Supplements to "The Weighted Kendall and High-order Kernels for Permutations" (ICML 2018)

Yunlong Jiao¹ Jean-Philippe Vert²

Abstract

This is the supplements to the paper "The Weighted Kendall and High-order Kernels for Permutations" (ICML 2018).

1. Proofs of theorems

Proof of Theorem 2. The proof is constructive and the algorithm is summarized in Algorithm 1. C++/R implementation available in the package kernrank at https://github.com/YunlongJiao/kernrank.

The algorithm can be decomposed into three parts. First, we compute $\pi := \sigma' \sigma^{-1}$ by carrying out the inverse and composition of permutations, which can be done in linear time (Line 1). Due to the right-invariance of any concerning kernel, we have $K(\sigma, \sigma') = \kappa(\pi)$ where κ is the corresponding p.d. function:

$$\kappa_U^{@k}(\pi) = \sum_{1 \le i < j \le n} \mathbb{1}_{i \le k} \mathbb{1}_{j \le k} \mathbb{1}_{\pi(i) \le k} \mathbb{1}_{\pi(j) \le k} \mathbb{1}_{\pi(i) < \pi(j)} \,,$$

$$\kappa_U^{\text{add}}(\pi) = \sum_{1 \le i < j \le n} \left(u_i + u_j \right) \left(u_{\pi(i)} + u_{\pi(j)} \right) \mathbb{1}_{\pi(i) < \pi(j)} \,,$$

$$\kappa_U^{\text{mult}}(\pi) = \sum_{1 \le i < j \le n} u_i u_j u_{\pi(i)} u_{\pi(j)} \mathbb{1}_{\pi(i) < \pi(j)} \,,$$

$$\kappa_W^{\text{avg}}(\pi) = \sum_{1 \le i < j \le n} \frac{1}{n} \min\{i, \pi(i)\} \, \mathbb{1}_{\pi(i) < \pi(j)} \,.$$

Second, we register a global variable *s* to record $\kappa(\pi)$ (Line 2) and implement $\kappa(\pi)$ in the function QUICKKAPPA (Lines 3–36). Finally, *s* is updated by calling the function QUICK-KAPPA (Line 37) and then outputted by the algorithm.

```
Algorithm 1 Top-k, average and weighted Kendall kernel with
additive or multiplicative weight
input permutations \sigma, \sigma', size n, u for weighted Kendall kernel
    (optional), k for top-k Kendall kernel (optional)
 1: \pi:=\sigma'\sigma^{-1}
 2: Initialize a global variable s := 0 then define
    function QUICKKAPPA(indices)
 3:
       if length of indices > 1 then
 4:
         pivot := pick any element from indices
 5:
         indhigh, indlow := two empty arrays
 6:
 7:
         cnum, ctop, cmin, cwa, cwb, cww := 0
 8:
         for each i in indices do
 9:
            if \pi(i) < \pi(pivot) then
10:
               Add i to indlow
11:
               cnum += 1
12:
              cmin += \min\{i, \pi(i)\}/n
13:
              ctop += if i \leq k and \pi(i) \leq k then 1 else 0
14:
               cwa += u_i
              cwb += u_{\pi(i)}
15:
16:
               cww += u_i * u_{\pi(i)}
17:
            else
18:
               Add i to indhigh
              switch type of weighted Kendall kernel do
19:
20:
              case STANDARD:
                 s += cnum
21:
22:
               case TOP-k:
23:
                 s += if i < k and \pi(i) < k then ctop else 0
              case AVERAGE:
24:
25:
                 s += cmin
              case ADDITIVE WEIGHT:
26:
27:
                 s \mathrel{+}= cww + cwa \ast u_{\pi(i)} + cwb \ast u_i + cnum \ast
                 u_i * u_{\pi(i)}
               case MULTIPLICATIVE WEIGHT:
28:
                 s \mathrel{+}= cww \ast u_i \ast u_{\pi(i)}
29:
30:
               end switch
31:
            end if
32:
         end for
33:
          QUICKKAPPA(indhigh)
34:
          QUICKKAPPA(indlow)
35:
       end if
36: end function
37: Call QUICKKAPPA([1, n]) to update s
output K(\sigma, \sigma') = s
```

¹University of Oxford, Oxford, UK ²MINES ParisTech & Institut Curie & Ecole Normale Supérieure, PSL Research University, Paris, France. Correspondence to: Jean-Philippe Vert <jeanphilippe.vert@mines-paristech.fr>.

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

Central to the algorithm is the computation of $\kappa(\pi)$. It is based on an idea similar to a quicksort algorithm, where we recursively partition an array into two sub-arrays consisting of greater or smaller values according to a *pivot*, and cumulatively count the contributions between pairs of items with one in each sub-array. Specifically, suppose now π is divided into two sub-arrays $\pi_{indhigh}$ and π_{indlow} where ranks in $\pi_{indhigh}$ are all higher and those in π_{indlow} , now $\kappa(\pi)$ can be decomposed into

 $\kappa(\pi) = \kappa(\pi_{indhigh}) + \kappa(\pi_{indlow}) + c(\pi_{indhigh}, \pi_{indlow}),$

where c characterizes the weighted non-inversion number of π restricted on pairs of items with one in each sub-array. The computation of $c(\pi_{indhigh}, \pi_{indlow})$ depends on specific choice of weight and is depicted in the pseudo-code (Lines 19–30). Notably a single linear-time pass over π is sufficient to compute $c(\pi_{indhigh}, \pi_{indlow})$. By the analysis of deduction typically for a quicksort algorithm, the overall time complexity of our algorithm is on average $O(n \ln(n))$.

In particular, recall that the standard Kendall kernel is merely a special case of the weighted Kendall kernel with constant weight, and hence our algorithm provides an alternative to the efficient algorithm based on merge sort proposed by Knight (1966).

References

Knight, W. R. A computer method for calculating Kendall's tau with ungrouped data. *Journal of the American Statistical Association*, 61(314):436–439, 1966.