
Supplements to “The Weighted Kendall and High-order Kernels for
Permutations” (ICML 2018)

Yunlong Jiao 1 Jean-Philippe Vert 2

Abstract

This is the supplements to the paper “The
Weighted Kendall and High-order Kernels for Per-
mutations” (ICML 2018).

1. Proofs of theorems
Proof of Theorem 2. The proof is constructive and the al-
gorithm is summarized in Algorithm 1. C++/R imple-
mentation available in the package kernrank at https:
//github.com/YunlongJiao/kernrank.

The algorithm can be decomposed into three parts. First, we
compute π := σ′σ−1 by carrying out the inverse and com-
position of permutations, which can be done in linear time
(Line 1). Due to the right-invariance of any concerning ker-
nel, we haveK(σ, σ′) = κ(π) where κ is the corresponding
p.d. function:

κ@kU (π) =
∑

1≤i<j≤n

1i≤k1j≤k1π(i)≤k1π(j)≤k1π(i)<π(j) ,

κadd
U (π) =

∑
1≤i<j≤n

(ui + uj)
(
uπ(i) + uπ(j)

)
1π(i)<π(j) ,

κmult
U (π) =

∑
1≤i<j≤n

uiujuπ(i)uπ(j)1π(i)<π(j) ,

κavg
W (π) =

∑
1≤i<j≤n

1

n
min {i, π(i)}1π(i)<π(j) .

Second, we register a global variable s to record κ(π) (Line
2) and implement κ(π) in the function QUICKKAPPA (Lines
3–36). Finally, s is updated by calling the function QUICK-
KAPPA (Line 37) and then outputted by the algorithm.

1University of Oxford, Oxford, UK 2MINES ParisTech & In-
stitut Curie & Ecole Normale Supérieure, PSL Research Univer-
sity, Paris, France. Correspondence to: Jean-Philippe Vert <jean-
philippe.vert@mines-paristech.fr>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Algorithm 1 Top-k, average and weighted Kendall kernel with
additive or multiplicative weight
input permutations σ, σ′, size n, u for weighted Kendall kernel

(optional), k for top-k Kendall kernel (optional)
1: π := σ′σ−1

2: Initialize a global variable s := 0 then define
3: function QUICKKAPPA(indices)
4: if length of indices > 1 then
5: pivot := pick any element from indices
6: indhigh, indlow := two empty arrays
7: cnum, ctop, cmin, cwa, cwb, cww := 0
8: for each i in indices do
9: if π(i) < π(pivot) then

10: Add i to indlow
11: cnum += 1
12: cmin += min{i, π(i)}/n
13: ctop += if i ≤ k and π(i) ≤ k then 1 else 0
14: cwa += ui
15: cwb += uπ(i)
16: cww += ui ∗ uπ(i)
17: else
18: Add i to indhigh
19: switch type of weighted Kendall kernel do
20: case STANDARD:
21: s += cnum
22: case TOP-k:
23: s += if i ≤ k and π(i) ≤ k then ctop else 0
24: case AVERAGE:
25: s += cmin
26: case ADDITIVE WEIGHT:
27: s += cww+ cwa ∗ uπ(i) + cwb ∗ ui + cnum ∗

ui ∗ uπ(i)
28: case MULTIPLICATIVE WEIGHT:
29: s += cww ∗ ui ∗ uπ(i)
30: end switch
31: end if
32: end for
33: QUICKKAPPA(indhigh)
34: QUICKKAPPA(indlow)
35: end if
36: end function
37: Call QUICKKAPPA([1, n]) to update s
output K(σ, σ′) = s

https://github.com/YunlongJiao/kernrank
https://github.com/YunlongJiao/kernrank


Supplements to “The Weighted Kendall and High-order Kernels for Permutations”

Central to the algorithm is the computation of κ(π). It is
based on an idea similar to a quicksort algorithm, where we
recursively partition an array into two sub-arrays consisting
of greater or smaller values according to a pivot, and cu-
mulatively count the contributions between pairs of items
with one in each sub-array. Specifically, suppose now π
is divided into two sub-arrays πindhigh and πindlow where
ranks in πindhigh are all higher and those in πindlow, now
κ(π) can be decomposed into

κ(π) = κ(πindhigh) + κ(πindlow) + c(πindhigh, πindlow) ,

where c characterizes the weighted non-inversion number
of π restricted on pairs of items with one in each sub-array.
The computation of c(πindhigh, πindlow) depends on spe-
cific choice of weight and is depicted in the pseudo-code
(Lines 19–30). Notably a single linear-time pass over π is
sufficient to compute c(πindhigh, πindlow). By the analysis
of deduction typically for a quicksort algorithm, the overall
time complexity of our algorithm is on average O(n ln(n)).

In particular, recall that the standard Kendall kernel is
merely a special case of the weighted Kendall kernel with
constant weight, and hence our algorithm provides an alter-
native to the efficient algorithm based on merge sort pro-
posed by Knight (1966).

References
Knight, W. R. A computer method for calculating Kendall’s

tau with ungrouped data. Journal of the American Statis-
tical Association, 61(314):436–439, 1966.


