride 2
for the first four conv2d layers and stride 4 for the last
one. The output is an embedding φ(x̃) of size 32. We
feed it into fc(32) – BN – leakyReLU – fc(6)– BN –
leakyReLU – dropout(0.5) – fc(6) – softmax.
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