Supplement of "Detecting non-causal artifacts in multivariate linear regression models"

Dominik Janzing ${ }^{1}$ Bernhard Schölkopf ${ }^{2}$

1. Proofs

1.1. Proof of Lemma 1

We first write Φ as $\Phi(v)=g(A v) A v$, with $g(w):=1 /\|w\|$. Let $t \mapsto s(t)$ be some curve on the unit sphere S^{d-1} and $\tilde{s}(t):=\Phi(s(t))$ its image and assume $v=s(0)$ and $\tilde{v}=$ $\tilde{s}(0)$. Then we have

$$
\begin{aligned}
\frac{d}{d t} \Phi(s(t))= & \left\langle\nabla g(A s(t)), A s^{\prime}(t)\right\rangle A s(t) \\
& +g(A s(t)) A s^{\prime}(t),
\end{aligned}
$$

with $\nabla g(w)=-w /\|w\|^{3}$. Hence we obtain

$$
\begin{align*}
& \frac{d}{d t} \Phi(s(t)) \tag{1}\\
= & \frac{-1}{\|A s(t)\|^{3}}\left\langle A s(t), A s^{\prime}(t)\right\rangle A s(t)+g(A s(t)) A s^{\prime}(t) \\
= & g(A s(t))\left(A s^{\prime}(t)-\tilde{s}(t) \tilde{s}(t)^{T} A s^{\prime}(t)\right) \\
= & g(A s(t))\left(1-\tilde{s}(t) \tilde{s}(t)^{T}\right) A s^{\prime}(t), \tag{2}
\end{align*}
$$

where we have used $\tilde{s}(t)=A s(t) /\|A s(t)\|$. Note that the matrix $\mathbf{1}-\tilde{s}(t) \tilde{s}(t)^{T}$ projects $A s^{\prime}(t)$ onto the space orthogonal to $\tilde{s}(t)$, that is, the tangent space of the surface of the sphere at $\tilde{s}(t)$. Further, the matrix

$$
g(A s(t))\left(\mathbf{1}-\tilde{s}(t) \tilde{s}(t)^{T}\right) A
$$

maps each tangent vector $s^{\prime}(t)$ at $s(t)$ (for any curve s) to the corresponding tangent vector $\tilde{s}^{\prime}(t)$ at $\tilde{s}(t)$. It thus describes the Jacobian $D \Phi$ mapping between tangent spaces $T_{s(t)}$ and $T_{\tilde{s}(t)}$ of the sphere at $s(t)$ and $\tilde{s}(t)$, respectively. Let e_{1}, \ldots, e_{d-1} and $\tilde{e}_{1}, \ldots, \tilde{e}_{d-1}$ be orthonormal bases of T_{v} and $T_{\tilde{v}}$, respectively (that is, bases of v^{\perp} and \tilde{v}^{\perp}, respectively). If we set $U_{v}:=\left(e_{1}, \ldots, e_{d-1}\right)$ and $U_{\tilde{v}}:=$ ($\tilde{e}_{1}, \ldots, \tilde{e}_{d-1}$), the matrix representation of the Jacobian $D \Phi$ with respect to these bases reads

$$
\widehat{D \Phi}(v):=g(A v) U_{\tilde{v}}^{T} A U_{v} .
$$

[^0]We then have

$$
\operatorname{det} \widehat{D \Phi}(v)=g(A v)^{d-1} \operatorname{det}\left(U_{\tilde{v}}^{T} A U_{v}\right) .
$$

For later use, we also observe that multiplying the equation $\tilde{v}=A v /\|A v\|$ with A^{-1} and taking the norm on both sides yields

$$
\begin{equation*}
1 /\|A v\|=\left\|A^{-1} \tilde{v}\right\| . \tag{3}
\end{equation*}
$$

For the probability density we thus obtain

$$
\begin{align*}
p(\tilde{v}) & =\left|\operatorname{det} \widehat{D \Phi}\left(\Phi^{-1}(\tilde{v})\right)\right|^{-1} \\
& =\left(\left\|A^{-1} \tilde{v}\right\|^{d-1}\left|\operatorname{det}\left(U_{\tilde{v}}^{T} A U_{v}\right)\right|\right)^{-1} \\
& =\left(\left\|A^{-1} \tilde{v}\right\|^{d-1}|\operatorname{det}(\tilde{A})|\right)^{-1}, \tag{4}
\end{align*}
$$

with the abbreviation $\tilde{A}:=U_{\tilde{v}}^{T} A U_{v}$. Let us now define the orthogonal $d \times d$ matrices

$$
W_{v}:=\left(U_{v}, v\right) \quad \text { and } \quad\left(U_{\tilde{v}}, \tilde{v}\right) .
$$

Then we define $A^{\prime}:=W_{\tilde{v}}^{T} A W_{v}$, which implies $\left|\operatorname{det}\left(A^{\prime}\right)\right|=|\operatorname{det}(A)| \cdot A^{\prime}$ can be written as

$$
A^{\prime}=\left(\begin{array}{cc}
\tilde{A} & 0 \\
w & \|A v\|
\end{array}\right)
$$

where w is some $1 \times(d-1)$-matrix. Hence we obtain

$$
\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(\tilde{A})\|A v\|=\frac{\operatorname{det}(\tilde{A})}{\left\|A^{-1} \tilde{v}\right\|},
$$

where we have used also (3). We can thus rewrite (4) as

$$
p(\tilde{v})=\frac{1}{|\operatorname{det}(A)|| | A^{-1} \tilde{v} \|^{d}}
$$

1.2. Proof of Theorem 3

By definition, $p_{\theta^{\prime}}$ is obtained by applying the map $\sqrt{R_{\theta}^{\prime}}$ to vectors drawn from a rotation invariant distribution with renormalizing it later. Without loss of generality, let all the matrices R_{θ} be diagonal with eigenvalues $f_{j}(\theta)$ (note that they commute). Let v be generated by drawing each entry v_{j} from $\mathcal{N}(0,1)$. We can then compute the entries of \tilde{v} by

$$
\tilde{v}_{j}:=\frac{1}{\sum_{i=1}^{d} f_{j}\left(\theta^{\prime}\right) v_{j}^{2}} \sqrt{f_{j}\left(\theta^{\prime}\right)} v_{j} .
$$

Rewriting (10) in terms of v_{j} instead of \tilde{v} yields

$$
\begin{aligned}
\log p_{\theta}(\tilde{v}) & =-\frac{1}{2}\left\{\log \frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) f_{j}(\theta)^{-1} v_{j}^{2}\right. \\
& \left.-\log \frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) v_{j}^{2}\right\}+\frac{1}{2} \log \operatorname{det} R_{\theta}
\end{aligned}
$$

Since each v_{j}^{2} is an independent squared standard Gaussian it has expectation 1 and variance 2 . Therefore, the random variable

$$
\frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) f_{j}(\theta)^{-1} v_{j}^{2}
$$

has mean $\tau\left(R_{\theta} R_{\theta^{\prime}}^{-1}\right)$ and variance

$$
\frac{2}{d^{2}} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right)^{2} f_{j}(\theta)^{-2}
$$

Due to Chebychev's inequality we have

$$
\left|\frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) f_{j}(\theta)^{-1} v_{j}^{2}-\tau\left(R_{\theta^{\prime}} R_{\theta}^{-1}\right)\right| \leq \delta
$$

with probability $1-\frac{2}{d^{2}} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right)^{2} f_{j}(\theta)^{-2} / \delta^{2}=1-$ $\frac{2}{d} \tau\left(R_{\theta^{\prime}}^{2} R_{\theta}^{-2}\right) / \delta^{2}$. Likewise,

$$
\left|\frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) v_{j}^{2}-\tau\left(R_{\theta^{\prime}}\right)\right| \leq \delta
$$

with probability $1-\frac{2}{d} \tau\left(R_{\theta^{\prime}}^{2}\right) / \delta^{2}$. Since $\mid \log (x+\rho)-$ $\log x \mid \leq 2 \rho / x$ for sufficiently small ρ, we can ensure that

$$
\begin{equation*}
\left|\log \frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) f_{j}(\theta)^{-1} v_{j}^{2}-\log \tau\left(R_{\theta^{\prime}} R_{\theta}^{-1}\right)\right| \leq \epsilon \tag{5}
\end{equation*}
$$

by choosing $\delta \leq \epsilon /\left(2 \tau\left(R_{\theta^{\prime}} R_{\theta}^{-1}\right)\right)$. Likewise, we can achieve that

$$
\begin{equation*}
\left|\log \frac{1}{d} \sum_{j=1}^{d} f_{j}\left(\theta^{\prime}\right) v_{j}^{2}-\log \tau\left(R_{\theta^{\prime}}\right)\right| \leq \epsilon \tag{6}
\end{equation*}
$$

if $\delta \leq \epsilon /\left(2 \tau\left(R_{\theta^{\prime}}\right)\right)$. Thus, both inequalities (5) and (6) together hold with probability at least

$$
1-\frac{8}{d \epsilon^{2}}\left[\tau\left(R_{\theta^{\prime}}^{2} R_{\theta}^{-2}\right) \tau\left(R_{\theta^{\prime}} R_{\theta}^{-1}\right)^{2}+\tau\left(R_{\theta^{\prime}}^{2}\right) \tau\left(R_{\theta^{\prime}}\right)^{2}\right] .
$$

[^0]: ${ }^{1}$ Amazon Development Center, Tübingen, Germany ${ }^{2}$ Max Planck Institute for Intelligent Systems, Tübingen, Germany. This work has been done at the MPI before DJ joined Amazon. Correspondence to: Dominik Janzing janzind@amazon.com.

 Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

