Supplement of
“Detecting non-causal artifacts in multivariate linear regression models”

Dominik Janzing 1 Bernhard Schölkopf 2

1. Proofs

1.1. Proof of Lemma 1

We first write \(\Phi(v) = g(Av)Av \), with \(g(w) := 1/\|w\| \).

Let \(t \mapsto s(t) \) be some curve on the unit sphere \(S^{d-1} \) and \(\tilde{s}(t) := \Phi(s(t)) \) its image and assume \(v = s(0) \) and \(\tilde{v} = \tilde{s}(0) \). Then we have
\[
\frac{d}{dt} \Phi(s(t)) = \langle \nabla g(As(t)), As'(t) \rangle As(t) + g(As(t))As'(t),
\]
with \(\nabla g(w) = -w/\|w\|^3 \). Hence we obtain
\[
\frac{d}{dt} \Phi(s(t)) = \frac{-1}{\|As(t)\|^3} (As(t), As'(t)) As(t) + g(As(t))As'(t) = g(As(t))(1 - \tilde{s}(t)\tilde{s}(t)^T) As'(t),
\]
where we have used \(\tilde{s}(t) = As(t)/\|As(t)\| \). Note that the matrix \(1 - \tilde{s}(t)\tilde{s}(t)^T \) projects \(As'(t) \) onto the space orthogonal to \(\tilde{s}(t) \), that is, the tangent space of the surface at \(\tilde{s}(t) \). Further, the matrix
\[
g(As(t))(1 - \tilde{s}(t)\tilde{s}(t)^T) A
\]
maps each tangent vector \(s'(t) \) at \(s(t) \) (for any curve \(s \)) to the corresponding tangent vector \(\tilde{s}'(t) \) at \(\tilde{s}(t) \). It thus describes the Jacobian \(D\Phi \) mapping between tangent spaces \(T_s(t) \) and \(T_{\tilde{s}}(t) \) of the sphere at \(s(t) \) and \(\tilde{s}(t) \), respectively. Let \(e_1, \ldots, e_{d-1} \) and \(\tilde{e}_1, \ldots, \tilde{e}_{d-1} \) be orthonormal bases of \(T_s(t) \) and \(T_{\tilde{s}}(t) \), respectively (that is, bases of \(v^\perp \) and \(\tilde{v}^\perp \), respectively). If we set \(U_v := (e_1, \ldots, e_{d-1}) \) and \(\tilde{U}_v := (\tilde{e}_1, \ldots, \tilde{e}_{d-1}) \), the matrix representation of the Jacobian \(D\Phi \) with respect to these bases reads
\[
\tilde{D}\Phi(v) := g(Av)U_v^T AU_v.
\]

We then have
\[
det \tilde{D}\Phi(v) = g(Av)^{d-1} det(U_v^T AU_v).
\]

For later use, we also observe that multiplying the equation \(\tilde{v} = Av/\|Av\| \) with \(A^{-1} \) and taking the norm on both sides yields
\[
1/\|Av\| = \|A^{-1}\tilde{v}\|.
\]

For the probability density we thus obtain
\[
p(\tilde{v}) = \frac{1}{\det(\tilde{D}\Phi(A^{-1}(\tilde{v})))} = \left(\|A^{-1}\tilde{v}\|^{d-1} \det(U_v^T AU_v)\right)^{-1} = \left(\|A^{-1}\tilde{v}\|^{d-1} \det(A)\right)^{-1},
\]
with the abbreviation \(\hat{A} := U_v^T AU_v \). Let us now define the orthogonal \(d \times d \) matrices
\[
W_v := (U_v, v) \quad \text{and} \quad (U_v, \tilde{v}).
\]
Then we define \(A' := W_v^T AW_v \), which implies \(\det(A') = \det(A) \). \(A' \) can be written as
\[
A' = \begin{pmatrix} \hat{A} & 0 \\ w & \|Av\| \end{pmatrix},
\]
where \(w \) is some \(1 \times (d-1) \)-matrix. Hence we obtain
\[
det(A') = det(\hat{A})\|Av\| = \frac{det(\hat{A})}{\|A^{-1}\tilde{v}\|},
\]
where we have used also (3). We can thus rewrite (4) as
\[
p(\tilde{v}) = \frac{1}{\det(A)\|A^{-1}\tilde{v}\|^{d-1}}.
\]

1.2. Proof of Theorem 3

By definition, \(p_{\theta^r} \) is obtained by applying the map \(\sqrt{R_{\theta^r}} \) to vectors drawn from a rotation invariant distribution with renormalizing it later. Without loss of generality, let all the matrices \(R_{\theta^r} \) be diagonal with eigenvalues \(f_j(\theta) \) (note that they commute). Let \(v \) be generated by drawing each entry \(v_j \) from \(N(0, 1) \). We can then compute the entries of \(\tilde{v} \) by
\[
\tilde{v}_j := \frac{1}{\sum_{i=1}^d f_j(\theta)^2 v_j^2} \sqrt{f_j(\theta)} v_j.
\]
Rewriting (10) in terms of \(v_j \) instead of \(\tilde{v} \) yields

\[
\log p_\theta(\tilde{v}) = -\frac{1}{2} \left\{ \log \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') f_j(\theta)^{-1} v_j^2 - \log \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') v_j^2 \right\} + \frac{1}{2} \log \det R_\theta.
\]

Since each \(v_j^2 \) is an independent squared standard Gaussian it has expectation 1 and variance 2. Therefore, the random variable

\[
\frac{1}{d} \sum_{j=1}^{d} f_j(\theta') f_j(\theta)^{-1} v_j^2
\]

has mean \(\tau(R_\theta R_\theta^{-1}) \) and variance

\[
\frac{2}{d^2} \sum_{j=1}^{d} f_j(\theta')^2 f_j(\theta)^{-2}.
\]

Due to Chebychev's inequality we have

\[
\left| \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') f_j(\theta)^{-1} v_j^2 - \tau(R_\theta R_\theta^{-1}) \right| \leq \delta,
\]

with probability \(1 - \frac{2}{d^2} \sum_{j=1}^{d} f_j(\theta')^2 f_j(\theta)^{-2} / \delta^2 = 1 - \frac{2}{d^2} \tau(R_\theta R_\theta^{-1}) / \delta^2 \).

Likewise,

\[
\left| \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') v_j^2 - \tau(R_\theta) \right| \leq \delta,
\]

with probability \(1 - \frac{2}{d^2} \tau(R_\theta^2) / \delta^2 \). Since \(|\log(x + \rho) - \log x| \leq 2\rho/x \) for sufficiently small \(\rho \), we can ensure that

\[
\left| \log \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') f_j(\theta)^{-1} v_j^2 - \log \tau(R_\theta R_\theta^{-1}) \right| \leq \epsilon, \quad (5)
\]

by choosing \(\delta \leq \epsilon/(2\tau(R_\theta R_\theta^{-1})) \). Likewise, we can achieve that

\[
\left| \log \frac{1}{d} \sum_{j=1}^{d} f_j(\theta') f_j(\theta)^{-1} v_j^2 - \log \tau(R_\theta) \right| \leq \epsilon, \quad (6)
\]

if \(\delta \leq \epsilon/(2\tau(R_\theta)) \). Thus, both inequalities (5) and (6) together hold with probability at least

\[
1 - \frac{8}{d \epsilon^2} \left[\tau(R_\theta R_\theta^{-1}) \tau(R_\theta R_\theta^{-1})^2 + \tau(R_\theta) \tau(R_\theta)^2 \right].
\]