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Abstract
Inspired by recent successes of Monte-Carlo tree
search (MCTS) in a number of artificial intelli-
gence (AI) application domains, we propose a
reinforcement learning (RL) technique that itera-
tively applies MCTS on batches of small, finite-
horizon versions of the original infinite-horizon
Markov decision process. The terminal condition
of the finite-horizon problems, or the leaf-node
evaluator of the decision tree generated by MCTS,
is specified using a combination of an estimated
value function and an estimated policy function.
The recommendations generated by the MCTS
procedure are then provided as feedback in order
to refine, through classification and regression,
the leaf-node evaluator for the next iteration. We
provide the first sample complexity bounds for a
tree search-based RL algorithm. In addition, we
show that a deep neural network implementation
of the technique can create a competitive AI agent
for the popular multi-player online battle arena
(MOBA) game King of Glory.

1. Introduction
Monte-Carlo tree search (MCTS), introduced in Coulom
(2006) and surveyed in detail by Browne et al. (2012), has re-
ceived attention in recent years for its successes in gameplay
artificial intelligence (AI), culminating in the Go-playing
AI AlphaGo (Silver et al., 2016). MCTS seeks to iteratively
build the decision tree associated with a given Markov deci-
sion process (MDP) so that attention is focused on “impor-
tant” areas of the state space, assuming a given initial state
(or root node of the decision tree). The intuition behind
MCTS is that if rough estimates of state or action values are
given, then it is only necessary to expand the decision tree
in the direction of states and actions with high estimated
value. To accomplish this, MCTS utilizes the guidance of
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leaf-node evaluators (either a policy function (Chaslot et al.,
2006) rollout, a value function evaluation (Campbell et al.,
2002; Enzenberger, 2004), or a mixture of both (Silver et al.,
2016)) to produce estimates of downstream values once the
tree has reached a certain depth (Browne et al., 2012). The
information from the leaf-nodes are then backpropagated
up the tree. The performance of MCTS depends heavily
on the quality of the policy/value approximations (Gelly &
Silver, 2007), and at the same time, the successes of MCTS
in Go show that MCTS improves upon a given policy when
the policy is used for leaf evaluation, and in fact, it can
be viewed as a policy improvement operator (Silver et al.,
2017). In this paper, we study a new feedback-based frame-
work, wherein MCTS updates its own leaf-node evaluators
using observations generated at the root node.

MCTS is typically viewed as an online planner, where a
decision tree is built starting from the current state as the
root node (Chaslot et al., 2006; 2008; Hingston & Masek,
2007; Maı̂trepierre et al., 2008; Cazenave, 2009; Méhat &
Cazenave, 2010; Gelly & Silver, 2011; Gelly et al., 2012;
Silver et al., 2016). The standard goal of MCTS is to recom-
mend an action for the root node only. After the action is
taken, the system moves forward and a new tree is created
from the next state (statistics from the old tree may be par-
tially saved or completely discarded). MCTS is thus a “local”
procedure (in that it only returns an action for a given state)
and is inherently different from value function approxima-
tion or policy function approximation approaches where a
“global” policy (one that contains policy information about
all states) is built. In real-time decision-making applications,
it is more difficult to build an adequate “on-the-fly” local
approximation than it is to use pre-trained global policy
in the short amount of time available for decision-making.
For games like Chess or Go, online planning using MCTS
may be appropriate, but in games where fast decisions are
necessary (e.g., Atari or MOBA video games), tree search
methods are too slow (Guo et al., 2014). The proposed
algorithm is intended to be used in an off-policy fashion dur-
ing the reinforcement learning (RL) training phase. Once
the training is complete, the policies associated with leaf-
node evaluation can be implemented to make fast, real-time
decisions without any further need for tree search.

Main Contributions. These characteristics of MCTS moti-
vate our proposed method, which attempts to leverage the
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local properties of MCTS into a training procedure to iter-
atively build global policy across all states. The idea is to
apply MCTS on batches of small, finite-horizon versions
of the original infinite-horizon Markov decision process
(MDP). A rough summary is as follows: (1) initialize an
arbitrary value function and a policy function; (2) start (pos-
sibly in parallel) a batch of MCTS instances, limited in
search-depth, initialized from a set of sampled states, while
incorporating a combination of the value and policy function
as leaf-node evaluators; (3) update both the value and policy
functions using the latest MCTS root node observations;
(4) Repeat starting from step (2). This method exploits
the idea that an MCTS policy is better than either of the
leaf-node evaluator policies alone (Silver et al., 2016), yet
improved leaf-node evaluators also improve the quality of
MCTS (Gelly & Silver, 2007). The primary contributions
of this paper are summarized below.

1. We propose a batch, MCTS-based RL method that
operates on continuous state, finite action MDPs and
exploits the idea that leaf-evaluators can be updated
to produce a stronger tree search using previous tree
search results. Function approximators are used to
track policy and value function approximations, where
the latter is used to reduce the length of the tree search
rollout (oftentimes, the rollout of the policy becomes a
computational bottle-neck in complex environments).

2. We provide a full sample complexity analysis of the
method and show that with large enough sample sizes
and sufficiently large tree search effort, the perfor-
mance of the estimated policies can be made close to
optimal, up to some unavoidable approximation error.
To our knowledge, batch MCTS-based RL methods
have not been theoretically analyzed.

3. An implementation of the feedback-based tree search
algorithm using deep neural networks is tested on
the recently popular MOBA game King of Glory (a
North American version of the same game is titled
Arena of Valor). The result is a competitive AI agent
for the 1v1 mode of the game.

2. Related Work
The idea of leveraging tree search during training was first
explored by Guo et al. (2014) in the context of Atari games,
where MCTS was used to generate offline training data for a
supervised learning (classification) procedure. The authors
showed that by using the power of tree search offline, the
resulting policy was able to outperform the deep Q-network
(DQN) approach of (Mnih et al., 2013). A natural next step
is to repeatedly apply the procedure of Guo et al. (2014).
In building AlphaGo Zero, Silver et al. (2017) extends the
ideas of Guo et al. (2014) into an iterative procedure, where

the neural network policy is updated after every episode
and then reincorporated into tree search. The technique was
able to produce a superhuman Go-playing AI (and improves
upon the previous AlphaGo versions) without any human
replay data.

Our proposed algorithm is a provably near-optimal variant
(and in some respects, generalization) of the AlphaGo Zero
algorithm. The key differences are the following: (1) our
theoretical results cover a continuous, rather than finite, state
space setting, (2) the environment is a stochastic MDP rather
than a sequential deterministic two player game, (3) we use
batch updates, (4) the feedback of previous results to the
leaf-evaluator manifests as both policy and value updates
rather than just the value (as Silver et al. (2017) does not
use policy rollouts).

Anthony et al. (2017) proposes a general framework called
expert iteration that combines supervised learning with tree
search-based planning. The methods described in Guo et al.
(2014), Silver et al. (2017), and the current paper can all
be (at least loosely) expressed under the expert iteration
framework. However, no theoretical insights were given
in any of these previous works and our paper intends to
fill this gap by providing a full theoretical analysis of an
iterative, MCTS-based RL algorithm. Our analysis relies
on the concentrability coefficient idea of Munos (2007) for
approximate value iteration and builds upon the work on
classification based policy iteration (Lazaric et al., 2016),
approximate modified policy iteration (Scherrer et al., 2015),
and fitted value iteration (Munos & Szepesvári, 2008).

Sample complexity results for MCTS are relatively sparse.
Teraoka et al. (2014) gives a high probability upper bound
on the number of playouts needed to achieve ε-accuracy
at the root node for a stylized version of MCTS called
FindTopWinner. More recently, Kaufmann & Koolen
(2017) provided high probability bounds on the sample
complexity of two other variants of MCTS called UGapE-
MCTS and LUCB-MCTS. In this paper, we do not require any
particular implementation of MCTS, but make a generic
assumption on its accuracy that is inspired by these results.

3. Problem Formulation
Consider a discounted, infinite-horizon MDP with a con-
tinuous state space S and finite action space A. For all
(s, a) ∈ S×A, the reward function r : S×A → R satisfies
r(s, a) ∈ [0, Rmax]. The transition kernel, which describes
transitions to the next state given current state s and action a,
is written p( ·|s, a) — a probability measure over S . Given
a discount factor γ ∈ [0, 1), the value function V π of a
policy π : S → A starting in s = s0 ∈ S is given by

V π(s) = E

[ ∞∑

t=0

γt r(st, πt(st))

]
, (1)
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where st is the state visited at time t. Let Π be the set of
all stationary, deterministic policies (i.e., mappings from
state to action). The optimal value function is obtained by
maximizing over all policies: V ∗(s) = supπ∈Π V

π(s).

Both V π and V ∗ are bounded by Vmax = Rmax/(1−γ). We
let F be the set of bounded, real-valued functions mapping
S to [0, Vmax]. We frequently make use of the shorthand
operator Tπ : F → F , where the quantity (TπV )(s) is be
interpreted as the reward gained by taking an action accord-
ing to π, receiving the reward r(s, π(s)), and then receiving
an expected terminal reward according to the argument V :

(TπV )(s) = r(s, π(s)) + γ

∫

S
V (s̃) p(ds̃|s, π(s)).

It is well-known that V π is the unique fixed-point of Tπ,
meaning TπV π = V π (Puterman, 2014). The Bellman oper-
ator T : F → F is similarly defined using the maximizing
action:

(TV )(s) = max
a∈A

[
r(s, a) + γ

∫

S
V (s̃) p(ds̃|s, a)

]
.

It is also known that V ∗ is the unique fixed-point of T
(Puterman, 2014) and that acting greedily with respect to
the optimal value function V ∗ produces an optimal policy:

π∗(s) ∈ arg max
a∈A

[
r(s, a) + γ

∫

S
V ∗(s̃) p(ds̃|s, a)

]
.

We use the notation T d to mean the d compositions of the
mapping T , e.g., T 2V = T (TV ). Lastly, let V ∈ F and let
ν be a distribution over S . We define left and right versions
of an operator Pπ:

(PπV )(s) =

∫

S
V (s̃) p(ds̃|s, π(s)),

(νPπ)(ds̃) =

∫

S
p(ds̃|s, π(s)) ν(ds).

Note that PπV ∈ F and µPπ is another distribution over S .

4. Feedback-Based Tree Search Algorithm
We now formally describe the proposed algorithm. The
parameters are as follows. Let Π̄ ⊆ Π be a space of approx-
imate policies and F̄ ⊆ F be a space of approximate value
functions (e.g., classes of neural network architectures). We
let πk ∈ Π̄ be the policy function approximation (PFA)
and Vk ∈ F̄ be the value function approximation (VFA) at
iteration k of the algorithm. Parameters subscripted with ‘0’
are used in the value function approximation (regression)
phase and parameters subscripted with ‘1’ are used in the
tree search phase. The full description of the procedure is
given in Figure 1, using the notation Ta = Tπa , where πa
maps all states to the action a ∈ A. We now summarize the

two phases, VFA (Steps 2 and 3) and MCTS (Steps 4, 5,
and 6).

VFA Phase. Given a policy πk, we wish to approximate
its value by fitting a function using subroutine Regress on
N0 states sampled from a distribution ρ0. Each call to MCTS

requires repeatedly performing rollouts that are initiated
from leaf-nodes of the decision tree. Because repeating full
rollouts during tree search is expensive, the idea is that a
VFA obtained from a one-time regression on a single set
of rollouts can drastically reduce the computation needed
for MCTS. For each sampled state s, we estimate its value
using M0 full rollouts, which can be obtained using the
absorption time formulation of an infinite horizon MDP
(Puterman, 2014, Proposition 5.3.1).

MCTS Phase. On every iteration k, we sample a set of
N1 i.i.d. states from a distribution ρ1 over S. From each
state, a tree search algorithm, denoted MCTS, is executed for
M1 iterations on a search tree of maximum depth d. We
assume here that the leaf evaluator is a general function
of the PFA and VFA from the previous iteration, πk and
Vk, and it is denoted as a “subroutine” LeafEval. The
results of the MCTS procedure are piped into a subroutine
Classify, which fits a new policy πk+1 using classification
(from continuous states to discrete actions) on the new data.
As discussed more in Assumption 4, Classify uses L1

observations (one-step rollouts) to compute a loss function.

1. Sample a set of N0 i.i.d. states S0,k from ρ0 and N1 i.i.d.
states S1,k from ρ1.

2. Compute a sample average Ŷk(s) of M0 independent roll-
outs of πk for each s ∈ S0,k. See Assumption 1.

3. Use Regress on the set {Ŷk(s) : s ∈ S0,k} to obtain a
value function Vk ∈ F̄ . See Assumption 1.

4. From each s ∈ S1,k, run MCTS with parameters M1, d,
and evaluator LeafEval. Return estimated value of each s,
denoted Ûk(s). See Assumptions 2 and 3.

5. For each s ∈ S1,k and a ∈ A, create estimate Q̂k(s, a) ≈
(TaVk)(s) by averaging L1 transitions from p( · |s, a). See
Assumption 4.

6. Use Classify to solve a cost-sensitive classification prob-
lem and obtain the next policy πk+1 ∈ Π̄. Costs are measured
using {Ûk(s) : s ∈ S1,k} and {Q̂k(s, πk+1(s)) : s ∈ S1,k}.
See Assumption 4. Increment k and return to Step 1.

Figure 1. Feedback-Based Tree Search Algorithm

The illustration given in Figure 2 shows the interactions (and
feedback loop) of the basic components of the algorithm:
(1) a set of tree search runs initiated from a batch of sampled
states (triangles), (2) leaf evaluation using πk and Vk is used
during tree search, and (3) updated PFA and VFA πk+1 and
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Figure 2. Illustration of the Feedback Loop

Vk+1 using tree search results.

5. Assumptions
Figure 1 shows the algorithm written with general subrou-
tines Regress, MCTS, LeafEval, and Classify, allowing
for variations in implementation suited for different prob-
lems. However, our analysis assumes specific choices and
properties of these subroutines, which we describe now. The
regression step solves a least absolute deviation problem to
minimize an empirical version of

‖f − V πk‖1, ρ0 =

∫

S
|f(s)− V πk(s)|ρ0(ds),

as described in the first assumption.

Assumption 1 (Regress Subroutine). For each si ∈ S0,k,
define si = sij0 for all j and for each t, the state sijt+1 is
drawn from p( ·|sijt , πk(sijt )). Let Ŷk(si) be an estimate of
V πk(si) using M0 rollouts and Vk, the VFA resulting from
Regress, obtained via least absolute deviation regression:

Ŷk(si0) =
1

M0

M0∑

j=1

∞∑

t=0

γt r(sijt , πk(sijt )), (2)

Vk ∈ arg min
f∈F̄

1

N0

N0∑

i=1

∣∣f(si)− Ŷk(si)
∣∣. (3)

There are many ways that LeafEval may be defined. The
standard leaf evaluator for MCTS is to simulate a default
or “rollout” policy (Browne et al., 2012) until the end of
the game, though in related tree search techniques, authors
have also opted for a value function approximation (Camp-
bell et al., 2002; Enzenberger, 2004). It is also possible to
combine the two approximations: Silver et al. (2016) uses
a weighted combination of a full rollout from a pre-trained
policy and a pre-trained value function approximation.

Assumption 2 (LeafEval Subroutine). Our approach uses
a partial rollout of length h ≥ 0 and a value estimation at

the end. LeafEval produces unbiased observations of

Jk(s) = E

[
h−1∑

t=0

γtr(s̃t, πk(s̃t)) + γh Vk(s̃h)

]
, (4)

where s̃0 = s.

Assumption 2 is motivated by our MOBA game, on which
we observed that even short rollouts (as opposed to simply
using a VFA) are immensely helpful in determining local
outcomes (e.g., dodging attacks, eliminating minions, health
regeneration). At the same time, we found that numerous
full rollouts simulated using the relatively slow and complex
game engine is far too time-consuming within tree search.

We also need to make an assumption on the sample com-
plexity of MCTS, of which there are many possible variations
(Chaslot et al., 2006; Coulom, 2006; Kocsis & Szepesvári,
2006; Gelly & Silver, 2007; Couëtoux et al., 2011a;b; Al-
Kanj et al., 2016; Jiang et al., 2017). Particularly relevant to
our continuous-state setting are tree expansion techniques
called progressive widening and double progressive widen-
ing, proposed in Couëtoux et al. (2011a), which have proven
successful in problems with continuous state/action spaces.
To our knowledge, analysis of the sample complexity is only
available for stylized versions of MCTS on finite problems,
like Teraoka et al. (2014) and Kaufmann & Koolen (2017).
Theorems from these papers show upper bounds on the num-
ber of iterations needed so that with high probability (greater
than 1 − δ), the value at the root node is accurate within
a tolerance of ε. Fortunately, there are ways to discretize
continuous state MDPs that enjoy error guarantees, such as
Bertsekas (1975), Dufour & Prieto-Rumeau (2012), or Saldi
et al. (2017). These error bounds can be combined with the
MCTS guarantees of Teraoka et al. (2014) and Kaufmann
& Koolen (2017) to produce a sample complexity bound
for MCTS on continuous problems. The next assumption
captures the essence of these results (and if desired, can
be made precise for specific implementations through the
references above).

Assumption 3 (MCTS Subroutine). Consider a d-stage,
finite-horizon subproblem of (1) with terminal value func-
tion J and initial state is s. Let the result of MCTS be denoted
Û(s). We assume that there exists a function m(ε, δ), such
that if m(ε, δ) iterations of MCTS are used, the inequality
|Û(s)−(T dJ)(s)| ≤ ε holds with probability at least 1−δ.

Now, we are ready to discuss the Classify subroutine.
Our goal is to select a policy π ∈ Π̄ that closely mimics the
performance of the MCTS result, similar to practical imple-
mentations in existing work (Guo et al., 2014; Silver et al.,
2017; Anthony et al., 2017). The question is: given a candi-
date π, how do we measure “closeness” to the MCTS policy?
We take inspiration from previous work in classification-
based RL and use a cost-based penalization of classification
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errors (Langford & Zadrozny, 2005; Li et al., 2007; Lazaric
et al., 2016). Since Û(si) is an approximation of the perfor-
mance of the MCTS policy, we should try to select a policy
π with similar performance. To estimate the performance
of some candidate policy π, we use a one-step rollout and
evaluate the downstream cost using Vk.

Assumption 4 (Classify Subroutine). For each si ∈ S1,k

and a ∈ A, let Q̂k(si, a) be an estimate of the value of state-
action pair (si, a) using L1 samples.

Q̂k(si, a) =
1

L1

L1∑

j=1

[
r(si, a) + γVk(s̃j(a))

]
.

Let πk+1, the result of Classify, be obtained by minimiz-
ing the discrepancy between the MCTS result Ûk and the
estimated value of the policy under approximations Q̂k:

πk+1 ∈ arg min
π∈Π̄

1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(si, π(si))
∣∣,

where s̃j(a) are i.i.d. samples from p(· | si, a).

An issue that arises during the analysis is that even though
we can control the distribution from which states are sam-
pled, this distribution is transformed by the transition kernel
of the policies used for rollout/lookahead. Let us now intro-
duce the concentrability coefficient idea of Munos (2007)
(and used subsequently by many authors, including Munos
& Szepesvári (2008), Lazaric et al. (2016), Scherrer et al.
(2015), and Haskell et al. (2016)).

Assumption 5 (Concentrability). Consider any sequence
of m policies µ1, µ2, . . . , µm ∈ Π. Suppose we start in
distribution ν and that the state distribution attained after
applying the m policies in succession, νPµ1

Pµ2
· · ·Pµm ,

is absolutely continuous with respect to ρ1. We define an
m-step concentrability coefficient

Am = sup
µ1,...,µm

∥∥∥∥
dνPµ1

Pµ2
· · ·Pµm

dρ1

∥∥∥∥
∞
,

and assume that
∑∞
i,j=0 γ

i+jAi+j < ∞. Similarly, we
assume ρ1Pµ1

Pµ2
· · ·Pµm , is absolutely continuous with

respect to ρ0 and assume that

A′m = sup
µ1,...,µm

∥∥∥∥
dρ1Pµ1Pµ2 · · ·Pµm

dρ0

∥∥∥∥
∞

is finite for any m.

The concentrability coefficient describes how the state dis-
tribution changes after m steps of arbitrary policies and how
it relates to a given reference distribution. Assumptions 1-5
are used for the remainder of the paper.

6. Sample Complexity Analysis
Before presenting the sample complexity analysis, let us
consider an algorithm that generates a sequence of poli-
cies {π0, π1, π2, . . .} satisfying Tπk+1

T d−1V πk = T dV πk

with no error. It is proved in Bertsekas & Tsitsiklis (1996,
pp. 30-31) that πk → π∗ in the finite state and action set-
ting. Our proposed algorithm in Figure 1 can be viewed as
approximately satisfying this iteration in a continuous state
space setting, where MCTS plays the role of T d and eval-
uation of πk uses a combination of accurate rollouts (due
to Classify) and fast VFA evaluations (due to Regress).
The sample complexity analysis requires the effects of all
errors to be systematically analyzed.

For some K ≥ 0, our goal is to develop a high probability
upper bound on the expected suboptimality, over an initial
state distribution ν, of the performance of policy πK , writ-
ten as ‖V ∗ − V πK‖1,ν . Because there is no requirement to
control errors with probability one, bounds in ‖·‖1,ν tend to
be much more useful in practice than ones in the traditional
‖ · ‖∞. Notice that:

1

N1

N1∑

i=1

∣∣Ûk(si)− Q̂k(si, πk+1(si))
∣∣

≈
∥∥T dV πk − Tπk+1

V πk
∥∥

1,ρ1
,

(5)

where the left-hand-side is the loss function used in the
classification step from Assumption 4. It turns out that
we can relate the right-hand-side (albeit under a different
distribution) to the expected suboptimality afterK iterations
‖V ∗ − V πK‖1,ν , as shown in the following lemma. Full
proofs of all results are given in the supplementary material.

Lemma 1 (Loss to Performance Relationship). The ex-
pected suboptimality of πK can be bounded as follows:

‖V ∗−V πK‖1,ν ≤ γKd ‖V ∗ − V π0‖∞

+

K∑

k=1

γ(K−k)d
∥∥T dV πk−1 − Tπk V πk−1

∥∥
1,Λν,k

where Λν,k = ν (Pπ∗)
(K−k)d

[
I − (γPπk)

]−1
.

From Lemma 1, we see that the expected suboptimal-
ity at iteration K can be upper bounded by the subopti-
mality of the initial policy π0 (in maximum norm) plus
a discounted and re-weighted version of ‖T dV πk−1 −
Tπk V

πk−1‖1,ρ1 accumulated over prior iterations. Hypo-
thetically, if (T dV πk−1)(s) − (Tπk V

πk−1)(s) were small
for all iterations k and all states s, then the suboptimality
of πK converges linearly to zero. Hence, we may refer to
‖T dV πk−1 − Tπk V πk−1‖1,ρ1 as the “true loss,” the target
term to be minimized at iteration k. We now have a starting
point for the analysis: if (5) can be made precise, then the
result can be combined with Lemma 1 to provide an explicit
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∥∥T d V πk − Tπk+1
V πk

∥∥
1, ρ1

∥∥V k − V πk
∥∥
1, ρ0

∥∥T dJk − Tπk+1
Vk

∥∥
1, ρ1

state space sampling

approximation over F̄ B′
γ min
f∈F̄

‖f − V πk‖1, ρ0

additional error ǫ

min
π∈Π̄

‖T d V πk − Tπ V
πk‖1, ρ1

state/rollout sampling

approximation over Π̄

“true loss of πk+1”
tree search error

Figure 3. Various Errors Analyzed in Lemma 3

bound on ‖V ∗ − V πK‖1,ν . The various errors that we incur
when relating the objective of Classify to the true loss
include the error due to regression using functions in F̄ ; the
error due to sampling the state space according to ρ1; the
error of estimating (TπVk)(s) using the sample average of
one-step rollouts Q̂k(s, π(s)); and of course, the error due
to MCTS.

We now give a series of lemmas that help us carry out
the analysis. In the algorithmic setting, the policy πk is a
random quantity that depends on the samples collected in
previous iterations; however, for simplicity, the lemmas that
follow are stated from the perspective of a fixed policy µ or
fixed value function approximation V rather than πk or Vk.
Conditioning arguments will be used when invoking these
lemmas (see supplementary material).
Lemma 2 (Propagation of VFA Error). Consider a policy
µ ∈ Π and value function V ∈ F . Analogous to (4), let
J = Thµ V . Then, under Assumption 5, we have the bounds:

(a) supπ∈Π̄ ‖TπV − TπV µ‖1,ρ1 ≤ γA′1 ‖V − V µ‖1,ρ0 ,

(b) ‖T dJ − T dV µ‖1,ρ1 ≤ γd+hA′d+h‖V − V µ‖1,ρ0 .

The lemma above addresses the fact that instead of using
V πk directly, Classify and MCTS only have access to the
estimates Vk and Jk = ThπkVk (h steps of rollout with an
evaluation of Vk at the end), respectively. Note that prop-
agation of the error in Vk is discounted by γ or γd+h and
since the lemma converts between ‖ · ‖1,ρ1 and ‖ · ‖1,ρ0 , it
is also impacted by the concentrability coefficients A′1 and
A′d+h.

Let dΠ̄ be the VC-dimension of the class of binary classifiers
Π̄ and let dF̄ be the pseudo-dimension of the function class
F̄ . The VC-dimension is a measure of the capacity of Π̄ and
the notion of a pseudo-dimension is a generalization of the
VC-dimension to real-valued functions (see, e.g., Pollard
(1990), Haussler (1992), Mohri et al. (2012) for definitions
of both). Similar to Lazaric et al. (2016) and Scherrer et al.
(2015), we will present results for the case of two actions,
i.e., |A| = 2. The extension to multiple actions is possible
by performing an analysis along the lines of Lazaric et al.
(2016, Section 6). We now quantify the error illustrated in
Figure 3. Define the quantity B′γ = γA′1 + γd+hA′d+h, the
sum of the coefficients from Lemma 2.

Lemma 3. Suppose the regression sample size N0 is

O
(
(VmaxB

′
γ)2 ε−2

[
log(1/δ) + dF̄ log(VmaxB

′
γ/ε)

])

and the sample size M0, for estimating the regression tar-
gets, is

O
(
(VmaxB

′
γ)2 ε−2

[
log(N0/δ)

])
.

Furthermore, there exist constantsC1, C2, C3, andC4, such
that if N1 and L1 are large enough to satisfy

N1 ≥ C1V
2

max ε
−2
[
log(C2/δ) + dΠ̄ log(eN1/dΠ̄)

]
,

L1 ≥ C1V
2

max ε
−2
[
log(C2N1/δ) + dΠ̄ log(eL1/dΠ̄)

]
,

and if M1 ≥ m(C3 ε, C4 δ/N1), then

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ B′γ min

f∈F̄
‖f − V πk‖1,ρ0

+ min
π∈Π̄
‖T dV πk − TπV πk‖1,ρ1 + ε

with probability at least 1− δ.

Sketch of Proof. By adding and subtracting terms, applying
the triangle inequality, and invoking Lemma 2, we see that:

‖T dV πk − Tπk+1
V πk‖1,ρ1 ≤ B′γ ‖Vk − V πk‖1,ρ0
+ ‖T dJk − Tπk+1

Vk‖1,ρ1 ,
Here, the error is split into two terms. The first depends on
the sample S0,k and the history through πk while the second
term depends on the sample S1,k and the history through Vk.
We can thus view πk as fixed when analyzing the first term
and Vk as fixed when analyzing the second term (details in
the supplementary material). The first term ‖Vk−V πk‖1,ρ0
contributes the quantity minf∈F̄ ‖f −V πk‖1,ρ0 in the final
bound with additional estimation error contained within ε.
The second term ‖T dJk−Tπk+1

Vk‖1,ρ1 contributes the rest.
See Figure 3 for an illustration of the main proof steps.

The first two terms on the right-hand-side are related to the
approximation power of F̄ and Π̄ and can be considered
unavoidable. We upper-bound these terms by maximizing
over Π̄, in effect removing the dependence on the random
process πk in the analysis of the next theorem. We define:

D0(Π̄, F̄) = max
π∈Π̄

min
f∈F̄
‖f − V π‖1,ρ0 ,

Dd1(Π̄) = max
π∈Π̄

min
π′∈Π̄

‖T dV π − Tπ′ V π‖1,ρ1 ,
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Figure 4. Screenshot from 1v1 King of Glory

two terms that are closely related to the notion of inherent
Bellman error (Antos et al., 2008; Munos & Szepesvári,
2008; Lazaric et al., 2016; Scherrer et al., 2015; Haskell
et al., 2017). Also, let Bγ =

∑∞
i,j=0 γ

i+jAi+j , which was
assumed to be finite in Assumption 5.

Theorem 1. Suppose the sample size requirements of
Lemma 3 are satisfied with ε/Bγ and δ/K replacing ε and
δ, respectively. Then, the suboptimality of the policy πK
can be bounded as follows:

‖V ∗ − V πK‖1,ν ≤Bγ [B′γ D0(Π̄, F̄) + Dd1(Π̄)]

+ γKd ‖V ∗ − V π0‖∞ + ε,

with probability at least 1− δ.

Search Depth. How should the search depth d be chosen?
Theorem 1 shows that as d increases, fewer iterations K
are needed to achieve a given accuracy; however, the effort
required of tree search (i.e., the function m(ε, δ)) grows
exponentially in d. At the other extreme (d = 1), more iter-
ations K are needed and the “fixed cost” of each iteration
of the algorithm (i.e., sampling, regression, and classifica-
tion — all of the steps that do not depend on d) becomes
more prominent. For a given problem and algorithm param-
eters, these computational costs can each be estimated and
Theorem 1 can serve as a guide to selecting an optimal d.

7. Case Study: King of Glory MOBA AI
We implemented Feedback-Based Tree Search within a new
and challenging environment, the recently popular MOBA
game King of Glory by Tencent (the game is also known
as Honor of Kings and a North American release of the
game is titled Arena of Valor). Our implementation of the
algorithm is one of the first attempts to design an AI for the
1v1 version of this game.

Game Description. In the King of Glory, players are di-
vided into two opposing teams and each team has a base
located on the opposite corners of the game map (similar
to other MOBA games, like League of Legends or Dota 2).
The bases are guarded by towers, which can attack the ene-

mies when they are within a certain attack range. The goal
of each team is to overcome the towers and eventually de-
stroy the opposing team’s “crystal,” located at the enemy’s
base. For this paper, we only consider the 1v1 mode, where
each player controls a primary “hero” alongside less pow-
erful game-controlled characters called “minions.” These
units guard the path to the crystal and will automatically fire
(weak) attacks at enemies within range. Figure 4 shows the
two heroes and their minions; the upper-left corner shows
the map, with the blue and red markers pinpointing the
towers and crystals.

Experimental Setup. The state variable of the system is
taken to be a 41-dimensional vector containing information
obtained directly from the game engine, including hero
locations, hero health, minion health, hero skill states, and
relative locations to various structures. There are 22 actions,
including move, attack, heal, and special skill actions, some
of which are associated with (discretized) directions. The
reward function is designed to mimic reward shaping (Ng
et al., 1999) and uses a combination of signals including
health, kills, damage dealt, and proximity to crystal. We
trained five King of Glory agents, using the hero DiRenJie:

1. The “FBTS” agent is trained using our feedback-based
tree search algorithm for K = 7 iterations of 50 games
each. The search depth is d = 7 and rollout length is
h = 5. Each call to MCTS ran for 400 iterations.

2. The second agent is labeled “NR” for no rollouts. It
uses the same parameters as the FBTS agent except
no rollouts are used. At a high level, this bears some
similarity to the AlphaGo Zero algorithm (Silver et al.,
2017) in a batch setting.

3. The “DPI” agent uses the direct policy iteration tech-
nique of (Lazaric et al., 2016) for K = 10 iterations.
There is no value function and no tree search (due to
computational limitations, more iterations are possible
when tree search is not used).

4. We then have the “AVI” agent, which implements ap-
proximate value iteration (De Farias & Van Roy, 2000;
Van Roy, 2006; Munos, 2007; Munos & Szepesvári,
2008) for K = 10 iterations. This algorithm can be
considered a batch version of DQN (Mnih et al., 2013).

5. Lastly, we consider an “SL” agent trained via super-
vised learning on a dataset of approximately 100,000
state/action pairs of human gameplay data. Notably,
the policy architecture used here is consistent with the
previous agents.

In fact, both the policy and value function approximations
are consistent across all agents; they use fully-connected
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neural networks with five and two hidden layers, respec-
tively, and SELU (scaled exponential linear unit) activation
(Klambauer et al., 2017). The initial policy π0 takes random
actions: move (w.p. 0.5), directional attack (w.p. 0.2), or a
special skill (w.p. 0.3). Besides biasing the move direction
toward the forward direction, no other heuristic informa-
tion is used by π0. MCTS was chosen to be a variant of
UCT (Kocsis & Szepesvári, 2006) that is more amenable to-
ward parallel simulations: instead of using the argmax of the
UCB scores, we sample actions according to the distribution
obtained by applying softmax to the UCB scores.

In the practical implementation of the algorithm, Regress
uses a mean squared error loss while Classify combines
a negative log-likelihood loss with a cosine proximity loss
(due to continuous action parameters; see supplementary
material), differing from the theoretical specifications. Due
to the inability to “rewind” or “fast-forward” the game en-
vironment to arbitrary states, the sampling distribution ρ0

is implemented by first taking random actions (for a ran-
dom number of steps) to arrive at an initial state and then
following πk until the end of the game. To reduce corre-
lation during value approximation, we discard 2/3 of the
states encountered in these trajectories. For ρ1, we follow
the MCTS policy while occasionally injecting noise (in the
form of random actions and random switches to the default
policy) to reduce correlation. During rollouts, we use the
internal AI for the hero DiRenJie as the opponent.

Results. As the game is nearly deterministic, our main test
methodology is to compare the agents’ effectiveness against
a common set of opponents chosen from the internal AIs.
We also added the internal DiRenJie AI as a “sanity check”
baseline agent. To select the test opponents, we played the
internal DiRenJie AI against other internal AIs (i.e., other
heroes) and selected six heroes of the marksman type that
the internal DiRenJie AI is able to defeat. Each of our agents,
including the internal DiRenJie AI, was then played against
every test opponent. Figure 5 shows the length of time, mea-
sured in frames, for each agent to defeat the test opponents
(a value of 20,000 frames is assigned if the opponent won).
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Figure 6. In-game Behavior

Against the set of common opponents, FBTS significantly
outperforms DPI, AVI, SL, and the internal AI. However,
FBTS only slightly outperforms NR on average (which is
perhaps not surprising as NR is the only other agent that
also uses MCTS). Our second set of results help to visual-
ize head-to-head battles played between FBTS and the four
baselines (all of which are won by FBTS): Figure 6 shows
the ratio of the FBTS agent’s gold to its opponent’s gold as
a function of time. Gold is collected throughout the game as
heroes deal damage and defeat enemies, so a ratio above 1.0
(above the red region) indicates good relative performance
by FBTS. As the figure shows, each game ends with FBTS
achieving a gold ratio in the range of [1.25, 1.75].

8. Conclusion & Future Work
In this paper, we provide a sample complexity analysis
for feedback-based tree search, an RL algorithm based on
repeatedly solving finite-horizon subproblems using MCTS.
Our primary methodological avenues for future work are
(1) to analyze a self-play variant of the algorithm and (2)
to consider related techniques in multi-agent domains (see,
e.g., Hu & Wellman (2003)). The implementation of the
algorithm in the 1v1 MOBA game King of Glory provided
us encouraging results against several related algorithms;
however, significant work remains for the agent to become
competitive with humans.
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