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Abstract
We observe that gradients computed via the repa-
rameterization trick are in direct correspondence
with solutions of the transport equation in the for-
malism of optimal transport. We use this perspec-
tive to compute (approximate) pathwise gradients
for probability distributions not directly amenable
to the reparameterization trick: Gamma, Beta, and
Dirichlet. We further observe that when the repa-
rameterization trick is applied to the Cholesky-
factorized multivariate Normal distribution, the
resulting gradients are suboptimal in the sense of
optimal transport. We derive the optimal gradi-
ents and show that they have reduced variance in
a Gaussian Process regression task. We demon-
strate with a variety of synthetic experiments and
stochastic variational inference tasks that our path-
wise gradients are competitive with other meth-
ods.

1. Introduction
Maximizing objective functions via gradient methods is
ubiquitous in machine learning. When the objective func-
tion L is defined as an expectation of a (differentiable) test
function fθ(z) w.r.t. a probability distribution qθ(z),

L = Eqθ(z) [fθ(z)] (1)

computing exact gradients w.r.t. the parameters θ is often
unfeasible so that optimization methods must instead make
due with stochastic gradient estimates. If the gradient esti-
mator is unbiased, then stochastic gradient descent with an
appropriately chosen sequence of step sizes can be shown
to have nice convergence properties (Robbins & Monro,
1951). If, however, the gradient estimator exhibits large
variance, stochastic optimization algorithms may be imprac-
tically slow. Thus it is of general interest to develop gradient
estimators with reduced variance.
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We revisit the class of gradient estimators popularized in
(Kingma & Welling, 2013; Rezende et al., 2014; Titsias &
Lázaro-Gredilla, 2014), which go under the name of the
pathwise derivative or the reparameterization trick. While
this class of gradient estimators is not applicable to all
choices of probability distribution qθ(z), empirically it has
been shown to yield suitably low variance in many cases of
practical interest and thus has seen wide use. We show that
the pathwise derivative in the literature is in fact a particu-
lar instance of a continuous family of gradient estimators.
Drawing a connection to tangent fields in the field of optimal
transport,1 we show that one can define a unique pathwise
gradient that is optimal in the sense of optimal transport.
For the purposes of this paper, we will refer to these optimal
gradients as OMT (optimal mass transport) gradients.

The resulting geometric picture is particularly intriguing in
the case of multivariate distributions, where each choice
of gradient estimator specifies a velocity field on the sam-
ple space. To make this picture more concrete, in Figure 1
we show the velocity fields that correspond to two differ-
ent gradient estimators for the off-diagonal element of the
Cholesky factor parameterizing a bivariate Normal distribu-
tion. We note that the velocity field that corresponds to the
reparameterization trick has a large rotational component
that makes it suboptimal in the sense of optimal transport. In
Sec. 7 we show that this suboptimality can result in reduced
performance when fitting a Gaussian Process to data.

The rest of this paper is organized as follows. In Sec. 2 we
provide a brief overview of stochastic gradient variational
inference. In Sec. 3 we show how to compute pathwise gra-
dients for univariate distributions. In Sec. 4 we expand our
discussion of pathwise gradients to the case of multivariate
distributions, introduce the connection to the transport equa-
tion, and provide an analytic formula for the OMT gradient
in the case of the multivariate Normal. In Sec. 5 we discuss
how we can compute high precision approximate pathwise
gradients for the Gamma, Beta, and Dirichlet distributions.
In Sec. 6 we place our work in the context of related re-
search. In Sec. 7 we demonstrate the performance of our
gradient estimators with a variety of synthetic experiments
and experiments on real world datasets. Finally, in Sec. 8
we conclude with a discussion of directions for future work.

1See (Villani, 2003; Ambrosio et al., 2008) for a review.
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Figure 1. Velocity fields for a bivariate Normal distribution param-
eterized by a Cholesky factor L = 12. The gradient is w.r.t. the
off-diagonal element L21. On the left we depict the velocity field
corresponding to the reparameterization trick and on the right we
depict the velocity field that is optimal in the sense of optimal
transport. The solid black circle denotes the 1-σ covariance ellipse,
with the gray ellipses denoting displaced covariance ellipses that
result from small increases in L21. Note that the ellipses evolve
the same way under both velocity fields, but individual particles
flow differently to effect the same global displacement of mass.

2. Stochastic Gradient Variational Inference
One area where stochastic gradient estimators play a particu-
larly central role is stochastic variational inference (Hoffman
et al., 2013). This is especially the case for black-box meth-
ods (Wingate & Weber, 2013; Ranganath et al., 2014), where
conjugacy and other simplifying structural assumptions are
unavailable, with the consequence that Monte Carlo esti-
mators become necessary. For concreteness, we will refer
to this class of methods as Stochastic Gradient Variational
Inference (SGVI). In this section we give a brief overview
of this line of research, as it serves as the motivating use
case for our work. Furthermore, in Sec. 7 SGVI will serve
as the main testbed for our proposed methods.

Let p(x, z) define a joint probability distribution over ob-
served data x and latent random variables z. One of the
main tasks in Bayesian inference is to compute the posterior
distribution p(z|x) = p(x,z)

p(x) . For many models of inter-
est, this is an intractably hard problem and so approximate
methods become necessary. Variational inference recasts
Bayesian inference as an optimization problem. Specifically
we define a variational family of distributions qθ(z) parame-
terized by θ and seek to find a value of θ that minimizes the
KL divergence between qθ(z) and the (unknown) posterior
p(z|x). This is equivalent to maximizing the ELBO (Jordan
et al., 1999), defined as

ELBO = Eqθ(z) [log p(x, z)− log qθ(z)] (2)

For general choices of p(x, z) and qθ(z), this expectation—
much less its gradients—cannot be computed analytically.
In these circumstances a natural approach is to build a Monte

Carlo estimator of the ELBO and its gradient w.r.t. θ. The
properties of the chosen gradient estimator—especially its
bias and variance—play a critical rule in determining the
viability of the resulting stochastic optimization. Next, we
review two commonly used gradient estimators; we leave a
brief discussion of more elaborate variants to Sec. 6.

2.1. Score Function Estimator

The score function estimator, also referred to as the log-
derivative trick or REINFORCE (Glynn, 1990; Williams,
1992), provides a simple and broadly applicable recipe for
estimating ELBO gradients (Paisley et al., 2012). The score
function estimator expresses the gradient as an expectation
with respect to qθ(z), with the simplest variant given by

∇θELBO = Eqθ(z) [∇θ log r + log r∇θ log qθ(z)] (3)

where log r = log p(x, z) − log qθ(z). Monte Carlo esti-
mates of Eqn. 3 can be formed by drawing samples from
qθ(z) and computing the term in the square brackets. Al-
though the score function estimator is very general (e.g. it
applies to discrete random variables) it typically suffers from
high variance, although this can be mitigated with the use of
variance reduction techniques such as Rao-Blackwellization
(Casella & Robert, 1996) and control variates (Ross, 2006).

2.2. Pathwise Gradient Estimator

The pathwise gradient estimator, a.k.a. the reparameteriza-
tion trick (RT), is not as broadly applicable as the score
function estimator, but it generally exhibits lower variance
(Price, 1958; Salimans et al., 2013; Kingma & Welling,
2013; Glasserman, 2013; Rezende et al., 2014; Titsias &
Lázaro-Gredilla, 2014). It is applicable to continuous ran-
dom variables whose probability density qθ(z) can be repa-
rameterized such that we can rewrite expectations

Eqθ(z) [fθ(z)] −→ Eq0(ε) [fθ(T (ε;θ))] (4)

where q0(z) is a fixed distribution with no dependence on
θ and T (ε;θ) is a differentiable θ-dependent transforma-
tion. Since the expectation w.r.t. q0(ε) has no θ dependence,
gradients w.r.t. θ can be computed by pushing∇θ through
the expectation. This reparameterization can be done for a
number of distributions, including for example the Normal
distribution. Unfortunately the reparameterization trick is
non-trivial to apply to a number of commonly used distri-
butions, e.g. the Gamma and Beta distributions, since the
required shape transformations T (ε;θ) inevitably involve
special functions.

3. Univariate Pathwise Gradients
Consider an objective function given as the expectation of
a test function fθ(z) with respect to a distribution qθ(z),
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where z is a continuous one-dimensional random variable:

L = Eqθ(z) [fθ(z)] (5)

Here qθ(z) and fθ(z) are parameterized by θ, and we would
like to compute (stochastic) gradients of L w.r.t. θ, where θ
is a scalar component of θ:

∇θL = ∇θEqθ(z) [fθ(z)] (6)

Crucially we would like to avoid the log-derivative trick,
which yields a gradient estimator that tends to have high vari-
ance. Doing so will be easy if we can rewrite the expectation
in terms of a fixed distribution that does not depend on θ. A
natural choice is to use the standard uniform distribution U ,

L = EU(u)

[
fθ(F−1

θ (u))
]

(7)

where the transformation F−1
θ : u→ z is the inverse CDF

of qθ(z). As desired, all dependence on θ is now inside the
expectation. Unfortunately, for many continuous univariate
distributions of interest (e.g. the Gamma and Beta distri-
butions) the transformation F−1

θ (as well as its derivative
w.r.t. θ) does not admit a simple analytic expression.

Fortunately, by making use of implicit differentiation we
can compute the gradient in Eqn. 6 without explicitly intro-
ducing F−1

θ . To complete the derivation define u by

u ≡ Fθ(z) =

∫ z

−∞
qθ(z′)dz′ (8)

and differentiate both sides of Eqn. 8 w.r.t. θ and make use
of the fact that u ∼ U does not depend on θ to obtain

0 =
dz

dθ
qθ(z) +

∫ z

−∞

∂

∂θ
qθ(z′)dz′ (9)

This then yields our master formula for the univariate case

dz

dθ
= −

∂Fθ

∂θ (z)

qθ(z)
(10)

where the corresponding gradient estimator is given by

∇θL = Eqθ(z)

[
dfθ(z)

dz

dz

dθ
+
∂fθ(z)

∂θ

]
(11)

While this derivation is elementary, it helps to clarify things:
the key ingredient needed to compute pathwise gradients
in Eqn. 6 is the ability to compute (or approximate) the
derivative of the CDF, i.e. ∂

∂θFθ(z). In the supplementary
materials we verify that Eqn. 11 results in correct gradients.

It is worth emphasizing how this approach differs from a
closely related alternative. Suppose we construct a (dif-
ferentiable) approximation of the inverse CDF, F̂−1

θ (u) ≈
F−1
θ (u). For example, we might train a neural network

nn(u,θ) ≈ F−1
θ (u). We can then push samples u ∼ U

through nn(u,θ) and obtain approximate samples from
qθ(z) as well as approximate derivatives dz

dθ via the chain
rule; in this case, there will be a mismatch between the
probability qθ(z) assigned to samples z and the actual dis-
tribution over z. By contrast, if we use the construction of
Eqn. 10, our samples z will still be exact2 and the fidelity
of our approximation of (the derivatives of) Fθ(z) will only
affect the accuracy of our approximation for dzdθ .

4. Multivariate Pathwise Gradients
In the previous section we focused on continuous univariate
distributions. Pathwise gradients can also be constructed
for continuous multivariate distributions, although the anal-
ysis is in general expected to be much more complicated
than in the univariate case—directly analogous to the dif-
ference between ordinary and partial differential equations.
Before constructing estimators for particular distributions,
we introduce the connection to the transport equation.

4.1. The Transport Equation

Consider a multivariate distribution qθ(z) in D dimensions
and consider differentiating Eqθ(z) [f(z)] with respect to
the parameter θ.3 As we vary θ we move qθ(z) along a
curve in the space of distributions over the sample space.
Alternatively, we can think of each distribution as a cloud
of particles; as we vary θ from θ to θ + ∆θ each particle
undergoes an infinitesimal displacement dz. Any set of
displacements that ensures that the displaced particles are
distributed according to the displaced distribution qθ+∆θ(z)
is allowed. This intuitive picture can be formalized with the
transport a.k.a. continuity equation:4

∂

∂θ
qθ +∇z ·

(
qθv

θ
)

= 0 (12)

Here the velocity field vθ is a vector field defined on the
sample space that displaces samples (i.e. particles) z as we
vary θ infinitesimally. Note that there is a velocity field vθ

for each component θ of θ. This equation is readily inter-
preted in the language of fluid dynamics. In order for the the
total probability to be conserved, the term ∂

∂θ qθ(z)—which
is the rate of change of the number of particles in the in-
finitesimal volume element at z—has to be counterbalanced
by the in/out-flow of particles—as given by the divergence
term.

2Or rather their exactness will be determined by the quality
of our sampler for qθ(z), which is fully decoupled from how we
compute derivatives dz

dθ
.

3Here without loss of generality we assume that f(z) has no
dependence on θ, since computing Eqθ(z) [∇θfθ(z)] presents no
difficulty; the difficulty stems from the dependence on θ in qθ(z).

4We refer the reader to (Villani, 2003) and (Ambrosio et al.,
2008) for details.
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4.2. Gradient Estimator

Given a solution to Eqn. 12, we can form the gradient esti-
mator

∇θL = Eqθ(z)

[
vθ · ∇zf

]
(13)

which generalizes Eqn. 11 to the multivariate case. That this
is an unbiased gradient estimator follows directly from the
divergence theorem (see the supplementary materials).

4.3. Tangent Fields

In general Eqn. 12 admits an infinite dimensional space of
solutions. In the context of our derivation of Eqn. 10, we
might loosely say that different solutions of Eqn. 12 corre-
spond to different ways of specifying quantiles of qθ(z). To
determine a unique5 solution—the tangent field from the
theory of optimal transport—we require that

∂vOMT
i

∂zj
=
∂vOMT

j

∂zi
∀i, j (14)

In this case it can be shown that vOMT minimizes the total
kinetic energy, which is given by6

K(v) = 1
2

∫
dz qθ(z)||v||2 (15)

4.4. Gradient variance

The ||v||2 term that appears in Eqn. 15 might lead one to
hope that vOMT provides gradients that minimize gradient
variance. Unfortunately, the situation is more complicated.
Denoting the (mean) gradient by g = Eqθ(z)[v · ∇zf(z)]
the total gradient variance is given by

Eqθ(z)

[
||v · ∇zf ||2

]
− ||g||2 (16)

Since g is the same for all unbiased gradient estimators,
the gradient estimator that minimizes the total variance is
the one that minimizes the first term in Eqn. 16. For test
functions f(z) that approximately satisfy∇zf ∝ 1 over the
bulk of the support of qθ(z), the first term in Eqn. 16 term
is approximately proportional to the kinetic energy. In this
case the OMT gradient estimator will be (nearly) optimal.
Note that the kinetic energy weighs contributions from dif-
ferent components of v equally, whereas g scales different
components of v with∇zf . Thus we can think of the OMT
gradient estimator as a good choice for generic choices of
f(z) that are relatively flat and isotropic (or, alternatively,
for choices of f(z) where we have little a priori knowledge
about the detailed structure of ∇zf ). So for any particu-
lar choice of a generic f(z) there will be some gradient

5We refer the reader to Ch. 8 of (Ambrosio et al., 2008) for
details.

6Note that the univariate solution, Eqn. 10, is automatically the
OMT solution.

estimator that has lower variance than the OMT gradient
estimator. Still, for many choices of f(z) we expect the
OMT gradient estimator to have lower variance than the RT
gradient estimator, since the latter has no particular optimal-
ity guarantees (at least not in any coordinate system that we
expect to be well adapted to f(z)).

4.5. The Multivariate Normal

In the case of a (zero mean) multivariate Normal distribution
parameterized by a Cholesky factor L via z = Lz̃, where
z̃ is white noise, the reparameterization trick yields the
following velocity field for Lab:7

vRT
i =

∂zi
∂Lab

= δia(L−1z)b (17)

Note that Eqn. 17 is just a particular instance of the solution
to the transport equation that is implicitly provided by the
reparameterization trick, namely

vθ =
∂T (ε;θ)

∂θ

∣∣∣∣
ε=T −1(z;θ)

(18)

In the supplementary materials we verify that Eqn. 17 sat-
isfies the transport equation Eqn. 12. However, it is evi-
dently not optimal in the sense of optimal transport, since
∂vRT

i

∂zj
= δiaL

−1
bj is not symmetric in i and j. In fact the

tangent field takes the form

vOMT
i =

1

2

(
δia(L−1z)b + zaL

−1
bi

)
+ (Sabz)i (19)

where Sab is a symmetric matrix whose precise form we
give in the supplementary materials. We note that computing
gradients with Eqn. 19 isO(D3), since it involves a singular
value decomposition of the covariance matrix. In Sec. 7
we show that the resulting gradient estimator can lead to
reduced variance.

5. Numerical Recipes
In this section we show how Eqn. 10 can be used to obtain
pathwise gradients in practice. In many cases of interest we
will need to derive approximations to ∂

∂θF (z) that balance
the need for high accuracy (thus yielding gradient estimates
with negligible bias) with the need for computational effi-
ciency. In particular we will derive accurate approximations
to Eqn. 10 for the Gamma, Beta, and Dirichlet distributions.
These approximations will involve three basic components:

1. Elementary Taylor expansions

2. The Lugannani-Rice saddlepoint expansion (Lugan-
nani & Rice, 1980; Butler, 2007)

7Note that the reparameterization trick already yields the OMT
gradient for the location parameter µ.
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3. Rational polynomial approximations in regions of
(z, θ) that are analytically intractable

5.1. Gamma

The CDF of the Gamma distribution involves the (lower)
incomplete gamma function γ(·): Fα,β(z) = γ(α,βz)

Γ(α) . Un-
fortunately γ(·) does not admit simple analytic expressions
for derivatives w.r.t. its first argument, and so we must resort
to numerical approximations. Since z ∼ Gamma(α, β =
1) ⇔ z/β ∼ Gamma(α, β) it is sufficient to consider dz

dα
for the standard Gamma distribution with β = 1.

5.1.1. z � 1

To give a flavor for the kinds of approximations we use,
consider how we can approximate ∂

∂αγ(α, z) in the limit
z � 1. We simply do a Taylor series in powers of z:

∂

∂α
γ(α, z) =

∂

∂α

∫ z

0

(z′)α
(
1/z′ − 1 + 1

2z
′ + ...

)
dz′

=
∂

∂α
zα
(

1

α
− z

α+ 1
+

1
2z

2

α+ 2
+ ...

)
In practice we use 6 terms in this expansion, which is accu-
rate for z < 0.8. Details for the remaining approximations
can be found in the supplementary materials.

5.2. Beta

The CDF of the Beta distribution, FBeta, is the (regularized)
incomplete beta function; just like in the case of the Gamma
distribution, its derivatives do not admit simple analytic
expressions. We describe the numerical approximations we
used in the supplementary materials.

5.3. Dirichlet

Let z ∼ Dir(α) be Dirichlet distributed with n components.
Noting that the zi are constrained to lie within the unit
(n− 1)-simplex, we proceed by representing z in terms of
n− 1 mutually independent Beta variates (Wilks, 1962):

z̃i ∼ Beta(αi,
∑n

j=i+1αj) for i = 1, ...,n− 1

z1 = z̃1 zn =
∏n−1
j=1 (1− z̃j)

zi = z̃i
∏i−1
j=1(1− z̃j) for i = 2, ...,n− 1

Without loss of generality, we will compute d
dα1

zi for i =
1, ..., n. Crucially, the only dependence on α1 in Eqn. 20 is
through z̃1. We find:

dz

dα1
= −

∂FBeta

∂α1
(z1|α1, αtot − α1)

Beta(z1|α1, αtot − α1)
×
(

1,
−z2

1− z1
, ...,

−zn
1− z1

)
(20)

Note that Eqn. 20 implies that d
dα

∑
i zi = 0, as it must

because of the simplex constraint. Since we have already

developed an approximation for ∂FBeta

∂θ , Eqn. 20 provides
a complete recipe for pathwise Dirichlet gradients. Note
that although we have used a stick-breaking construction to
derive Eqn. 20, this in no way dictates the sampling scheme
we use when generating z ∼ Dir(α). In the supplemen-
tary materials we verify that Eqn. 20 satisfies the transport
equation.

5.4. Implementation

It is worth emphasizing that pathwise gradient estimators
of the form in Eqn. 13 have the advantage of being ‘plug-
and-play.’ We simply plug an approximate or exact velocity
field into our favorite automatic differentiation engine8 so
that samples z and fθ(z) are differentiable w.r.t. θ. There is
no need to construct a surrogate objective function to form
the gradient estimator.

6. Related Work
A number of lines of research bears upon our work. There
is a large body of work on constructing gradient estima-
tors with reduced variance, much of which can be under-
stood in terms of control variates (Ross, 2006): for example,
(Mnih & Gregor, 2014) construct neural baselines for score-
function gradients; (Schulman et al., 2015) discuss gradient
estimators for stochastic computation graphs and their Rao-
Blackwellization; and (Tucker et al., 2017; Grathwohl et al.,
2017) construct adaptive control variates for discrete ran-
dom variables. Another example of this line of work is
reference (Miller et al., 2017), where the authors construct
control variates that are applicable when qθ(z) is a diagonal
Normal distribution. While our OMT gradient for the multi-
variate Normal distribution, Eqn. 19, can also be understood
in the language of control variates,9 (Miller et al., 2017)
relies on Taylor expansions of the test function fθ(z).10

In (Graves, 2016), the author derives formula Eqn. 10 and
uses it to construct gradient estimators for mixture distri-
butions. Unfortunately, the resulting gradient estimator is
expensive, relying on a recursive computation that scales
with the dimension of the sample space.

Another line of work constructs partially reparameterized
gradient estimators for cases where the reparameterization
trick is difficult to apply. The generalized reparameterization
gradient (G-REP) (Ruiz et al., 2016) uses standardization

8Our approximations for pathwise gradients for the Gamma,
Beta, and Dirichlet distributions are available in the 0.4 release of
PyTorch (Paszke et al., 2017).

9See Sec. 8 and the supplementary materials for a brief discus-
sion.

10In addition, note that in their approach variance reduction for
gradients w.r.t. the scale parameter σ necessitates a multi-sample
estimator (at least for high-dimensional models where computing
the diagonal of the Hessian is prohibitively expensive).
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for samples z ∼ Beta(1, 1). We com-
pare the OMT gradient to the gradient that is obtained when sam-
ples z ∼Beta(α, β) are represented as the ratio of two Gamma vari-
ates (each with its own pathwise derivative). The OMT derivative
has a deterministic value for each sample z, whereas the Gamma
representation induces a higher variance stochastic derivative due
to the presence of an auxiliary random variable.

via sufficient statistics to obtain a transformation T (ε;θ)
that minimizes the dependence of q(ε) on θ. This results
in a partially reparameterized gradient estimator that also
includes a score function-like term.11 In RSVI (Naesseth
et al., 2017) the authors consider gradient estimators in the
case that qθ(z) can be sampled from efficiently via rejec-
tion sampling. This results in a gradient estimator with the
same generic structure as G-REP, although in the case of
RSVI the score function-like term can often be dropped in
practice at the cost of small bias (with the benefit of reduced
variance). Besides the fact that this gradient estimator is not
fully pathwise, one key difference with our approach is that
for many distributions of interest (e.g. the Beta and Dirichlet
distributions), rejection sampling introduces auxiliary ran-
dom variables, which results in additional stochasticity and
thus higher variance (cf. Figure 2). In contrast our pathwise
gradients for the Beta and Dirichlet distributions are deter-
ministic for a given z and θ. Finally, (Knowles, 2015) uses
(somewhat imprecise) approximations to the inverse CDF
to derive gradient estimators for Gamma random variables.

As the final version of this manuscript was being prepared,
we became aware of (Figurnov et al., 2018), which has
some overlap with this work. In particular, (Figurnov et al.,
2018) derives Eqn. 10 and an interesting generalization to
the multivariate case. This allows the authors to construct
pathwise derivatives for the Gamma, Beta, and Dirichlet
distributions. For the latter two distributions, however, the
derivatives include additional stochasticity that our pathwise
derivatives avoid. Also, the authors do not draw the con-
nection to the transport equation and optimal transport or
consider the multivariate Normal distribution in any detail.

11That is a term in the gradient estimator that is proportional to
the test function fθ(z).
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Figure 3. We compare the OMT gradient to the RSVI gradient with
B = 4 for the test function f(z) = z3 and qθ(z) = Beta(z|α, α).
In the bottom panel we depict finite-sample bias for 25 million
samples (this also includes effects from finite numerical precision).

7. Experiments
All experiments in this section use single-sample gradient
estimators.

7.1. Synthetic Experiments

In this section we validate our pathwise gradients for
the Beta, Dirichlet, and multivariate Normal distributions.
Where appropriate we compare to the RT gradient, the score
function gradient, or RSVI.

7.1.1. BETA DISTRIBUTION

In Fig. 3 we compare the performance of our OMT gradient
for Beta random variables to the RSVI gradient estimator.
We use a test function f(z) = z3 for which we can compute
the gradient exactly. We see that the OMT gradient performs
favorably over the entire range of parameter α that defines
the distribution Beta(α, α) used to compute L. For smaller
α, where L exhibits larger curvature, the variance of the
estimator is noticeably reduced. Notice that one reason for
the reduced variance of the OMT estimator as compared to
the RSVI estimator is the presence of an auxiliary random
variable in the latter case (cf. Figure 2).

7.1.2. DIRICHLET DISTRIBUTION

In Fig. 4 we compare the variance of our pathwise gradient
for the Dirichlet distribution to the RSVI gradient estima-
tor. We compute stochastic gradients of the ELBO for a
Multinomial-Dirichlet model initialized at the exact pos-
terior (where the exact gradient is zero). The Dirichlet
distribution has 1995 components, and the single data point
is a bag of words from a natural language document. We see
that the pathwise gradient performs favorably over the entire
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Figure 4. Gradient variance for the ELBO of a conjugate
Multinomial-Dirichlet model. We compare the pathwise gradi-
ent to RSVI for different boosts B. See Sec. 7.1.2 for details.

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude of Off-Diagonal of L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Va
ria

nc
e 

Ra
tio

cosine
quadratic
quartic

Figure 5. We compare the OMT gradient estimator for the mul-
tivariate Normal distribution to the RT estimator for three test
functions. The horizontal axis controls the magnitude of the off-
diagonal elements of the Cholesky factor L. The vertical axis
depicts the ratio of the mean variance of the OMT estimator to that
of the RT estimator for the off-diagonal elements of L.

range of the model hyperparameter α0 considered. Note
that as we crank up the shape augmentation setting B, the
RSVI variance approaches that of the pathwise gradient.12

7.1.3. MULTIVARIATE NORMAL

In Fig. 5 we use synthetic test functions to illustrate the
amount of variance reduction that can be achieved with
the OMT gradient estimator for the multivariate Normal
distribution. The dimension is D = 50; the results are
qualitatively similar for different dimensions.

12As discussed in Sec. 6, the variance of the RSVI gradient
estimator can also be reduced by dropping the score function-like
term (at the cost of some bias).

7.2. Real World Datasets

In this section we investigate the performance of our gra-
dient estimators for the Gamma, Beta, and multivariate
Normal distributions in two variational inference tasks on
real world datasets. Note that we include an additional ex-
periment for the multivariate Normal distribution in Sec. 10
of the supplementary materials. All the experiments in this
section were implemented in the Pyro13 probabilistic pro-
gramming language.

7.2.1. SPARSE GAMMA DEF

The Sparse Gamma DEF (Ranganath et al., 2015) is a prob-
abilistic model with multiple layers of local latent random
variables z(`)

nk and global random weights w(`)
kk′ that mimics

the architecture of a deep neural network. Here each n cor-
responds to an observed data point xn, ` indexes the layer,
and k and k′ run over the latent components. We consider
Poisson-distributed observations xnd for each dimension d.
Concretely, the model is specified as14

z
(`)
nk ∼ Gamma

(
αz,

αz∑
k′ z

(`+1)
nk′ w

(`)
k′k

)
` = 1, ..., L− 1

xnd ∼ Poisson

(∑
k′

z
(1)
nk′w

(0)
k′d

)
zLnk ∼ Gamma (αz, αz)

We set αz = 0.1 and use L = 3 layers with 100, 40, and
15 latent factors per data point (for ` = 1, 2, 3, respec-
tively). We consider two model variants that differ in the
prior placed on the weights. In the first variant we place
Gamma priors over the weights with α = 0.3 and β = 0.1.
In the second variant we place β′ priors over the weights
with the same means and variances as in the first variant.15

The dataset we consider is the Olivetti faces dataset,16 which
consists of 64 × 64 grayscale images of human faces. In
Fig. 6 we depict how the training set ELBO increases during
the course of optimization. We find that on this task the per-
formance of the OMT gradient estimator is nearly identical
to RSVI.17 Figure 6 suggests that gradient variance is not
the limiting factor for this particular task and dataset.

13http://pyro.ai
14 Note that this experiment closely follows the setup in (Ruiz

et al., 2016) and (Naesseth et al., 2017).
15If z ∼ Beta(α, β) then z

1−z ∼ β′(α, β). Thus like the
Gamma distribution the Beta prime distribution has support on the
positive real line.

16http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html

17Note that we do not compare to any alternative estimators
such as G-REP, since (Naesseth et al., 2017) shows that RSVI has
superior performance on this task.

http://pyro.ai
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 6. ELBO during training for two variants of the Sparse
Gamma DEF, one with and one without Beta random variables. We
compare the OMT gradient to RSVI. At each iteration we depict a
multi-sample estimate of the ELBO with N = 100 samples.

7.2.2. GAUSSIAN PROCESS REGRESSION

In this section we investigate the performance of our OMT
gradient for the multivariate Normal distribution, Eqn. 19,
in the context of a Gaussian Process regression task. We
model the Mauna Loa CO2 data from (Keeling & Whorf,
2004) considered in (Rasmussen, 2004). We use a structured
kernel that accommodates a long term linear trend as well as
a periodic component. We fit the GP using a single-sample
Monte Carlo ELBO gradient estimator and all D = 468
data points. The variational family is a multivariate Nor-
mal distribution with a Cholesky parameterization for the
covariance matrix. Progress on the ELBO during the course
of training is depicted in Fig. 7. We can see that the OMT
gradient estimator has superior sample efficiency due to its
lower variance. By iteration 270 the OMT gradient estima-
tor has attained the same ELBO that the RT estimator attains
at iteration 500. Since each iteration of the OMT estimator
is ∼ 1.9x slower than the corresponding RT iteration, the
superior sample efficiency of the OMT estimator is largely
canceled when judged by wall clock time. Nevertheless,
the lower variance of the OMT estimator results in a higher
ELBO than that obtained by the RT estimator.

8. Discussion and Future Work
We have seen that optimal transport offers a fruitful perspec-
tive on pathwise gradients. On the one hand it has helped us
formulate pathwise gradients in situations where this was
assumed to be impractical. On the other hand it has focused
our attention on a particular notion of optimality, which led
us to develop a new gradient estimator for the multivariate
Normal distribution. A better understanding of this notion
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Figure 7. ELBO during training for the Gaussian Process regres-
sion task in Sec. 7.2.2. At each iteration we depict a multi-sample
estimate of the ELBO with N = 100 samples. We compare the
OMT gradient estimator to the RT estimator.

of optimality and, more broadly, a better understanding of
when pathwise gradients are preferable over score function
gradients (or vice versa) would be useful in guiding the
practical application of these methods.

Since each solution of the transport equation Eqn. 12 yields
an unbiased gradient estimator, the difference between any
two such estimators can be thought of as a control variate. In
the case of the multivariate Normal distribution, where com-
puting the OMT gradient has a cost O(D3), an attractive
alternative to using vOMT is to adaptively choose v during
the course of optimization in direct analogy to adaptive con-
trol variate techniques. In future work we will explore this
approach in detail, which promises lower variance than the
OMT estimator at reduced computational cost.

The geometric picture from optimal transport—and thus
the potential for non-trivial derivative applications—is es-
pecially rich for multivariate distributions. Here we have
explored the multivariate Normal and Dirichlet distributions
in some detail, but this just scratches the surface of multivari-
ate distributions. It would be of general interest to develop
pathwise gradients for a broader class of multivariate distri-
butions, including for example mixture distributions. Rich
distributions with low variance gradient estimators are of
special interest in the context of SGVI, where the need to
approximate complex posteriors demands rich families of
distributions that lend themselves to stochastic optimization.
In future work we intend to explore this connection further.
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dient flows: in metric spaces and in the space of prob-
ability measures. Springer Science & Business Media,
2008.

Butler, Ronald W. Saddlepoint approximations with appli-
cations, volume 22. Cambridge University Press, 2007.

Casella, George and Robert, Christian P. Rao-
blackwellisation of sampling schemes. Biometrika, 83
(1):81–94, 1996.

Figurnov, Michael, Mohamed, Shakir, and Mnih, Andriy.
Implicit reparameterization gradients. arXiv preprint
arXiv:1805.08498, 2018.

Glasserman, Paul. Monte Carlo methods in financial engi-
neering, volume 53. Springer Science & Business Media,
2013.

Glynn, Peter W. Likelihood ratio gradient estimation for
stochastic systems. Communications of the ACM, 33(10):
75–84, 1990.

Grathwohl, Will, Choi, Dami, Wu, Yuhuai, Roeder, Geoff,
and Duvenaud, David. Backpropagation through the
void: Optimizing control variates for black-box gradient
estimation. arXiv preprint arXiv:1711.00123, 2017.

Graves, Alex. Stochastic backpropagation through mixture
density distributions. arXiv preprint arXiv:1607.05690,
2016.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John. Stochastic variational inference. The Jour-
nal of Machine Learning Research, 14(1):1303–1347,
2013.

Jordan, Michael I, Ghahramani, Zoubin, Jaakkola, Tommi S,
and Saul, Lawrence K. An introduction to variational
methods for graphical models. Machine learning, 37(2):
183–233, 1999.

Keeling, Charles David and Whorf, Timothy P. Atmospheric
co2 concentrations derived from flask air samples at sites
in the sio network. Trends: a compendium of data on
Global Change, 2004.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Knowles, David A. Stochastic gradient variational bayes
for gamma approximating distributions. arXiv preprint
arXiv:1509.01631, 2015.

Lugannani, Robert and Rice, Stephen. Saddle point approx-
imation for the distribution of the sum of independent
random variables. Advances in applied probability, 12
(2):475–490, 1980.

Miller, Andrew, Foti, Nick, D’Amour, Alexander, and
Adams, Ryan P. Reducing reparameterization gradient
variance. In Advances in Neural Information Processing
Systems, pp. 3711–3721, 2017.

Mnih, Andriy and Gregor, Karol. Neural variational in-
ference and learning in belief networks. arXiv preprint
arXiv:1402.0030, 2014.

Naesseth, Christian, Ruiz, Francisco, Linderman, Scott,
and Blei, David. Reparameterization gradients through
acceptance-rejection sampling algorithms. In Artificial
Intelligence and Statistics, pp. 489–498, 2017.

Paisley, John, Blei, David, and Jordan, Michael. Variational
bayesian inference with stochastic search. arXiv preprint
arXiv:1206.6430, 2012.

Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan,
Gregory, Yang, Edward, DeVito, Zachary, Lin, Zeming,
Desmaison, Alban, Antiga, Luca, and Lerer, Adam. Au-
tomatic differentiation in pytorch. 2017.

Price, Robert. A useful theorem for nonlinear devices having
gaussian inputs. IRE Transactions on Information Theory,
4(2):69–72, 1958.

Ranganath, Rajesh, Gerrish, Sean, and Blei, David. Black
box variational inference. In Artificial Intelligence and
Statistics, pp. 814–822, 2014.

Ranganath, Rajesh, Tang, Linpeng, Charlin, Laurent, and
Blei, David. Deep exponential families. In Artificial
Intelligence and Statistics, pp. 762–771, 2015.

Rasmussen, Carl Edward. Gaussian processes in machine
learning. In Advanced lectures on machine learning, pp.
63–71. Springer, 2004.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wier-
stra, Daan. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Robbins, Herbert and Monro, Sutton. A stochastic approx-
imation method. The annals of mathematical statistics,
pp. 400–407, 1951.



Pathwise Derivatives Beyond the Reparameterization Trick

Ross, Sheldon M. Simulation. Academic Press, San Diego,
2006.

Ruiz, Francisco R, AUEB, Michalis Titsias RC, and Blei,
David. The generalized reparameterization gradient. In
Advances in Neural Information Processing Systems, pp.
460–468, 2016.

Salimans, Tim, Knowles, David A, et al. Fixed-form varia-
tional posterior approximation through stochastic linear
regression. Bayesian Analysis, 8(4):837–882, 2013.

Schulman, John, Heess, Nicolas, Weber, Theophane, and
Abbeel, Pieter. Gradient estimation using stochastic com-
putation graphs. In Advances in Neural Information Pro-
cessing Systems, pp. 3528–3536, 2015.

Titsias, Michalis and Lázaro-Gredilla, Miguel. Doubly
stochastic variational bayes for non-conjugate inference.
In International Conference on Machine Learning, pp.
1971–1979, 2014.

Tucker, George, Mnih, Andriy, Maddison, Chris J, Lawson,
John, and Sohl-Dickstein, Jascha. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable
models. In Advances in Neural Information Processing
Systems, pp. 2624–2633, 2017.

Villani, Cédric. Topics in optimal transportation. Num-
ber 58. American Mathematical Soc., 2003.

Wilks, S.S. Mathematical Statistics. John Wiley and Sons
Inc., 1962.

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4):229–256, 1992.

Wingate, David and Weber, Theophane. Automated vari-
ational inference in probabilistic programming. arXiv
preprint arXiv:1301.1299, 2013.


