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Abstract
This is the supplementary material of (Jin et al.,
2018). It contains Proposition A.1 and the proofs
of Theorems 3.2-3.3, Corollary 3.1, and sec-
ondary lemmas.

A. An Alternative Expression of the GC Test
Statistics

We rewrite the test statistic χ̂gc (as well as L̂2, L̂3 and Ĉ4)
explicitly as a function of the adjacency matrix A. The
following proposition is proved in Section D.4.

Proposition A.1 The following are true:

L̂2 =
1

6
(
n
3

)[1′A21− tr(A2)
]
,

L̂3 =
1

24
(
n
4

)[1′A31− 2(1′A21) + 1′A1− tr(A3)
]
,

and

Ĉ4 =
1

24
(
n
4

)[tr(A4)− 2(1′A21) + 1′A1
]
.

Furthermore,

χ̂gc =

[
tr(A4)− 2(1′A21) + 1′A1

]
n(n− 1)(n− 2)(n− 3)

− 1

(n− 3)4

[
1′A31− 2(1′A21) + 1′A1− tr(A3)

1′A21− tr(A2)

]4
.

B. Proof of Theorem 3.2
We prove the case m = 4. The case of m = 3 is similar and
thus omitted. From now on, we omit the superscripts “(4)”
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in all related quantities (e.g., we write δ(4)gc as δgc). Write√
3
(
n
4

)√
Ĉ4

(χ̂gc − χgc) =

√
C4

Ĉ4

· (I + II) (1)

where

I =

√
3
(
n
4

)
√
C4

(Ĉ4 − C4), II = −

√
3
(
n
4

)
√
C4

[( L̂3

L̂2

)4
−
(L3

L2

)4]
.

Using the Slutsky’s theorem, it suffices to show that

Ĉ4/C4
p→ 1, (2)

I
d→ N(0, 1), (3)

and
II

p→ 0, (4)

The following lemma is useful, and its proof can be found
in Section D.

Lemma B.1 Under the assumptions of Theorem 3.2,

C4 � n−4‖θ‖8, L2 � n−3‖θ‖21‖θ‖2,
L3 � n−4‖θ‖21‖θ‖4.

Moreover,

Var(Ĉ4) ≤ Cn−8‖θ‖8, Var(L̂2) ≤ Cn−6‖θ‖31‖θ‖33,

Var(L̂3) ≤ Cn−8‖θ‖41‖θ‖63.

We now show (2)-(4). The proof of (3) is relatively long, so
we prove it in the end.

First, we prove (2). Recall that C4 = E[Ĉ4]. By
Lemma B.1,

E[(Ĉ4/C4 − 1)2] = C−24 Var(Ĉ4) = O(‖θ‖−8),

where the right hand side → 0 as ‖θ‖ → ∞. The claim
follows by elementary probability theory.

Second, we prove (4). Define L̂∗2 = (‖θ‖2/n)L̂2 and
L∗2 = (‖θ‖2/n)L2. Using Lemma B.1, it follows from
direct calculations that

L3/L
∗
2 = O(1). (5)
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With these notations, we have

|II| =

√
3
(
n
4

)
√
C4

· ‖θ‖
8

n4

∣∣∣∣( L̂3

L̂∗2

)4
−
(L3

L∗2

)4∣∣∣∣
≤ C‖θ‖4

∣∣∣∣( L̂3

L̂∗2

)4
−
(L3

L∗2

)4∣∣∣∣,
where we have used C4 � n−4‖θ‖8 in the second equality;
see Lemma B.1. Note that for any (x, y), |x4 − y4| =
|(x− y)(x3 + x2y + xy3 + y3)| ≤ 3|x− y| · (|x|+ |y|)3.
It follows that

|II| ≤ C · ‖θ‖4|Z| ·
(
L3

L∗2
+ |Z|

)3

,

where for short we write

Z =
L̂3

L̂∗2
− L3

L∗2
.

Recall that L3/L
∗
2 is bounded. Therefore, to show (4), it

suffices to show

‖θ‖4
(
L̂3

L̂∗2
− L3

L∗2

)
p→ 0. (6)

Below, we show (6). Write the term on the left by

‖θ‖4

L∗2
(L̂3 − L3) + ‖θ‖4 L̂3

L̂∗2L
∗
2

(L∗2 − L̂∗2) ≡ IIa + IIb.

To show (6), it suffices to show

IIa
p→ 0. (7)

and
IIb

p→ 0. (8)

Consider (7). Note that L3 = E[L̂3]. It follows from
Lemma B.1 that

Var(IIa) =
‖θ‖8Var(L̂3)

(L∗2)2
≤ C ‖θ‖

8 · n−8‖θ‖41‖θ‖63
(n−4‖θ‖21‖θ‖4)2

≤ C‖θ‖63,

where the last term → 0 for ‖θ‖3 → 0 as n → ∞; this
is due to equation (7) of (Jin et al., 2018). By elementary
probability, (7) follows.

Consider (8). To show the claim, we first show

L̂2/L2
p→ 1, L̂3/L3

p→ 1; (9)

as the proofs are similar, we only show the first one. By
Lemma B.1, Var(L̂2) = O(n−6‖θ‖31‖θ‖33) and L2 �
n−3‖θ‖21‖θ‖2. Using E[L̂2] = L2, E[(L̂2/L2 − 1)2] =

L−22 Var(L̂2) ≤ C(‖θ‖33)/(‖θ‖1‖θ‖4)), which ≤ C/‖θ‖2
since ‖θ‖33 ≤ ‖θ‖1‖θ‖2. This shows (9).

Using (9) and recalling L3/L
∗
2 ≤ C (see (5)), to show (8),

it is sufficient to show

‖θ‖4 1

(L∗2)
(L̂∗2 − L∗2)

p→ 0,

and since L̂∗2/L
∗
2 = L̂2/L2, it is equivalent to show

‖θ‖4(
L̂2

L2
− 1)

p→ 0. (10)

Last, we prove (3). We need some notations. Given 4
distinct nodes, there are 3 different possible cycles, de-
noted as CC(i1, i2, i3, i4) = {(i1, i2, i3, i4), (i1, i2, i4, i3),
(i1, i3, i2, i4)}; moreover, for B ⊂ {1, 2, ..., n}4, let
CC(B) = ∪(i1,i2,i3,i4)∈BCC(i1, i2, i3, i4). For 1 ≤ m ≤
n, let Im be the collection of (i1, i2, i3, i4) such that 1 ≤
i1 < i2 < i3 < i4 = m. Write Ω∗ij = Ωij(1 − Ωij). Let
W = A− Ω. Define

Sn,n ≡
∑
CC(In)

Wi1i2Wi2i3Wi3i4Wi4i1√∑
CC(In)

Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1

.

The following lemma is proved in Section D.

Lemma B.2 Under the conditions of Theorem 3.2,√
3
(
n
4

)
√
C4

(Ĉ4 − C4)− Sn,n
p→ 0.

By Lemma B.2, to show (3), it suffices to show that

Sn,n
d→ N(0, 1). (11)

Below, we prove (11). For 1 ≤ m ≤ n, define the σ-algebra
Fn,m = σ({Aij}1≤i<j≤m) and

Xn,m = Sn,m − Sn,m−1,

where Sn,0 = 0 and

Sn,m =

∑
CC(Im)Wi1i2Wi2i3Wi3i4Wi4i1√∑
CC(In)

Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1

, 1 ≤ m ≤ n.

It is easy to see that E[Sn,m|Fn,m−1] = Sn,m−1. Hence,
{Xn,m}nm=1 is a martingale difference sequence relative to
the filtration {Fn,m}nm=1, and Sn,n =

∑n
m=1Xn,m. To

show (11), we apply the martingale central limit theorem in
(Hall & Heyde, 2014) and check:

(a)
∑n
m=1 E(X2

n,m|Fn,m−1)
p→ 1.
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(b)
∑n
m=1 E(X2

n,m1{|Xn,m|>ε}|Fn,m−1)
p→ 0, for any

ε > 0.

Note that once we have checked that both conditions (a)
and (b) are satisfied, then by the martingale central limit
theorem, Sn,n

d→ N(0, 1). Combining it with Lemma B.2,
we have proved (3).

It remains to check (a)-(b). For preparation, we first derive
an alternative expression of E(Xn,m|Fn,m−1) as (14) below.
By definition,

Xn,m =
1√
Mn

∑
∑

CC(Im)\CC(Im−1)

Wi1i2Wi2i3Wi3i4Wi4i1 ,

where Mn ≡
∑
CC(In)

Ω∗i1i2Ω∗i2i3Ω∗i3i4Ω∗i4i1 and the sum-
mation is over all 4-cycles in CC(Im) \ CC(Im−1). Note
that a cycle inCC(Im)\CC(Im−1) has to include the node
m. Hence, we can use the following way to get all such
cycles: First, select 2 indices (i, j) from {1, 2, ...,m − 1}
and use them as the two neighboring nodes of m; second,
select an index k ∈ {1, 2, ...,m−1}\{i, j} as the last node
in the cycle. This allows us to write

Xn,m =
1√
Mn

∑
1≤i<j≤m−1

WmiWmj · Y(m−1)ij , (12)

where

Y(m−1)ij =
∑

1≤k≤m−1,k/∈{i,j}

WkiWkj . (13)

Conditioning on Fn,m−1, {WmiWmj}1≤i<j≤m−1 are mu-
tually uncorrelated and Y(m−1)ij is a constant. Hence, it
follows from (12)-(13) that

E(X2
n,m|Fn,m−1) =

1

Mn

∑
1≤i<j≤m−1

Y 2
(m−1)ijΩ

∗
miΩ

∗
mj .

(14)

We now check (a). It suffices to show that

E
[ n∑
m=1

E(X2
n,m|Fn,m−1)

]
= 1, (15)

and

Var
( n∑
m=1

E(X2
n,m|Fn,m−1)

)
→ 0. (16)

Consider (15). In the definition (13), the terms in the sum
are (unconditionally) mutually uncorrelated. As a result,

E[Y 2
(m−1)ij ] =

∑
k<m,k/∈{i,j}

Ω∗kiΩ
∗
kj .

It follows that

E
[ n∑
m=1

E(X2
n,m|Fn,m−1)

]
=

1

Mn

n∑
m=1

∑
1≤i<j≤m−1

∑
1≤k≤m−1,k/∈{i,j}

Ω∗kiΩ
∗
kjΩ
∗
miΩ

∗
mj

=
1

Mn

∑
(m,i,j,k)∈CC(In)

Ω∗miΩ
∗
ikΩ∗kjΩ

∗
jm = 1. (17)

This proves (17).

Consider (16). We first decompose the random variable∑n
m=1 E(X2

n,m|Fn,m−1) into the sum of two parts, and
then calculate its variance. By (13),

Y 2
(m−1)ij =

∑
k

W 2
kiW

2
kj +

∑
k 6=`

WkiWkjW`iW`j ,

where k and ` range in {1, 2, ...,m− 1} \ {i, j}. Plugging
it into (14), we have a decomposition

n∑
m=1

E(X2
n,m|Fn,m−1) = Ia + Ib, (18)

where

Ia =
1

Mn

n∑
m=1

∑
i<j≤m−1

∑
k≤m−1
k/∈{i,j}

W 2
kiW

2
kjΩ
∗
miΩ

∗
mj ,

Ib =
1

Mn

n∑
m=1

∑
i<j≤m−1

∑
k,`≤m−1
k,`/∈{i,j}

WkiWkjW`iW`jΩ
∗
miΩ

∗
mj .

Then,

Var
( n∑
m=1

E(X2
n,m|Fn,m−1)

)
=Var(Ia) + Var(Ib) + 2Cov(Ia, Ib)

≤
(√

Var(Ia) +
√

Var(Ib)
)2

(19)

It suffices to show that both Var(Ia)→ 0 and Var(Ib)→ 0.

Consider the variance of Ia. In the sum of Ia, all 4-cycles
(k, i,m, j) involved are selected in this way: We first se-
lect m, then select a pair (i, j) from {1, 2, . . . ,m− 1} and
connect both i and j to m, and finally select k to close the
cycle. In fact, these 4-cycles can be selected in an alterna-
tive way: First, select a V-shape (i, k, j) with k being the
middle point. Second, select m > max{i, k, j} to make the
V-shape a cycle. Hence, we can rewrite

Ia =
1

Mn

n∑
k=1

∑
1≤i<j≤n
i 6=k,j 6=k

W 2
kiW

2
kj

∑
m>max{i,j,k}

Ω∗miΩ
∗
mj︸ ︷︷ ︸

≡bkij
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The terms W 2
kiW

2
kj corresponding to different k are inde-

pendent of each other. We now fix k and calculate the covari-
ance between W 2

kiW
2
kj and W 2

ki′W
2
kj′ for (i, j) 6= (i′, j′).

There are three cases. Case (i): (i, j) = (i′, j′). In this case,
Var(W 2

kiW
2
kj) ≤ E[W 4

kiW
4
kj ] ≤ E[W 2

kiW
2
kj ] ≤ Ω∗kiΩ

∗
kj .

Case (ii): i = i′ but j 6= j′. In this case, we have
Cov(W 2

kiW
2
kj ,W

2
kiW

2
kj′) = Var(W 2

ki)·E[W 2
kj ]E[W 2

kj′ ] ≤
Ω∗kiΩ

∗
kjΩ
∗
kj′ . Case (iii): (i, j) ∩ (i′, j′) = ∅. The two terms

are independent, and their covariance is zero. Combining
the above gives

Var(Ia) ≤ 1

Mn

n∑
k=1

( ∑
1≤i<j≤n
i 6=k,j 6=k

b2kijΩ
∗
kiΩ
∗
kj

+
∑

i,j,j′∈{1,...,n}\{k}
i,j,j′ are distinct

bkijbkij′Ω
∗
kiΩ
∗
kjΩ
∗
kj′

)
.

We now bound the right hand side. By condition (9), Ω∗ij ≤
Cθiθj . Hence, bkij ≤ C

∑
m>k θ

2
mθiθj ≤ C‖θ‖2θiθj . As

a result,

Var(Ia) ≤ C

M2
n

[∑
k,i,j

‖θ‖4θ2kθ3i θ3j +
∑
k,i,j,j′

‖θ‖4θ3kθ3i θ2j θ2j′
]

≤ C

M2
n

(‖θ‖6‖θ‖63 + ‖θ‖8‖θ‖63).

By (7), ‖θ‖ → ∞, so the second term dominates. More-
over, since Ω∗ij = Ωij(1 − Ωij) ≥ cΩij (in our setting,
all Ωij’s are bounded away from 1). As a result, we have
Mn ≥ c

∑
CC(In)

Ωi1i2Ωi2i3Ωi3i4Ωi4i1 ≥ C−1n4C4. By
Lemma B.1, n4C4 � ‖θ‖8. Combining the above gives
Var = O(‖θ‖63/‖θ‖8), i.e.,√

Var(Ia) ≤
C
∑
i θ

3
i

(
∑
i θ

2
i )

2
≤ Cθmax∑

i θ
2
i

= o(1). (20)

Consider the variance of Ib. Rewrite

Ib =
1

Mn

∑
k,`,i,j are distinct

ck`ijGk`ij ,

where

Gk`ij ≡WkiWkjW`iW`j , ck`ij =
∑
m>

max{k,`,i,j}

Ω∗miΩ
∗
mj .

Since Ib has a mean zero, Var(Ib) = E(I2b ). Additionally,
for 2 cycles (k, `, i, j) and (k′, `′, i′, j′), only when they are
exactly equal, we have E[Gk`ijGk′`′i′j′ ] 6= 0. As a result,

Var(Ib) =
1

Mn

∑
k,`,i,j are distinct

c2k`ijE[G2
k`ij ]

=
1

Mn

∑
k,`,i,j are distinct

c2k`ijΩ
∗
kiΩ
∗
kjΩ
∗
`iΩ
∗
`j .

Similarly to how we get the bound for bkij , we can de-
rive that ck`ij ≤ C‖θ‖2θiθj . Moreover, Ω∗kiΩ

∗
kjΩ
∗
`iΩ
∗
`j ≤

Cθ2i θ
2
j θ

2
kθ

2
` . Hence,

Var(Ib) ≤
C

‖θ‖16
∑
k,`,i,j

‖θ‖4θ2kθ2` θ4i θ4j ≤
C‖θ‖84
‖θ‖8

.

As a result,√
Var(Ib) ≤

C
∑
i θ

4
i

(
∑
i θ

2
i )

2
≤ Cθ2max∑

i θ
2
i

= o(1). (21)

Plugging (20)-(21) into (19) gives (16). Combining (15)
and (16), we have proved (a).

We now check (b). By the Cauchy-Schwarz inequality and
the Chebyshev’s inequality,

n∑
m=1

E(X2
n,m1{|Xn,m|>ε}|Fn,m−1)

≤
n∑

m=1

√
E(X4

n,m|Fn,m−1)
√
P
(
|Xn,m

∣∣ ≥ ε|Fn,m−1)
≤ε−2

n∑
m=1

E(X4
n,m|Fn,m−1).

Therefore, it suffices to show that the right hand side con-
verges to zero in probability. Then, it suffices to show that
its L1-norm converges to zero. Since the right hand is a
nonnegative random variable, we only need to prove that its
expectation converges to zero, i.e.,

E
[ n∑
m=1

X4
n,m

]
= o(1). (22)

We now prove (22). We use the expression of Xn,m in (12).
Conditioning on Fn,m−1, the Y(m−1)ij’s are non-random.
It follows that

E[X4
n,m|Fn,m−1] =

1

M4
n

m−1∑
i,j=1
i 6=j

Y 2
(m−1)ijE[W 4

miW
4
mj ]

+
1

M4
n

m−1∑
i=1

m−1∑
j,j′=1
j,j′ /∈{i}

Y(m−1)ijY(m−1)ij′E[W 4
miW

2
mjW

2
mj′ ]

+
1

M4
n

m−1∑
i,j,i′,j′=1

distinct

Y(m−1)ijY(m−1)i′j′E[W 2
miW

2
mjW

2
mi′W

2
mj′ ].

First, we shall use the independence across entries of W
and the fact that E[W 4

ij ] ≤ E[W 2
ij ] ≤ Ωij ≤ Cθiθj . Sec-

ond, in proving (17), we have seen that E[Y 2
(m−1)ij ] =∑

k<m,k/∈{i,j} Ω∗kiΩ
∗
kj ≤ C

∑
k θ

2
kθiθj ≤ C‖θ‖2θiθj .
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Third, from (13), it is easy to see that when (i, j, i′, j′) are
distinct, E[Y(m−1)ijY(m−1)i′j′ ] = 0; moreover, for j 6= j′,
E[Y(m−1)ijY(m−1)ij′ ] =

∑
k E[W 2

ki]E[WkjWkj′ ] = 0.
Last, in proving (20), we have seen that Mn ≥ c‖θ‖8. Com-
bining the above, we find that

E[X4
n,m] =

1

M2
n

m−1∑
i,j=1
i 6=j

E[Y 2
(m−1)ij ]E[W 4

miW
4
mj ]

≤ C

‖θ‖16
m−1∑
i,j=1

(‖θ‖2θiθj)(θmθi)(θmθj)

≤ Cθ2m/‖θ‖10.

As a result,
n∑
n=1

E[X4
n,m] ≤ C‖θ‖−8 = o(1).

This gives (22) and (b) follows. �

C. Proof of Theorem 3.3 and Corollary 3.1
Consider Theorem 3.3 first. For short, let

Z(m)
n =

√
Bn,m
2m

Ĉ−1/2m χ̂(m)
gc , x∗0 = P(Z(m)

n ≥ zα).

It suffices to show that under the null and alternative,

|x∗0 − Φ(δ(m)
gc − zα)| ≤ o(1). (23)

Denote an = (Cm/Ĉm)1/2 for short. It is seen that

an
p→ 1, (24)

and
1

an
Z(m)
n =

√
Bn,m
2m

C−1/2m χ̂(m)
gc . (25)

Combining Theorem 3.1 and the proof of Theorem 3.2, we
have shown that√

Bn,m
2m

C−1/2m

[
χ̂(m)
gc − χ

(m)
gc,0

] p→ N(0, 1), (26)

where by definitions,√
Bn,m
2m

C−1/2m χ
(m)
gc,0 = δ(m)

gc . (27)

Combining (25)-(27) gives

1

an
Z(m)
n − δ(m)

gc
d→ N(0, 1). (28)

Denote the CDF of 1
an
Z

(m)
n − δ(m)

gc by Fn. Recall that Φ
denotes the CDF of N(0, 1). It follows from (28) that

sup
x
|Fn(x)− Φ(x)| → 0. (29)

We now rewrite

x∗0 = P
(

1

an
Z(m)
n − δ(m)

gc ≥
1

an
zα − δ(m)

gc

)
,

and introduce a proxy by

x0 = P
(

1

an
Z(m)
n − δ(m)

gc ≥ zα − δ(m)
gc

)
.

By triangle inequality,

|x∗0 − Φ(δ(m)
gc − zα)| ≤ |x∗0 − x0|+ |x0 − Φ(δ(m)

gc − zα)|.
(30)

where by (29),

|x0 − Φ(δ(m)
gc − zα)| → 0. (31)

Moreover, for any fixed ε > 0, it is seen that

|x∗0 − x0| ≤ I + II,

where
I = P(|an − 1| ≥ ε),

and

II = P( 1
an
Z

(m)
n − δ(m)

gc falls between (1± ε)zα − δ(m)
gc ),

which by (29) does not exceed

P(N(0, 1) falls between (1± ε)zα − δ(m)
gc ) + o(1);

note the first term does not exceed (2/
√

2π)zαε. Combining
these gives that for any ε > 0,

|x∗0−Φ(δ(m)
gc −zα)| ≤ (2/

√
2π)zαε+P(|an−1| ≥ ε)+o(1).

Recall that an
p→ 1, the claim follows.

Next, consider Corollary 3.1. It is seen that δ(m)
gc = 0 under

the null and that under the alternative,

δ(m)
gc ≥

K∑
k=2

λmk /[

K∑
k=1

λmk ]1/2.

When m = 4, by Lemma 6.1, δ(4)gc ≥ c4‖θ‖4 for some
constant c4 > 0. Whenm = 3 and P is positive definite, λk
are the eigenvalues of ΘΠPΠ′Θ, so for 1 ≤ k ≤ K, λk ≥
0. Using Lemma 6.1, δ(3)gc ≥ c3‖θ‖3 for some constant c3.
Combining these with Theorem 3.3 gives the claim.

D. Proof of Secondary Lemmas
D.1. Proof of Lemma 6.1

We first consider the claim about λk’s. Recall that λk’s
are the eigenvalues of the matrix G1/2PG1/2. First, we
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have ‖G‖ ≤
∑
k,`G(k, `) =

∑
k,`

∑
i θ

2
i πi(k)πi(`) =∑

i θ
2
i

∑
k,` πi(k)πi(`) = ‖θ‖2. Second, let gk =∑

i∈Nk
θ2i for 1 ≤ k ≤ K, and write Θ = Θ1 + Θ2, where

Θ1(i, i) = θi ·1{i ∈ ∪Kk=1Nk} and Θ2 ≡ Θ−Θ1. It yields
that G = Π′Θ2

1Π+Π′Θ2
2Π = diag(g1, · · · , gK)+Π′Θ2

2Π.
Hence, λmin(G) ≥ min1≤k≤K gk ≥ c2‖θ‖2, where the last
inequality is from condition (8). Combining the above gives

c2‖θ‖2 ≤ λmin(G) ≤ ‖θ‖2. (32)

Using condition (9), we find that |λk| ≤ ‖PG‖ ≤ C‖G‖ =
O(‖θ‖2). Additionally, since |λk|2 is an eigenvalue of
(G1/2PG1/2)2 = G1/2PGPG1/2, we then have |λk|2 ≥
λmin(G) · λmin(PGP ) ≥ λ2min(G) · s2min(P ) ≥ c21c

2
2‖θ‖4.

It gives

C−1‖θ‖2 ≤ |λk| ≤ C‖θ‖2, 1 ≤ k ≤ K.

We then consider the claim about η. Since maxk |η′ξk|2
is upper bounded by

∑
k |η′ξk|2 and lower bounded by

K−1
∑
k |η′ξk|2, it suffices to show that

C−1‖θ‖21 ≤
∑

1≤k≤K

|η′ξk|2 ≤ C‖θ‖21. (33)

Since ξ1, . . . , ξK form an orthonormal basis,∑
1≤k≤K

|η′ξk|2 = ‖η‖2 = 1′nΘΠG−1Π′Θ1n.

It follows from (32) that the right hand side has the same
order as ‖θ‖−2‖Π′Θ1n‖2. Write v = Π′Θ1n. For 1 ≤ k ≤
K, v(k) =

∑
i πi(k)θi. It follows that v(k) ≤ ‖θ‖1. At the

same time,
∑K
k=1 v

2(k) ≥
(∑K

k=1 v(k)
)2

K =
‖θ‖21
K , where

we’ve used Cauchy-Schwarz inequality.

It follows that

C−1‖θ‖21 ≤ ‖Π′Θ1n‖2 ≤ C‖θ‖21.

Hence, (33) follows. �

D.2. Proof of Lemma B.1

Consider the first item. By (16) of (Jin et al., 2018),

C4 =
1

Bn,4

[ K∑
k=1

λ4k +O(‖θ‖44‖θ‖4)

]
,

where we note Bn,4 ∼ n−4. First, by Lemma 6.1 of (Jin
et al., 2018),

K∑
k=1

λ4k � ‖θ‖8,

Second, by (7) of (Jin et al., 2018), θmax ≤ ‖θ‖3 → 0, so
it is seem ‖θ‖44 ≤ θmax‖θ‖33 ≤ o(1), and so ‖θ‖44‖θ‖4 ≤
o(θ‖4). Combining these give the claim.

Consider the second item. By (17) of (Jin et al., 2018),

L2 =
1

Bn,3

[ K∑
k=1

λ2k(η, ξk)2 +O(‖θ‖21‖θ‖44‖θ‖−2)

]
,

where by Lemma 6.1 of (Jin et al., 2018),

K∑
k=1

λ2k(η, ξk)2 � ‖θ‖2‖θ‖21.

By similar argument, ‖θ‖21‖θ‖44‖θ‖−2 ≤ o(‖θ‖2‖θ‖21), so
the claim follows by noting Bn,3 ∼ n−3.

Consider the third item. By similar argument, it is seen that

L3 =
1

Bn,4

[ K∑
k=1

λ3k(η, ξk)2 +O(‖θ‖21‖θ‖44)

]
≤ Cn−4‖θ‖21‖θ‖4.

For the lower bound, we use a different proof as λk may be
negative. By L3 = E[L̂3] and E[Aij ] = Ωij when i 6= j,

L3 =
1

Bn,4

∑
1≤i1,i2,i3,i4≤n

are distinct

Ωi1i2Ωi2i3Ωi3i4 .

As before, letN1 denote the set of pure nodes in community
1. It is not hard to see that

L3 ≥
K∑
k=1

∑
i1,i2,i3,i4∈Nk

are distinct

Ωi1i2Ωi2i3Ωi3i4 .

In our model, all diagonal entries of P are 1, so for any
i, j ∈ N1, Ωij = θiθj . Therefore,

L3 ≥
K∑
k=1

∑
i1,i2,i3,i4∈Nk

are distinct

θi1θi4θ
2
i2θ

2
i3 . (34)

Now, we can lower bound the right hand side of (34) by

I − II − III − IV,

where

I =

K∑
k=1

∑
i1,i2,i3,i4∈Nk

θi1θi4θ
2
i2θ

2
i3 ,

II =

K∑
k=1

∑
i1,i2,i3,i4∈Nk

i1=i4

θi1θi4θ
2
i2θ

2
i3 ,

III =
∑

i1,i2,i3,i4∈N1
i2=i3

θi1θi4θ
2
i2θ

2
i3 ,
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and

IV = 4

K∑
k=1

∑
i1,i2,i3,i4∈Nk

i1=i2

θi1θi4θ
2
i2θ

2
i3 .

First, by (8) of (Jin et al., 2018),

I =

K∑
k=1

( ∑
i∈Nk

θi
)2( ∑

i∈Nk

θ2i
)2

≥ C‖θ‖4
K∑
k=1

( ∑
i∈Nk

θi
)2

≥ C‖θ‖21‖θ‖4,

where the last inequality is Cauchy-Schwarz inequality.

Second, by (7) of (Jin et al., 2018) that θmax ≤ ‖θ‖3 = o(1),
we obtain ‖θ‖2 ≤ o(1) · ‖θ‖1 (note ‖θ‖ → ∞), and

II ≤ C
K∑
k=1

∑
i1,i2,i3∈Nk

θi1θ
2
i2θ

2
i3

≤ C‖θ‖1‖θ‖4

= o
(
‖θ‖21‖θ‖4

)
.

Similarly, we have ‖θ‖33 ≤ o(1) · ‖θ‖22 and ‖θ‖44 ≤ o(1) ·
‖θ‖22, which implies

III = o
(
‖θ‖21‖θ‖4

)
, and IV = o

(
‖θ‖21‖θ‖4

)
.

Combining these gives L3 ≥ c‖θ‖21‖θ‖4, and the claim
follows.

We now prove the next three items (on the variances).
In the Proof of Lemma B.2, we’ve already shown that

1
Bn,4

∑
i1,··· ,i4
distinct

Gi1i2i3i4(W ) is the dominating term of

(Ĉ4 − C4), and that

Var

(
1

Bn,4

∑
i1,··· ,i4
distinct

Gi1i2i3i4(W )

)

≤Cn−4
∑

i1,··· ,i4
distinct

Gi1i2i3i4(Ω)

≤Cn−4
∑

i1,··· ,i4

θ2i1θ
2
i2θ

2
i3θ

2
i4 = Cn−4‖θ‖8.

Combining it with C4 � n−4‖θ‖8, we get Var(Ĉ4) =
O(n−4C4).

Consider Var(L̂2). By definitions and that Bn,m � nm, we
bound

E(L̂2−L2)2 ≤ Cn−6E[
∑

i1<i2<i3

(Ai1i2Ai2i3−Ωi1i2Ωi2i3)]2.

(35)

Recall that when i 6= j, Aij = Ωij + Wij . Since for any
numbers x, y, a, b, (a + x)(b + y) − ab = xy + ay + bx,
we can write∑

i1<i2<i3

(Ai1i2Ai2i3 − Ωi1i2Ωi2i3) = I + II + III,

where
I =

∑
i1<i2<i3

Wi1i2Wi2i3 ,

II =
∑

i1<i2<i3

Ωi1i2Wi2i3 ,

and
III =

∑
i1<i2<i3

Ωi2i3Wi1i2 .

Inserting this into (35) and using Cauchy-Schwarz inequal-
ity,

E(L̂2 − L2)2 ≤ Cn−6(E[(I)2] + E[(II)2] + E[(III)2]).

It then suffices to show

E[(I)2] . ‖θ‖31‖θ‖33, (36)

E[(II)2] . ‖θ‖31‖θ‖33, (37)

and
E[(III)2] . ‖θ‖31‖θ‖33. (38)

We now show (36)-(38) separately.

Consider (36). Note that for two sets of indices (i1, i2, i3)
and (j1, j2, j3) such that i1 < i2 < i3, j1 < j2 < j3, by
basic statistics, we have that when (i1, i2, i3) 6= (j1, j2, j3),

E[Wi1i2Wi2i3Wj1j2Wj2j3 ] = 0.

and when (i1, i2, i3) = (j1, j2, j3),

E[Wi1i2Wi2i3Wj1j2Wj2j3 ] = E[W 2
i1i2W

2
i2i3 ]

= Ωi1i2(1− Ωi1i2)Ωi2i3(1− Ωi2i3).

Therefore,

E[(I)]2 =
∑

i1<i2<i3

∑
j1<j2<j3

E[Wi1i2Wi2i3Wj1j2Wj2j3 ]

≤
∑

i1<i2<i3

E[W 2
i1i2W

2
i2i3 ]

≤
∑

i1<i2<i3

Ωi1i2(1− Ωi1i2)Ωi2i3(1− Ωi2i3).

Recall that for any i < j,

Ωij(1− Ωij) ≤ Ωij ≤ θiθj ,
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it follows that

E[(I)]2 ≤
∑

i1<i2<i3

θi1θi2θi2θi3 ≤ ‖θ‖21‖θ‖22,

and the claim follows by Cauchy Schwarz inequality that
‖θ‖21‖θ‖22 ≤ ‖θ‖21(‖θ‖1‖θ‖33) = ‖θ‖31‖θ‖33.

Consider (37)-(38). Since the proofs are similar, we only
show (37).

Note that for two sets of indices (i1, i2, i3) and (j1, j2, j3)
such that i1 < i2 < i3, j1 < j2 < j3, by basic statistics, we
have that when (i2, i3) 6= (j2, j3),

E[Wi2i3Wj2j3 ] = 0.

and when (i2, i3) = (j2, j3),

E[Wi2i3Wj2j3 ] = E[W 2
i2i3 ] = Ωi2i3(1− Ωi2i3).

Therefore,

E[(II)2] =
∑

i1<i2<i3

∑
j1<j2<j3

E[Ωi1i2Ωj1j2Wi2i3Wj2j3 ]

=
∑

i1<i2<i3

E[Ωi1i2Wi2i3

∑
j1<j2<j3

(Ωj1j2Wj2j3)]

=
∑

i1<i2<i3

E[Ωi1i2W
2
i2i3(

∑
j1<i2

Ωj1i2)]

=
∑

i1<i2<i3

E[Ωi1i2Ωi2i3(1− Ωi2i3)(
∑
j1<i2

Ωj1i2)]

Again by Ωij(1−Ωij) ≤ Ωij ≤ θiθj for any i < j, we find

E[(II)2] ≤
∑

i1<i2<i3

E[Ωi1i2Ωi2i3(
∑
j1<i2

Ωj1i2)]

≤
∑

i1<i2<i3

θi1θ
2
i2θi3(

∑
j1<i2

θj1θi2)

≤ ‖θ‖31‖θ‖33.

Last, we prove the claim on Var(L̂3). It suffices to
control the covariance between (Ai1i2Ai2i3Ai3i4) and
(Aj1j2Aj2j3Aj3j4). To be more specific, define the set

J =
{

(i1, i2), (i2, i3), (i3, i4), (j1, j2), (j2, j3), (j3, j4)
}
,

whose elements are pairs of unordered integers, i.e. we treat
(i1, i2) and (i2, i1) as the same element.

Let |J | be the number of distinct elements of J , where
3 ≤ |J | ≤ 6 under the condition that i1 < i2 < i3 < i4
and j1 < j2 < j3 < j4. To control the variance of L̂3, it
suffices to bound the following quantity

6∑
s=3

∑
|J |=s

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4).

Furthermore, it suffices to show for 3 ≤ s ≤ 6,∑
|J |=s

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4) . ‖θ‖41‖θ‖63.

(39)

When |J | = 6, it’s not hard to see (Ai1i2Ai2i3Ai3i4) and
(Aj1j2Aj2j3Aj3j4) are independent because the six elements
in J are all distinct, which indicates∑
|J |=6

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4) = 0.

The following basic property is frequently used in the discus-
sion of remaining cases. For non-negative random variables
X and Y , we have

Cov(X,Y ) ≤ E[XY ]. (40)

Consider the case where |J | = 5. By symmetry, it’s
enough to consider three situations where (i1, i2) = (j1, j2),
(i1, i2) = (j2, j3) and (i2, i3) = (j2, j3), separately.

If (i1, i2) = (j1, j2), we have∑
(i1,i2)=(j1,j2)

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

≤
∑

(i1,i2)=(j1,j2)

E
[
Ai1i2Ai2i3Ai3i4Aj2j3Aj3j4

]
≤C

∑
(i1,i2)=(j1,j2)

θi1θ
2
i2θ

2
i3θi4θj2θ

2
j3θj4

≤C
∑

θi1θ
3
i2θ

2
i3θi4θ

2
j3θj4

=C‖θ‖31‖θ‖4‖θ‖33 ≤ C‖θ‖41‖θ‖63,

where the last inequality is due to ‖θ‖4 ≤ ‖θ‖1‖θ‖33 by
Cauchy-Schwarz inequality.

If (i1, i2) = (j2, j3), we have∑
(i1,i2)=(j2,j3)

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

≤
∑

(i1,i2)=(j2,j3)

E
[
Ai1i2Ai2i3Ai3i4Aj1j2Aj3j4

]
≤C

∑
(i1,i2)=(j2,j3)

θi1θ
2
i2θ

2
i3θi4θj1θj2θj3θj4

=C
∑

i1,··· ,i4,j1,j4

θ2i1θ
3
i2θ

2
i3θi4θj1θj4

=C‖θ‖31‖θ‖4‖θ‖33 ≤ C‖θ‖41‖θ‖63,

where the last inequality is due to ‖θ‖4 ≤ ‖θ‖1‖θ‖33.
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If (i2, i3) = (j2, j3), we have∑
(i2,i3)=(j2,j3)

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

≤
∑

(i2,i3)=(j2,j3)

E
[
Ai1i2Ai2i3Ai3i4Aj1j2Aj3j4

]
≤C

∑
(i2,i3)=(j2,j3)

θi1θ
2
i2θ

2
i3θi4θj1θj2θj3θj4

=C
∑

i1,··· ,i4,j1,j4

θi1θ
3
i2θ

3
i3θi4θj1θj4 = C‖θ‖41‖θ‖63.

Combining above three inequalities, we derive∑
|J |=5

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4) ≤ C‖θ‖41‖θ‖63.

Consider the case where |J | = 4. By symmetry, J either
equals to J1 =

{
(i1, i2), (i2, i3), (i3, i4), (j1, j2)

}
or J2 ={

(i1, i2), (i2, i3), (i3, i4), (j2, j3)
}

.

Therefore, we decompose and bound∑
|J |=4

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

.
∑
J1

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

+
∑
J2

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

≤
∑
J1

E
[
Ai1i2Ai2i3Ai3i4Aj1j2

]
+
∑
J2

E
[
Ai1i2Ai2i3Ai3i4Aj2j3

]
It then suffices to show∑

J1

E
[
Ai1i2Ai2i3Ai3i4Aj1j2

]
≤ C‖θ‖41‖θ‖63, (41)

and ∑
J2

E
[
Ai1i2Ai2i3Ai3i4Aj2j3

]
≤ C‖θ‖41‖θ‖63, (42)

For (41), j2 must equal to one of i1, · · · , i4 since (j2, j3)
equals to some (is, is+1) by definition of J1. By symmetry,
we only need to consider j2 = i1 and j2 = i2. Again by
Ωij ≤ θiθj , we obtain∑

J1

E
[
Ai1i2Ai2i3Ai3i4Aj1j2

]
≤
∑
j2=i1

θi1θ
2
i2θ

2
i3θi4θj1θj2 +

∑
j2=i2

θi1θ
2
i2θ

2
i3θi4θj1θj2

≤
∑

θ2i1θ
2
i2θ

2
i3θi4θj1 +

∑
θi1θ

3
i2θ

2
i3θi4θj1

=‖θ‖21‖θ‖6 + C‖θ‖31‖θ‖2‖θ‖33
≤‖θ‖41‖θ‖63.

Here we explain the last inequality. By Cauchy-Schwartz
inequality, ‖θ‖4 ≤ ‖θ‖1‖θ‖33. Combining with (7) that
‖θ‖ → ∞, ‖θ‖21‖θ‖6 . ‖θ‖21‖θ‖8 ≤ ‖θ‖41‖θ‖63. Moreover,
‖θ‖31‖θ‖2‖θ‖33 ≤ ‖θ‖31‖θ‖33(‖θ‖4) ≤ ‖θ‖41‖θ‖63.

For (42), we similarly found j2, j3 must equal to some
i1, · · · , i4. By (7), θj3 ≤ C. Thus we only need to discuss
the cases where j2 = i1 or j2 = i2.∑

J2

E
[
Ai1i2Ai2i3Ai3i4Aj2j3

]
≤
∑
j2=i1

θi1θ
2
i2θ

2
i3θi4θj2 +

∑
j2=i2

θi1θ
2
i2θ

2
i3θi4θj2

≤
∑

θ2i1θ
2
i2θ

2
i3θi4θj2 +

∑
θi1θ

3
i2θ

2
i3θi4θj2

=C‖θ‖21‖θ‖6 + C‖θ‖31‖θ‖2‖θ‖3 ≤ C‖θ‖41‖θ‖63,

where the last inequality has been explained in the proof of
(41).

Combining (41) and (42), we bound∑
|J |=4

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4) ≤ C‖θ‖41‖θ‖63.

Finally, consider the case where |J | = 3. In this case, the
covariance is in fact variance. Therefore,∑

|J |=3

Cov(Ai1i2Ai2i3Ai3i4 , Aj1j2Aj2j3Aj3j4)

=
∑

i1,··· ,i4

Var(Ai1i2Ai2i3Ai3i4)

≤
∑

i1,··· ,i4

E
[
Ai1i2Ai2i3Ai3i4

]
≤
∑

i1,··· ,i4

θi1θ
2
i2θ

2
i3θi4

=C‖θ‖21‖θ‖2 . C‖θ‖21‖θ‖6 ≤ C‖θ‖41‖θ‖63,

where the second last inequality is by (7) that ‖θ‖ → ∞
and last inequality is Cauchy-Schwarz inequality.

This proves (39). �

D.3. Proof of Lemma B.2

Write for short Tn =

√
Bn,4√
C4

(Ĉ4−C4). We introduce some
useful notations. For any n × n matrix M and distinct
indices (i1, i2, i3, i4), define

Gi1i2i3i4(M) = Mi1i2Mi2i3Mi3i4Mi4i1 ,

G(M) =
∑

(i1,i2,i3,i4)∈CC(In)

Gi1i2i3i4(M).

Additionally, letW = A−Ω and let Ω∗ be the matrix where
Ω∗ij = Ωij(1− Ωij) for all 1 ≤ i, j ≤ n. We now rewrite

Tn =
G(A)−G(Ω)√

G(Ω)
, Sn,n =

G(W )√
G(Ω∗)

. (43)
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Therefore,

Tn − Sn,n =
G(A)−G(Ω)−G(W )√

G(Ω)
+ Sn,n

[√
G(Ω∗)√
G(Ω)

− 1

]
≡ J1 + Sn,n · J2.

In the proof of Theorem 3.2, we have shown Sn,n
d→

N(0, 1). Hence, to show (Tn − Sn,n)
p→ 0, it suffices

to show that
J1

p→ 0 (44)

and
J2 → 0. (45)

First, we prove (44). We can decompose Gi1i2i3i4(A) −
Gi1i2i3i4(Ω)−Gi1i2i3i4(W ) as the sum of three terms

∆
(1)
i1i2i3i4

= Wi1i2Ωi2i3Ωi3i4Ωi4i1 + Ωi1i2Wi2i3Ωi3i4Ωi4i1

+ Ωi1i2Ωi2i3Wi3i4Ωi4i1 + Ωi1i2Ωi2i3Ωi3i4Wi4i1 ,

∆
(2)
i1i2i3i4

= Wi1i2Wi2i3Ωi3i4Ωi4i1 +Wi1i2Ωi2i3Wi3i4Ωi4i1

+Wi1i2Ωi2i3Ωi3i4Wi4i1 + Ωi1i2Wi2i3Wi3i4Ωi4i1

+ Ωi1i2Wi2i3Ωi3i4Wi4i1 + Ωi1i2Ωi2i3Wi3i4Wi4i1 ,

∆
(3)
i1i2i3i4

= Ωi1i2Wi2i3Wi3i4Wi4i1 +Wi1i2Ωi2i3Wi3i4Wi4i1

+Wi1i2Wi2i3Ωi3i4Wi4i1 +Wi1i2Wi2i3Wi3i4Ωi4i1 .

It is easy to see that

E

 ∑
CC(In)

∆
(1)
i1i2i3i4

 = 0. (46)

We then study the variance of this term. Note that the
four terms in ∆

(1)
i1i2i3i4

are independent of each other. Let
(j, s,m, `) be any cycle on the four nodes {i1, i2, i3, i4}.
Then, the variance of WjsΩsmΩm`Ω`j is bounded by
ΩjsΩ

2
smΩ2

m`Ω
2
`j = O(θ3j θ

3
sθ

4
mθ

4
` ). Hence,∑

CC(In)

Var(∆
(1)
i1i2i3i4

) ≤ C
∑
j,s,m,`

θ3j θ
3
sθ

4
mθ

4
`

≤ C‖θ‖63‖θ‖84 = o(‖θ‖63‖θ‖8),

where the last inequality is from the condition (7) and the
fact that ‖θ‖44 = (

∑
i θ

4
i ) ≤ θ2max(

∑
i θ

2
i ) = O(‖θ‖2) =

o(‖θ‖4). We then look at the covariance between ∆
(1)
i1i2i3i4

and ∆
(1)
i′1i
′
2i
′
3i
′
4
. Let (j, s,m, `) be any cycle on the four nodes

{i1, i2, i3, i4}, and let (j′, s′,m′, `′) be any cycle on the
four nodes {i′1, i′2, i′3, i′4}. As long as {j, s} 6= {j′, s′},
the two terms WjsΩsmΩm`Ω`j and Wj′s′Ωs′m′Ωm′`′Ω`′j′

are independent, hence, their covariance is zero. If
{j, s} = {j′, s′}, their covariance is bounded by Ωjs ·

ΩsmΩm`Ω`jΩs′m′Ωm′`′Ω`′j = O(θ3j θ
3
sθ

2
mθ

2
` θ

2
m′θ

2
`′). As

a result, ∑
CC(In)×CC(In)

Cov(∆
(1)
i1i2i3i4

,∆
(1)
i′1i
′
2i
′
3i
′
4
)

≤C
∑

j,s,m,`,m′,`′

θ3j θ
3
sθ

2
mθ

2
` θ

2
m′θ

2
`′ ≤ C‖θ‖63‖θ‖8.

Note that G(Ω) � n4C4 � ‖θ‖8 by Lemma B.1. Addition-
ally, from the condition (7), ‖θ‖3 = o(1). Hence, the above
imply

Var

 ∑
CC(In)

∆
(1)
i1i2i3i4

� G(Ω). (47)

Combining (46)-(47) gives

1√
G(Ω)

∑
CC(In)

∆
(1)
i1i2i3i4

p→ 0. (48)

We can consider other terms similarly. By direct calcula-
tions,

Var

 ∑
CC(In)

∆
(2)
i1i2i3i4

 ≤ ∑
j,s,m,`

ΩjsΩsmΩ2
m`Ω

2
`j

+
∑
j,s,m
`,`′

ΩjsΩsmΩm`Ωm,`′Ω`jΩ`′j

≤ C
∑
j,s,m,`

θ3j θ
2
sθ

3
mθ

4
` + C

∑
j,s,m
`,`′

θ3j θ
2
sθ

3
mθ

2
` θ

2
`′

≤ C‖θ‖63‖θ‖2‖θ‖44 + C‖θ‖63‖θ‖6 = o(‖θ‖8),

and

Var

 ∑
CC(In)

∆
(3)
i1i2i3i4

 ≤ ∑
j,s,m,`

Ω2
jsΩsmΩm`Ω`j

≤ C
∑
j,s,m,`

θ3j θ
3
sθ

2
mθ

2
`

≤ C‖θ‖63‖θ‖4 = o(‖θ‖8).

Hence, for the terms related to ∆
(2)
i1i2i3i4

and ∆
(3)
i1i2i3i4

, we
also have a similar convergence as that of (48). These to-
gether imply J1

p→ 0. Hence, (44) is true.

Next, we prove (45). It is seen that

0 ≤ G(Ω)−G(Ω∗) ≤ C
∑
j,s,m,`

Ω2
jsΩsmΩm`Ωmj

≤ C
∑
j,s,m,`

θ3j θ
3
sθ

2
mθ

2
` ≤ C‖θ‖63‖θ‖4 = o(‖θ‖8).

As a result, |G(Ω∗)/G(Ω)− 1| = o(1). This proves (45).
�
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D.4. Proof of Proposition A.1

The last item follows once the first three items are proved,
so we only consider the first three items.

Consider the first item. Write

1′A21 =
∑

1≤i1,i2,i3≤n

Ai1i2Ai2i3 .

Recall that all diagonal entries of A are 0, we can exclude
the case i1 = i2 or i2 = i3 from the summation. Therefore,
we only need to sum over either the cases where i1, i2, i3
are distinct and the cases i1 = i3 but i1 6= i2. It follows

1′A21 =

( ∑
i1,i2,i3

are distinct

+
∑
i1,i2,i3

i1=i3,i1 6=i2

)
Ai1i2Ai2i3 = I + II.

Now, first, by definition,

I = Bn,3L̂2, where Bn,3 = 6
(
n
3

)
,

and second (recall all diagonal entries of A are 0),

II =
∑
i1,i2

A2
i1i2 = tr(A2).

Combining these gives

L̂2 =
1

6
(
n
3

) (1′A21− tr(A2)),

and the claim follows.

Consider the second item. Using similar arguments, we
decompose

1′A31 =
∑

1≤i1,i2,i3,i4≤n

Ai1i2Ai2i3Ai3i4 = I+II+III+IV,

where

I =
∑

i1,i2,i3,i4
are distinct

Ai1i2Ai2i3Ai3i4 = Bn,4L̂3,

with Bn,4 = 24
(
n
4

)
,

II =

( ∑
i1,i2,i3,i4
i1=i3

+
∑

i1,i2,i3,i4
i2=i4

)
Ai1i2Ai2i3Ai3i4 = 2·(1′A21),

III =
∑

i1,i2,i3,i4
i1=i4

Ai1i2Ai2i3Ai3i4 = 1′A31,

and

IV = −
∑

i1,i2,i3,i4
i1=i3,i2=i4

Ai1i2Ai2i3Ai3i4 = −1′A1.

Combining these gives

L̂3 =
1

24
(
n
4

) [1′A31− 2 · 1′A21 + 1′A1− tr(A3)],

and the claim follows.

Consider the third item. Note first

tr(A4) =
∑

1≤i1,i2,i3,i4≤n

Ai1i2Ai2i3Ai3i4Ai4i1 .

Similarly, we have

tr(A4) =
∑

i1,i2,i3,i4

Ai1i2Ai2i3Ai3i4Ai4i1 = I + II + III,

where

I =
∑

i1,i2,i3,i4
are distinct

Ai1i2Ai2i3Ai3i4Ai4i1 = 24

(
n

4

)
Ĉ4,

II =

( ∑
i1,i2,i3,i4
i1=i3

+
∑

i1,i2,i3,i4
i2=i4

)
Ai1i2Ai2i3Ai3i4Ai4i1 = 2·(1′A21)

and

III = −
∑

i1,i2,i3,i4
i1=i3,i2=i4

Ai1i2Ai2i3Ai3i4Ai4i1 = −1′A1.

Combining these gives

Ĉ4 =
1

24
(
n
4

)(tr(A4)− 2 · 1′A21 + 1′A1

)
,

and the claim follows. �
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