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A Outline

Section B contains the proofs for the results stated in the main paper.

• The proofs of Lemma 1 and Lemma 2 from the main paper are given in Sections B.1

and B.2. These two lemmas are important in that they provide the main structure

for the sample complexity analysis. The bounds hold pointwise.

• In Section B.3, we provide some additional lemmas that are omitted from the main

paper.

• Section B.4 gives the proof of Lemma 3 from the main paper, which makes use of

Lemma 2 and the results from Section B.3.

• We prove the main result, Theorem 1, in Section B.5.

Lastly, in Section C, we provide additional implementation details regarding the neural

network architecture, state features, and computation.
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B Proofs

B.1 Proof of Lemma 1

This proof is a modification of arguments used in [Lazaric et al., 2016, Equation 8 and

Theorem 7]. By the fixed point property of Tπk+1
and the definition of the Bellman operator

T , we have V πk − V πk+1 ≤ T dV πk − Tπk+1
V πk+1 . Subtracting and adding Tπk+1

V πk :

V πk − V πk+1 ≤ T dV πk − Tπk+1
V πk + Tπk+1

V πk − Tπk+1
V πk+1

≤ T dV πk − Tπk+1
V πk + (γPπk+1

)
(
V πk − V πk+1

)
. (B.1)

Similarly, we will bound the difference between V ∗ and V πk+1 in terms of the distances

between V ∗ − V πk and V πk − V πk+1 :

V ∗ − V πk+1 ≤ (γPπ∗)
d
(
V ∗ − V πk

)
+ T dV πk − Tπk+1

V πk + (γPπk+1
)
(
V πk − V πk+1

)
. (B.2)

Using the bound V πk − V πk+1 ≤ [I − (γPπk+1
)]−1 (T dV πk − Tπk+1

V πk) from (B.1) on the

last term of the right side of (B.2) along with a power series expansion on the inverse, we

obtain:

V ∗ − V πk+1 ≤ (γPπ∗)
d (V ∗ − V πk) +

[
I + (γPπk+1

)
∞∑
j=0

(γPπk+1
)j
] (
T dV πk − Tπk+1

V πk
)

= (γPπ∗)
d (V ∗ − V πk) +

[
I − (γPπk+1

)
]−1 (

T dV πk − Tπk+1
V πk

)
,

which can be iterated to show:

V ∗−V πK ≤ (γPπ∗)
Kd (V ∗−V π0)+

K∑
k=1

(γPπ∗)
(K−k) d

[
I− (γPπk)

]−1 (
T dV πk−1−TπkV

πk−1
)
.

The statement from the lemma follows from taking absolute value, bounding by the maxi-

mum norm, and integrating.

B.2 Proof of Lemma 2

For part (a), we note the following:

‖TπV − TπV µ‖1,ρ1 = γ

∫
S

∣∣(PπV )(s)− (PπV
µ)(s)

∣∣ ρ1(ds)

≤ γ
∫
S

∣∣V (s)− V µ(s)
∣∣ d(ρ1Pπ)

dρ0
ρ0(ds)

≤ γ
∥∥∥∥d(ρ1Pπ)

dρ0

∥∥∥∥
∞
‖V − V µ‖1,ρ0 .

By the concentrability conditions of Assumption 5, the right-hand-side can be bounded by

γ A′1‖V − V µ‖1,ρ0 . Now, we can apply the same steps with the roles of TπV and TπV
µ

reversed to see that the same inequality holds for ‖TπV −TπV µ‖1,ρ1 and part (a) is complete.
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For part (b), we partition the state space S into two sets:

S+ =
{
s ∈ S : (T dJ)(s) ≥ (T dV µ)(s)

}
and S- =

{
s ∈ S : (T dJ)(s) < (T dV µ)(s)

}
.

We start with S+. Consider the finite-horizon d-stage MDP with terminal value J and the

same dynamics as our infinite-horizon MDP of interest. Let πJ1 , π
J
2 , . . . , π

J
d be the time-

dependent optimal policy for this MDP. Thus, we have

TπJ1
TπJ2
· · ·TπJd J = T dJ and TπJ1

TπJ2
· · ·TπJd V

µ ≤ T dV µ.

Using similar steps as for part (a), the following hold:∫
S+

[
(T dJ)(s)− (T dV µ)(s)

]
ρ1(ds) ≤

∫
S+

[
(T dT hµ V )(s)− (TπJ1

TπJ2
· · ·TπJd T

h
µ V

µ)(s)
]
ρ1(ds)

≤ γd+h

∫
S+

∣∣V (s)− V µ(s)
∣∣ d(ρ1PπJ1

PπJ2
· · ·PπJd P

h
µ )

dρ0
ρ0(ds)

≤ γd+hA′d+h

∫
S+

∣∣V (s)− V µ(s)
∣∣ ρ0(ds).

Now, using the optimal policy with respect to the d-stage MDP with terminal condition

V µ, we can repeat these steps to show that∫
S-

[
(T dV µ)(s)− (T dJ)(s)

]
ρ1(ds) ≤ γd+hA′d+h

∫
S-

∣∣V (s)− V µ(s)
∣∣ ρ0(ds).

Summing the two inequalities, we obtain:

‖T dJ − T dV µ‖1,ρ1 ≤ γd+hA′d+h

[∫
S+

∣∣V (s)− V µ(s)
∣∣ ρ0(ds) +

∫
S-

∣∣V (s)− V µ(s)
∣∣ ρ0(ds)

]
= γd+hA′d+h ‖V − V µ‖1,ρ0 ,

which completes the proof.

B.3 Additional Technical Lemmas

Lemma B.1 (Section 4, Corollary 2 of Haussler [1992]). Let G be a set of functions from

X to [0, B] with pseudo-dimension dG <∞. Then for all 0 < ε ≤ B, it holds that

P

(
sup
g∈G

∣∣∣∣ 1

m

m∑
i=1

g(X(i))−E
[
g(X)

]∣∣∣∣ > ε

)
≤ 8

(
32eB

ε
log

32eB

ε

)dG

exp

(
− ε2m

64B2

)
, (B.3)

where X(i) are i.i.d. draws from the distribution of the random variable X.

Lemma B.2. Consider a policy µ ∈ Π and suppose each si is sampled i.i.d. from ρ0.

Define initial states sij0 = si for all j. Analogous to Step 5 of the algorithm and Assumption

1, let:

Ŷ (si) =
1

M0

M0∑
j=1

∞∑
t=0

γt r(sijt , µ(sijt )) and V ∈ arg min
f∈F̄

1

N0

N0∑
i=1

∣∣f(si)− Ŷ (si)
∣∣.
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For δ ∈ (0, 1) and ε ∈ (0, Vmax), if the number of sampled states N0 satisfies the condition:

N0 ≥
(

32Vmax

ε

)2 [
log

32

δ
+ 2dF̄ log

64eVmax

ε

]
=: Γa(ε, δ),

and the number of rollouts performed from each state M0 satisfies:

M0 ≥ 8

(
Vmax

ε

)2

log
8N0

δ
=: Γb(ε, δ),

then we have the following bound on the error of the value function approximation:

‖V − V µ‖1,ρ0 ≤ min
f∈F̄
‖f − V µ‖1,ρ0 + ε,

with probabilty at least 1− δ.

Proof. Recall that the estimated value function V satisfies

V ∈ arg min
f∈F̂

1

N0

N0∑
i=1

∣∣∣∣∣f(si)− 1

M0

M0∑
j=1

[
V π(si0) + ξj(si0)

]∣∣∣∣∣,
where for each i, the terms ξj(si0) are i.i.d. mean zero error. The inner summation over j is

an equivalent way to write Ŷ (si0). Noting that the rollout results V µ(si0)+ξj(si0) ∈ [0, Vmax],

we have by Hoeffding’s inequality followed by a union bound:

P
(

max
i

∣∣Ŷ (si0)− V µ(si0)
∣∣ > ε

)
≤ N0 ∆1(ε,M0), (B.4)

where ∆1(ε,M0) = 2 exp
(
−2M0 ε

2/V 2
max

)
. Define the function

∆2(ε,N0) = 8

(
32eVmax

ε
log

32eVmax

ε

)dF̄

exp

(
− ε2N0

64V 2
max

)
,

representing the right-hand-side of the bound in Lemma B.1 with B = Vmax and m = N0.

Next, we define the loss minimizing function f∗ ∈ arg minf∈F̄ ‖f−V µ‖1,ρ0 . By Lemma B.1,

the probabilities of the events{∣∣∣∣‖V − V µ‖1,ρ0 −
1

N0

N0∑
i=1

∣∣V (si)− V µ(si)
∣∣∣∣∣∣ > ε

4

}
and

{∣∣∣∣‖f∗ − V µ‖1,ρ0 −
1

N0

N0∑
i=1

∣∣f∗(si)− V µ(si)
∣∣∣∣∣∣ > ε

4

} (B.5)

are each bounded by ∆2(ε/4, N0). Also, it follows by the definition of V that

1

N0

N0∑
i=1

∣∣V (si)− Ŷ (si)
∣∣ ≤ 1

N0

N0∑
i=1

∣∣f∗(si)− Ŷ (si)
∣∣.

Therefore, using (B.4) twice and (B.5) once, we have by a union bound that the inequality

‖V − V µ‖1,ρ0 ≤ minf∈F̄ ‖f − V µ‖1,ρ0 + ε
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happens with probability greater than 1 − 2N0 ∆1(ε/4,M0) − 2 ∆2(ε/4, N0). We then

choose N0 so that ∆2(ε/4, N0) = δ/4 (following Haussler [1992], we utilize the inequal-

ity log(a log a) < 2 log(a/2) for a ≥ 5). To conclude, we choose M0 so that ∆1(ε/4,M0) =

δ/(4N0).

Lemma B.3 (Sampling Error). Suppose |A| = 2 and let dΠ̄ be the VC-dimension of Π̄.

Consider Z, V ∈ F and suppose each si is sampled i.i.d. from ρ1. Also, let wj be i.i.d.

samples from the standard uniform distribution and g : S × A × [0, 1] → S be a transition

function such that g(s, a, w) has the same distribution as p( ·|s, a). For δ ∈ (0, 1) and

ε ∈ (0, Vmax), if the number of sampled states N1 satisfies the condition:

N1 ≥ 128

(
Vmax

ε

)2 [
log

8

δ
+ dΠ̄ log

eN1

dΠ̄

]
=: Γc(ε, δ,N1),

and the number of sampled transitions L1 satisfies:

L1 ≥ 128

(
Vmax

ε

)2 [
log

8

δ
+ dΠ̄ log

eL1

dΠ̄

]
=: Γd(ε, δ, L1),

then we have the bounds:

(a) sup
π∈Π̄

∣∣∣∣ 1

N1

N1∑
i=1

|Z(si)− (TπV )(si)| − ‖Z − TπV ‖1,ρ1

∣∣∣∣ ≤ ε w.p. at least 1− δ.

(b) sup
π∈Π̄

∣∣∣∣ 1

L1

L1∑
j=1

[
r(si, π(si)) +γV

(
g(si, π(si), wj)

)]
− (TπV )(si)

∣∣∣∣ ≤ ε w.p. at least 1− δ.

Proof. We remark that in both (a) and (b), the term within the absolute value is bounded

between 0 and Vmax. A second remark is that we reformulated the problem using wj to

take advantage of the fact that these random samples do not depend on the policy π. Such

a property is required to invoke [Györfi et al., 2006, Theorem 9.1], a result that [Lazaric

et al., 2016, Lemma 3] depends on. With these two issues in mind, an argument similar to

the proof of [Lazaric et al., 2016, Lemma 3] gives the conclusion for both (a) and (b).

B.4 Proof of Lemma 3

On each iteration of the the algorithm, two random samples are used: S0,k and S1,k. From

S0,k, we obtain Vk and from S1,k we obtain πk+1. Let Sk = (S0,k,S1,k) represent both of

the samples at iteration k. We define:

Gk−1 = σ{S1,S2, . . . ,Sk−1} and G′k−1 = σ{S1,S2, . . . ,Sk−1,S0,k}.

Due to the progression of the algorithm with two random samples per iteration, we will

analyze each iteration in two steps. We first separate the two random samples by noting
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that:

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ ‖T dV πk − T dJk‖1,ρ1 + ‖Tπk+1

Vk − Tπk+1
V πk‖1,ρ1

+ ‖T dJk − Tπk+1
Vk‖1,ρ1

≤ (γA′1 + γd+hA′d+h) ‖Vk − V πk‖1,ρ0 + ‖T dJk − Tπk+1
Vk‖1,ρ1 ,

(B.6)

where the first inequality follows by adding and subtracting terms and the triangle inequality

while the second inequality follows by Lemma 2. Now, we may analyze the first term on

the right-hand-side conditional on Gk−1 and the second term conditional on G′k−1.

As it is currently stated, Lemma B.2 gives an unconditional probability for a fixed

policy µ. However, since S0,k is independent from Gk−1 and πk is Gk−1-measurable, we

can utilize Lemma B.2 in a conditional setting using a well-known property of conditional

expectations [Resnick, 2013, Property 12, Section 10.3]. This property will be repeatedly

used in this proof (without further mention). We obtain that for a sample size N0 ≥
Γa(ε′/(γA′1 + γd+hA′d+h), δ′),

P
(
‖Vk − V πk‖1,ρ0 > min

f∈F̄
‖f − V πk‖1,ρ0 + ε′/(γA′1 + γd+hA′d+h)

∣∣Gk−1

)
≤ δ′. (B.7)

It remains for us to analyze the error of the second term ‖T dJk−Tπk+1
Vk‖1,ρ1 . By part (a)

of Lemma B.3 with Z = T dJk and V = Vk, if N1 ≥ Γc(ε
′, δ′, N1) and si are sampled i.i.d.

from ρ1, we have

P

(∣∣∣∣ 1

N1

N1∑
i=1

∣∣(T dJk)(si)− (Tπk+1
Vk)(s

i)
∣∣− ∥∥T dJk − Tπk+1

Vk
∥∥

1,ρ1

∣∣∣∣ > ε′
∣∣∣G′k−1

)
≤ δ′. (B.8)

The term (Tπk+1
Vk)(s

i) is approximated using L1 samples. Part (b) of Lemma B.3 along

with a union bound shows that if L1 ≥ Γd(ε′, δ′/N1, L1), then

P
(

max
i

∣∣Q̂k(si, πk+1(si))− (Tπk+1
Vk)(s

i)
∣∣ > ε′

∣∣G′k−1

)
≤ δ′. (B.9)

Similarly, by Assumption 3, if the number of iterations of MCTS M1 exceeds m(ε′, δ′/N1),

we can take a union bound to arrive at

P
(

max
i

∣∣Ûk(si)− (T dJk)(s
i)
∣∣ > ε′

∣∣∣G′k−1

)
≤ δ′. (B.10)

The maximum over i can be replaced with an average over theN1 samples and the conclusion

of the last two bounds would remain unchanged. Since πk+1 is assumed to optimize a

quantity involving Ûk and Q̂k, we want to relate this back to ‖T dJk−Tπk+1
Vk‖1,ρ1 . Indeed,

taking expectation of both sides of inequalities (B.8)–(B.10) and then combining, we obtain

that with probability at least 1− 3δ′,

∥∥T dJk − Tπk+1
Vk
∥∥

1,ρ1
≤ 1

N1

N1∑
i=1

∣∣Ûk(si)− Q̂k(si, πk+1(si))
∣∣+ 3ε′
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≤ 1

N1

N1∑
i=1

∣∣Ûk(si)− Q̂k(si, π̃(si))
∣∣+ 3ε′

where π̃ ∈ arg minπ∈Π̄ ‖T dV πk −TπV πk‖1,ρ1 . Following the same steps in reverse , we have:∥∥T dJk − Tπk+1
Vk
∥∥

1,ρ1
≤ min

π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + 6ε′, (B.11)

with probability at least 1 − 6 δ′. Finally, we take expectation of both sides of (B.7) and

then combine with (B.6) and (B.11) while setting ε′ = ε/7 and δ′ = δ/7 to obtain

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ (γA′1 + γd+hA′d+h) min

f∈F̄
‖f − V πk‖1,ρ0

+ min
π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + ε

with probability at least 1− δ.

B.5 Proof of Theorem 1

This proof synthesizes the previous lemmas. From the definition of D0(Π̄, F̄) and Dd1(Π̄)

from the main paper, we note that if the sample size assumptions of Lemma 3 are satisfied,

‖T dV πk−Tπk+1
V πk‖1,ρ1 ≤ B′γ D0(Π̄, F̄) + Dd1(Π̄) + ε, (B.12)

with probability at least 1 − δ. This removes any dependence on the iteration k from the

right-hand-side. We now integrate all results with Lemma 1 in order to find a bound on

the suboptimality ‖V ∗ − V πK‖1,ν . Consider the distribution Λν,k, as defined in Lemma 1,

which needs to be related to ν. We can use the power series expansion to write:

Λν,k = ν (Pπ∗)
K−k

∞∑
i=0

(γPπk)i.

For a fixed i, the measure ν is transformed by applying π∗ a total of K − k times and then

πk a total of i times. We see that the summation term on the right-hand-side of Lemma 1

can be upper-bounded in the following way:

K∑
k=1

γK−k
∥∥T dV πk−1 − Tπk V

πk−1
∥∥

1,Λν,k

≤
(K−1∑
j=0

∞∑
i=0

γj+iAj+i

)
max
k≤K

∥∥T dV πk−1 − Tπk V
πk−1

∥∥
1,ρ1

,

where we use Assumption 5 with m = K − k + i, maximize over k for the loss term, and

then re-index with j = K − k. The coefficient in parentheses can be upper-bounded by Bγ

(since all Aj+i are nonnegative). Finally, we use (B.12) and then a union bound over the

K iterations to conclude the statement of the theorem.
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C Implementation Details

C.1 Neural Network Architecture

The policy and value function approximations use fully-connected neural networks with five

and two hidden layers, respectively, and SELU (scaled exponential linear unit) activation

[Klambauer et al., 2017]. The policy network contains two sets of outputs: (1) one of seven

actions (no action, normal attack, move, skill 1, skill 2, skill 3, and heal) and (2) a two-

dimensional direction parameter used for the action. The first two hidden layers are shared

and have 120 and 100 hidden units, while each of the two outputs corresponds to a set of

three hidden layers with 80, 70, and 50 hidden units. The value function approximation

uses a fully-connected network with 128 hidden units in the first layer and 96 hidden units

in the second layer. As mentioned in the main paper, this architecture is consistent across

all agents whenever policy and/or value networks are needed.

C.2 Features of the State

As shown in Table 1, the state of the game is represented by 41-dimensional feature vector,

which was constructed using the output from the game engine and API. The features consists

of basic attributes of the two heroes, the computer-controlled units, and structures. The

feature lists also have information on the relative positions of the other units and structures

with respect to the hero controlled by algorithm.

Table 1: State Feature List

No. Feature Dimensions

1 Location of Hero 1 2
2 Location of Hero 2 2
3 HP of Hero 1 1
4 HP of Hero 2 1
5 Hero 1 skill cooldowns 5
6 Hero 2 skill cooldowns 5
7 Direction to enemy hero 3
8 Direction to enemy tower 4
9 Direction to enemy minion 3
10 Enemy tower HP 1
11 Enemy minion HP 1
12 Direction to the spring 3
13 Total HP of allied minions 1
14 Enemy’s tower attacking Hero 1 3
15 Hero 1 in range of enemy towers 3
16 Hero 2 in range of enemy towers 3
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C.3 Tree Search Details

We provide some more information regarding the implementation of feedback-based tree

search. A major challenge in implementing in King of Glory is that the game engine can

only move forward, meaning that our sampled states are not i.i.d. and instead follow the

trajectory of the policy induced by MCTS. However, to decrease the correlation between

visited states, we inject random movements and random switches to the internal AI policy

in order to move to a “more random” next state. Rollouts are performed on separate

processors to enable tree search in a game engine that cannot rewind. All experiments use

the c4.2xlarge instances on Amazon Web Services, and we utilized parallelization across

four cores within each call to MCTS.
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