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Abstract

We consider linear models where d potential
causes X1, . . . , Xd are correlated with one target
quantity Y and propose a method to infer whether
the association is causal or whether it is an artifact
caused by overfitting or hidden common causes.
We employ the idea that in the former case the
vector of regression coefficients has ‘generic’ ori-
entation relative to the covariance matrix ΣXX of
X . Using an ICA based model for confounding,
we show that both confounding and overfitting
yield regression vectors that concentrate mainly
in the space of low eigenvalues of ΣXX .

1. Introduction
Inferring causal relations from passive observations data has
gained increasing interest in machine learning and statistics.
Although reliable causal conclusions can only be drawn
from interventional data, the idea of postulating assump-
tions that render causal inference from passive observations
feasible becomes more and more accepted. In addition to
the more ‘traditional’ causal Markov condition and causal
faithfulness assumption (Spirtes et al., 1993; Pearl, 2000), re-
searchers have also stated assumptions that admit causal in-
ference when no conditional statistical independences hold,
e.g., Kano & Shimizu (2003); Sun et al. (2006); Hoyer et al.
(2009); Zhang & Hyvärinen (2009); Bloebaum et al. (2018);
Marx & Vreeken (2017). Each of these method relies on
idealized assumptions that rarely hold in practice; neverthe-
less they can be useful if the methods possess a degree of
robustness regarding violation of model assumptions (Mooij
et al., 2016). In a similar vein, the present work considers a
causal inference problem that becomes solvable only under
an idealized model assumption that is certainly debatable.
However, it illustrates that high-dimensional observations
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Figure 1. Generic scenario where the statistical relation between
X and Y is due to an unobserved confounder Z and due to the
influence of X on Y . The purely confounded (middle) and the
purely causal (right) scenarios are obtained as limiting cases where
one of the arrows is negligible.

contain a kind of causal information that has not been em-
ployed so far.

We assume that we are given a scalar target variable Y that
is potentially influenced by a multi-dimensional predictor
variable X = (X1, . . . , Xd). Suppose that i.i.d. samples
from PX,Y show that X and Y are significantly correlated,
but it is unclear whether this is mainly due to the influence
of X on Y or due to a common cause of X and Y (here
we assume that prior knowledge excludes the case where
Y causally influences X, e.g, due to time order). Y may,
for instance, be a quantitiave property of a material (e.g.,
electrical resistence) and Xj some features describing its
chemical and physical structure. In biology, X and Y could
represent information about genotype and phenotype, re-
spectively. Note that conditional independences allow to
decide which of the variables Xj influence Y , given that
the association between X and Y is unconfounded. The
question of unconfoundedness, which we address here, is
therefore prior to the former problem.

Figure 1, left, visualizes the generic scenario that we con-
sider throughout the paper, where the statistical dependences
between X and Y are due to the influence of X on Y and
due to the common cause Z. It contains the purely con-
founded case (middle) as limiting case where the arrow
from X to Y is arbitrarily weak. Likewise, the purely causal
case is obtained when one of the arrows from Z gets weak
(right).

Our confounder detection is based on observing ‘non-
generic’ relations between PX and PY |X (Janzing &
Schölkopf, 2017). We thus follow the abstract principle
of independent mechanisms (Janzing & Schölkopf, 2010;
Lemeire & Janzing, 2012; Peters et al., 2017), stating that for
the purely causal relation X → Y of two arbitrary variables
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X,Y , the marginal PX and the conditional PY |X do not
contain information about each other (where ‘information’
needs to be further specified). The present paper contains
the following novel contributions:

•We allow for multi-dimensional confounders. In contrast,
the entire analysis of Janzing & Schölkopf (2017) is re-
stricted to the case of a one-dimensional confounder, and
cannot be extended using the methods presented in that
work.

•We show that the multivariate setting permits an analysis
which is significantly simpler, and also the ‘dependences’
between PX and PY |X become simple.

•We derive a statistical test for non-confounding based on
our model assumptions.

• We show that for our model, overfitting generates the
same kind of dependences between PX and PY |X as con-
founding. This suggests a subtle link between regularization
and the correction of confounding. One may conjecture,
for instance, that models with ‘independent’ PX and PY |X
have better chances to generalize to future data points as
well as to related data sets from other domains (including
interventional data), cf. also Schölkopf et al. (2012).

It may sound counter-intuitive that the multivariate case
can be simpler than the scalar case, but our derivations are
based on a certain notion of genericity of the multivariate
confounder which does not necessarily hold for the scalar
case, although our experiments will also include data with
scalar confounding.

2. Model for confounding with uncorrelated
sources

Our model for the influence of the high-dimensional com-
mon cause Z on both X and Y is inspired by Independent
Component Analysis (ICA) (Hyvärinen et al., 2001). Let
Z consist of ` ≥ d independent sources1 Z1, . . . , Z`, each
having unit variance. They influence X via a mixing ma-
trix M and Y via a mixing vector c, as shown in Figure 2.
Explicitly, the structural equations relating Z,X, Y thus
read:

X = MZ (1)
Y = aTX + cTZ, (2)

where M is a d × ` matrix and a are c are vectors in Rd
and R`, respectively. The model induces the following
correlations of the observed variables X and Y :

ΣXX = MIMT = MMT (3)
ΣXY = MMTa +Mc, (4)

1In contrast to ICA, however, it is actually enough that the
sources are uncorrelated.
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Figure 2. Model of a confounded influence of X on Y where the
hidden common causes are independent sources that influence X
and Y at the same time.

where I denotes the identity matrix. While a describes the
causal influence of X on Y , formally regressing Y on X
yields

a′ := Σ−1XXΣXY = a +M−T c, (5)

where M−T denotes the transpose of the pseudoinverse of
M . The vector a′ describes how the distribution of Y is
shifted when one observes that X has attained a particular
d-tuple, while a describes how it changes when X is set to
some d-tuple by an intervention. In Pearl’s leanguage (Pearl,
2000), a′ vs. a describe the difference between p(y|x)
and p(y|do(x)) for our particular linear model. Janzing &
Schölkopf (2017) define the strength of confounding by

β :=
‖a′ − a‖2

‖a‖2 + ‖a′ − a‖2
∈ [0, 1], (6)

which is 0 for the purely causal case a′ = a and 1 for the
purely confounded case a = 0, which is already a nice
property. To further justify this definition, they argue that
the vectors a and a′ − a = M−T c are close to orthogonal
in high dimensions if a is drawn independently fromM−T c
from a rotation-invariant distribution. Thus, the denominator
is close to ‖a′‖2 and β is the fraction of squared length of a′

that can be attributed to the confounder. Following Janzing
& Schölkopf (2017) we define the estimation of β from
PX,Y as our crucial task, since β quantifies the relative
deviation of a′ from a caused by confounding.

The essential assumption that we add now is that the vectors
c and a are randomly drawn from a rotation invariant prior
(that is, an arbitrary distribution that is invariant w.r.t. or-
thogonal transformations). One can already guess from (5)
what kind of ‘non-generic’ relation the vector a′ then satis-
fies together with ΣXX: whenever a′ is dominated by the
confounding term M−T c it tends to be mainly located in
the eigenspaces of ΣXX corresponding to small eigenvalues.
The formal analysis is detailed below, but intuitively speak-
ing, multiplication with M−T amplifies the components
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corresponding to small singular values of M and thus to
small eigenvalues of ΣXX = MMT .

To formally explore this idea we first introduce the following
generating model for a and c and hence for a′:

Definition 1 (ICA based confounding model). First sample
each component of a from a Gaussian with zero mean and
standard deviation σa, then sample each component of c
from a Gaussian with standard deviation σc. Compute a′ as
in (5), where M is some given d× `-matrix.

Together with M , the parameters σa and σc determine the
expected value of β, but actually only their ratio matters
because β depends only on the relative squared lengths of
vectors.

3. Estimating the ratio of σa and σc

We now describe how to infer the ratio of σa and σc as
an intermediate step for inferring β. We could infer both
parameters by maximizing the likelihood of a′ given our
generating model in Definition 1 if we knew M and `. Un-
fortunately, we only know MMT = ΣXX and d. However,
we can construct an equivalent generating model for a′ that
contains only these observed elements:

Definition 2 (alternative generating model for a′). Gener-
ate b ∈ Rd by drawing each component from a standard
Gaussian. Set

a′ :=
√
σ2
aI + σ2

cΣ−1XXb.

Theorem 1 (equivalence of models). The model in Defini-
tion 2 generates vectors a′ with the same distribution as in
Definition 1.

Proof. First define the d× (d+ `)-matrix

Kσa,σb
:=
(
σaI σcM

−T )
.

We can then rewrite a′ in Definition 1 as

a′ = Kσa,σc
b′,

with

b′ :=

(
a/σa
c/σc

)
.

Let

Kσa,σc
=
√
Kσa,σc

KT
σa,σc

Vσa,σc

be the right polar decomposition of Kσa,σc , where Vσa,σc

is a partial isometry from Rd+` to Rd. It can be written as

Vσa,σc = Wσa,σcQ,

where Wσa,σc
is an orthogonal d × d-matrix and Q :

Rd+` → Rd is the projection that annihilates the last `
components of a vector. We then get

a′ =
√
Kσa,σc

KT
σa,σc

Wσa,σc
Qb′.

Since the d + ` entries of b′ are drawn from independent
standard Gaussians, the d entries of Qb′ are also standard
Gaussians. This distribution of entries is invariant under
orthogonal maps, hence the entries of

b := Wσa,σcQb′

are also independent standard Gaussians. We have√
Kσa,σcK

T
σa,σc

=
√
σ2
aI + σ2

cΣ−1XX,

Hence,

a′ =
√
σ2
aI + σ2

cΣ−1XXb.

Note that the length of a′ is irrelevant for β. We thus con-
sider a′/‖a′‖ and infer only the quotient θ := σ2

c/σ
2
a. We

therefore introduce the matrix

Rθ := I + θΣ−1XX, (7)

and conclude that our generating models for a′ induces a
distribution for the directions a′/‖a′‖ that is the image of
the uniform distribution on the unit sphere Sd−1 (i.e. the
Haar measure for the orthogonal group) under the map

b 7→
√
Rθb

‖
√
Rθb‖

.

To compute this distribution, we use the following result
shown in the supplement:

Lemma 1 (distributions of directions induced by a matrix).
Let A be an invertible real-valued d× d-matrix. Define the
map Φ : Sd−1 → Sd−1 by

Φ(v) :=
1

‖Av‖
Av.

Then the image of the uniform distribution on Sd−1 under
Φ has the following density with respect to the uniform
distribution:

p(ṽ) =
1

det(A)‖A−1ṽ‖d
. (8)

We now apply Lemma 1 to A :=
√
Rθ as defined by (7) and

obtain
pθ(ṽ) =

1

|det
√
Rθ|

∥∥∥∥√R−1θ ṽ

∥∥∥∥d
. (9)
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Using
|det

√
Rθ| =

√
detRθ

we can rewrite (9) as

pθ(ṽ) =
1√

detRθ‖〈ṽ, (1 + θΣ−1XX)−1ṽ〉‖d/2
,

which proves the following theorem:

Theorem 2 (density of directions). The generating model
in Definition 1 generates vectors a′ whose distribution of
unit vectors ṽ := a′/‖a′‖ has the following log density with
respect to the uniform distribution on the sphere:

log pθ(ṽ) =
1

2

[
log detRθ − d log〈ṽ, R−1θ ṽ〉

]
. (10)

Given sufficiently many samples a′ generated with the same
θ, we can certainly infer θ by maximizing (10). Remarkably,
we can infer the loglikelihood already from a single instance
for large d under appropriate conditions:

Theorem 3 (concentration of measure). Let ṽ be drawn
from pθ′ . Then for sufficiently small ε we have∣∣∣∣log pθ(ṽ)− 1

2

[
log detRθ − log

τ(Rθ′R
−1
θ )

τ(R′θ)

]∣∣∣∣ ≤ ε
with probability at least

1− 8

dε2
[
τ(R2

θ′R
−2
θ )τ(Rθ′R

−1
θ )2 + τ(R2

θ′)τ(Rθ′)
2
]
.

where τ() := 1
d tr(.) denotes the renormalized trace.

The proof can be found in the supplement. Whenever one
assumes a limit for d→∞ in which the expressions with τ
converge2, the error thus tends to zero. Intuitively speaking,
the reason is that drawing one vector from pθ′ in dimension
d can be reduced to drawing d independent coefficients with
respect to an appropriate basis, which finally reduces the
above concentration of measure phenomenon problem to
the usual law of large numbers.

4. Estimating confounding strength β

To infer β (which we defined as our crucial task) from θ
we need some approximations that hold for large d. First
we use ‖a‖2/d ≈ σ2

a which is justified by the law of large
numbers. Moreover we can estimate the length of M−T c

2This holds, for instance, for any sequence Σ
(d)
XX for which the

eigenvalues are constrained by some interval [l, u] with 0 < l <
u < ∞ and the distribution of eigenvalues converges weakly to
some measure µ. Then, τ

(
f(Σ

(d)
XX)

)
converges to

∫
fdµ for any

continuous function f : [l, u] → R.

using the trace of the concentration matrix of X:

1

d
‖a′ − a‖2 =

1

d
‖M−T c‖2 =

1

d
〈c,M−1M−T c〉

≈ σcτ(M−1M−T ) = σcτ(M−TM−1)

= σcτ(Σ−1XX),

where the approximation uses also the law of large numbers
since we can generate c by drawing its coefficients with
respect to the eigenbasis of M−1M−T from independent
Gaussians of standard deviation σc. Thus we obtain

β ≈
τ(Σ−1XX)σ2

c

τ(Σ−1XX)σ2
c + σ2

a

=
τ(Σ−1XX)θ

τ(Σ−1XX)θ + 1
. (11)

Putting everything together, we obtain the following proce-
dure for estimating β from (X, Y ) samples:

1. Compute the empirical covariance matrices Σ̂XX and
Σ̂XY .

2. Estimate a′ via â′ := Σ̂XX

−1
Σ̂XY .

3. Infer θ via maximizing the likelihood log pθ(â′/‖â′‖)
defined by (10).

4. Compute β from the estimated value of θ via (11).

Here we have neglected finite sample issues completely. We
will discuss them in section 6.

5. Test for non-confounding
To test the null hypothesis θ = 0, that is a′ = a, we define
the test statistics (applied to a single instance ṽ = a′/‖a′‖)

T (ṽ) :=
1√
d

{
〈ṽ,Σ−1XXṽ〉 − τ(Σ−1XX)

}
. (12)

One can easily show that its expectation is zero when ṽ is
drawn uniformly at random from the unit sphere, which we
assumed for the unconfounded case. Intuitively, the defini-
tion of T is motivated by the idea to detect overpopulation
of eigenspaces with small eigenvalues, which we expect for
confounding. As a further justification, we observed that T
coincides, up to an additive constant and a scaling factor,
with the score function

∂ log pθ(ṽ)

∂θ
,

at θ = 0. This is a natural candidate for detecting changes
of θ because score functions occur in the construction of
optimal estimators whenever there exist unbiased estimators
attaining the Cramér Rao bound (Cramér, 1946).
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To derive a simple approximation for the null distribution of
T we think of ṽ = a′/‖a′| as being generated by drawing
its coefficients aj with respect to the eigenbasis of Σ−1XX

from N (0, 1/
√
d) followed by renormalization:

T (ṽ) =
1√
d

(∑d
j=1 a

2
jsj∑d

j=1 s
2
j

− τ(Σ−1XX)

)

≈ 1√
d

 d∑
j=1

a2jsj − τ(Σ−1XX)

 ,

where sj denotes the eigenvalues of Σ−1XX. Already for mod-
erate size of d, we can thus get a good approximation for the
null distribution of T by a weighted sum of squared Gaus-
sian, i.e., it approximately follows a mixed χ2-distribution.

6. Overfitting
So far we have completely ignored finite sampling issues.
High-dimensional regression requires regularization which
could spoil our model assumptions, e.g., if they enforce spar-
sity which is not compatible with our rotation invariant prior
on a. Therefore, the method should only be applied if the
sample size is sufficiently high for the respective dimension
(see section 7) to avoid overfitting. Remarkably, overfit-
ting generates the same kind of ‘dependences’ between the
estimator of a′ and the estimator of ΣXX as confounding
generated for the true objects a′ and ΣXX themselves.

To show this, assume that Y is independent of X and let
(xj1, . . . , x

j
d, y

j) for j = 1, . . . , n be samples independently
drawn from PXPY , where PX is arbitrary and PY is Gaus-
sian. Define the matrix

x :=
(
xij − x̄j

)
i=1,...,n,j=1,...,d

,

where x̄j := 1
n

∑n
i=1 x

i
j denotes the empirical average

of the respective component. Likewise, define the vec-
tor y := (y1, . . . , yn)T − ȳ(1, . . . , 1)T . Then, we obtain
ΣXX = xTx and ΣXY = xT y (where we have skipped
the symbol ·̂ for better readability). Since y is the projec-
tion of (y1, . . . , yn)T onto the orthogonal complement of
1 := (1, . . . , 1)T , its distribution is isotropic in the n − 1-
dimensional subspace defined by the orthogonal comple-
ment 1⊥ of 1. Let V be an (n− 1)× n matrix that rotates
1⊥ onto Rn−1. Then we may write

ΣXX = xTV TV x,

because the image of x is contained in the image of the
projection V TV . Moreover,

ΣXY = xTV TV y.

To show the formal analogy to the mixing scenario above
we now set M := V x and y′ := V y. Then we can write

ΣXX = MTM and ΣXY = MT y′, and thus obtain

â = M−T y′,

where y′ is isotropically chosen from Rn−1. The generating
model for â thus coincides with the model above with ` =
n− 1 for the case of pure confounding.

Computing an unregularized regression for X and Y being
independent thus yields a regression vector a′ that is also
mainly located in the low eigenvalue eigenspace of ΣXX.
We expect the same behavior if X influences Y without con-
founder when the sample size is so small that the observed
correlations are dominated by statistical fluctuations rather
than by the true causal influence.

On the one hand one may regret that confounding and over-
fitting becomes indistinguishable. On the other hand, the
method thus provides an unified approach to detect that a
regression vector â′ does not show the true causal influ-
ence; either because â′ 6= a′ or because a′ 6= a due to
confounding. There is a simple reason why both cases gen-
erate similar dependences between ΣXX and a′: Whenever
ΣXY is a vector that has been generated independently of
ΣXX, the vector Σ−1XXΣXY tends to live mainly in the small
eigenvalue subspace of ΣXX. Only if ΣXY is not drawn
independently of ΣXX, for instance, because it is generated
by ΣXXa (where a is drawn independently of ΣXX), this
overpopulation of small eigenvalues does not happen.

7. Experiments with simulated data
We generated models as follows:

1. We have drawn n samples of each Z1, . . . , Z` as inde-
pendent standard Gaussians

2. We have drawn the entries of M by independent stan-
dard Gaussians

3. We have drawn the parameters σa, σc from the uniform
distribution on [0, 1]

4. We have drawn each coefficient of a ∈ Rd and c ∈
R` from Gaussians of standard deviation σa and σc,
respectively.

5. We computed samples (X, Y ) via the structural equa-
tions X = MZ and Y = aTX + cTZ.

Knowing the above parameters, we can easily compute the
exact confounding strength using

β =
‖M−T c‖2

‖a‖2 + ‖M−T c‖2
.



Detecting non-causal artifacts in multivariate linear regression models

7.1. Estimating β

We have estimated β as described at the end of section 4
for d = ` = 10, 20, 50, 100 with sample size 10, 000. The
scatter plots in Figure 3 show the relation between the true
values β and the estimated values β̂. One can see that β and
β̂ are clearly correlated and that the performance increases
(although slowly) for higher dimension. The estimation is
reasonably good in the regions where β is close to 0 or 1,
which suggests that one should rather trust in the qualitative
statement about whether there is confounding or not than in
the exact value of β̂.

Since our theory has shown that ` is completely irrelevant
in our idealized scenario provided that it is not smaller than
d (see the generating model in Definition 2) it would be
pointless to explore the case ` > d here.

7.2. Test for non-confounding

For the simulated data described above we have applied the
test for unconfoundedness described in section 5 by drawing
1000 samples from the null distribution of T and comparing
them to the observed value T (â′/‖â′‖). Figure 4 visualizes
the joint distribution of p-values with β.

One can see that for β > 0.5 the p-values begin to be mostly
close to zero. Figure 5 shows how the fraction of rejections
increases when β increases for the two cases where the con-
fidence level α is set to 0.1 (left) or 0.05 (right). Here we
have chosen a one-sided test because confounding increases
T due to the overpopulation of subspaces with small eigen-
values of ΣXX. The results show that for those confidence
levels unconfoundedness is mostly rejected for models with
β > 0.6.

7.3. Overfitting

We generated d+ 1-tuples of X, Y by first drawing X via
a random mixing matrix and then Y by Y = aTX + E,
where E is N (0, 1) distributed and a is a random vector
whose entries are randomly drawn from N (0, 1).

Figure 6 shows the distribution of p-values of the test for
unconfoundedness for different sample sizes n. As one can
see, for n = 20 one gets mostly small p-values although the
model is actually unconfounded (in agreement with our theo-
retical insights saying that overfitting yields the same type of
untypical regression vectors as confounding). For n = 100
and n = 1000, small p-values are still overrepresented and
only for n = 10, 000 the distribution of p-values is close to
uniform. This suggests that dimension 10 already requires
sample sizes of the order 10, 000 if one wants to avoid too
many false rejections (when focusing on confounding rather
than on overfitting).
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Figure 3. Simulation results: true value β versus estimated value
β̂ for different dimensions d and sample size n = 10, 000.
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Figure 4. p-values obtained in the test for non-confounding for
different values of the confounding parameters β. It can be seen
that the p-values get close to zero when β tends to 1.

8. Experiments with real data
Since it is hard to get data where the confounding strength
β is known we can mostly only discuss plausibility except
for the data set in the following subsection.

8.1. Data from an optical device

Janzing & Schölkopf (2017) describe an optical device
where the causal structure and β is known by construc-
tion. The variable X is a low-resolution image (3× 3 pixel)
shown on the screen of a laptop and Y is the brightness
measured by a photodiode at some distance in front of the
screen. The image X is generated by a webcam placed in
front of a TV. As confounder Z (which is one-dimensional
following the assumptions of Janzing & Schölkopf (2017)),
an LED in front of the photodiode and another LED in
front of the webcam is controlled by a random noise. Since
Z is known, an approximation of β′ for β can be directly
computed from the observed covariances (β 6= β′ only due
to finite sample issues). Among all data sets provided by
Janzing & Schölkopf (2017), we first tried those 11 sets 3

that were generated with variable confounding and obtained
the results displayed in Figure 7. The results are quite sim-
ilar to those from Janzing & Schölkopf (2017) although
the scenario matches the very specific one-dimensional con-
founding scenario there while our model is more general.
Also here the results are qualitatively right (β′ and β̂ are
significantly correlated) but with a clear tendency to under-
estimate confounding, which has already been discussed by
Janzing & Schölkopf (2017).

We also tested the two data sets from Janzing & Schölkopf
(2017) where one is purely confounded (β = 1) and one
completely unconfounded (β = 0) and obtained β̂ = 0.768
and β̂ = 0, respectively.

3The data sets and the code are available at http://webdav.
tuebingen.mpg.de/causality/
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Figure 5. Fraction of rejections when the confidence is chosen to
be 0.1 (top) and 0.05 (bottom) for different values of β in 5000
runs.

9. Taste of wine
This dataset (Lichman, 2013) describes the dependence be-
tween the scores on the taste between 0 and 10 (given by
human subjects) of red wine, and 11 different ingredients:
X1: fixed acidity, X2: volatile acidity, X3: citric acid, X4:
residual sugar, X5: chlorides, X6: free sulfur dioxide, X7:
total sulfur dioxide, X8: density, X9: pH, X10: sulphates,
X11: alcohol. Taking the taste Y as target variable we ob-
tained β̂ = 0 (after we normalized all Xj to unit variance
since their scale where incompatible) which is plausible to
some extent given that the crucial ingerndients are consid-
ered in the data set.

After dropping alcohol, which one can easily check to have
the most dominant influence on taste (given that the relation
between the full variable X and Y has been unconfounded),
we obtained β̂ = 0.62, which sounds sensible since the
set of predictor variables is no longer sufficient. When we
dropped one of then other Xj , we always obtained β̂ zero
or close to zero (in one case). Since the other variables
influence the taste much weaker than X11, the algorithm is
not able to detect any significant confounding.

10. Data sets with shuffling the target variable
Here we describe a family of experiments where each single
one cannot be assessed but one can discuss whether the
collection of results seem sensible.
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Figure 6. Distribution of p-values in the statistical test for uncon-
foundedness in a scenario without confounding.

If a data set contains d + 1 correlated variables
X1, . . . , Xd+1 we can take each Xj as hypothetical tar-
get variable Y and the remaining variables X(j) :=
(X1, . . . , Xj−1, Xj+1, . . . , Xd+1) as hypothetical causes.
Although we do not know whether some of these d + 1
choices are purely causal in the sense that X(j) influences
Y (j) := Xj without confounder, we know that not all of
them are purely causal because not all the variables can be
a sink node of the underlying causal DAG.

Since our model uses independent sources as in Independent
Component Analysis (ICA) as basis it is natural to apply
our method to data sets that have been used in the context
of ICA, for instance data from Magnetoencephalographic
Recordings (MEG)4 used by Vigário et al. (1998). The

4The data set is available at http://research.ics.
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Figure 7. True and estimated confounding strength for the optical
device used by Janzing & Schölkopf (2017).

data set contains a data matrix with 17, 730 samples of
recordings from 122 channels in a whole-scalp Neuromag-
122 neuromagnetometer. We have used the first 10 channels
as X1, . . . , Xd+1 and took each of it as potential target and
the remaining ones as potential causes. We the obtained for
j = 1, . . . , 10 the results β̂ = 0.197, 0.257, 0.267, 0.292,
0.135, 0.228, 0.24, 0, 0.311, 0.040. We do not know the
ground truth, but it is reasonable that most of the cases are
considered confounded by the algorithm, although we would
have expected stronger values of confounding (assuming
that all the channels are obtained by mixing the independent
sources).

11. Discussion
We have shown that our idealized model assumptions make
it possible to infer whether the observed correlations be-
tween the multi-dimensional predictor and the target vari-
able are truly causal or an artifact of confounding or over-
fitting. For our assumptions, both cases of artifacts yield a
‘dependence’ between the covariance matrix of the potential
cause and the regression vector for predicting the effect from
the potential cause. Here, ‘dependence’ has the very simple
meaning that principal components corresponding to small
eigenvalues being over-represented in the decomposition
of the regression vector while the meaning of ‘dependence’
for the scenario from Janzing & Schölkopf (2017) is more
complex.

In our real data experiments, confounding seemed to be of-
ten underestimated, which suggests that real data generating
process deviate from the model assumptions in a way that
the effect of confounding is less visible by our method than
the model predicts. Despite these limitations, our findings
may inspire further search for hidden causal information
in high-dimensional data and provide an intuition about
the relevance of concentration of measure effects in causal
inference.

aalto.fi/ica/eegmeg/MEG_data.html
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Oja, E. Independent component analysis for identification
of in magnetoencephalographic recordings. In Jordan,
M., Kearns, M., and Solla, S. (eds.), Advances of Neural
Information Processing 10, proceedings from the confer-
ence, Neural Information Processing Systems 1997, pp.
229–235. MIT Press, 1998.

Zhang, K. and Hyvärinen, A. On the identifiability of
the post-nonlinear causal model. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence, UAI ’09, pp. 647–655, Arlington, Virginia,
United States, 2009. AUAI Press.


