Supplement of "Network Global Testing by Counting Graphlets"

Jiashun Jin¹ Zheng Tracy Ke² Shengming Luo¹

Abstract

This is the supplementary material of (Jin et al., 2018). It contains Proposition A.1 and the proofs of Theorems 3.2-3.3, Corollary 3.1, and secondary lemmas.

A. An Alternative Expression of the GC Test Statistics

We rewrite the test statistic $\hat{\chi}_{gc}$ (as well as \hat{L}_2 , \hat{L}_3 and \hat{C}_4) explicitly as a function of the adjacency matrix A. The following proposition is proved in Section D.4.

Proposition A.1 *The following are true:*

$$\widehat{L}_2 = \frac{1}{6\binom{n}{3}} \left[1'A^2 1 - \operatorname{tr}(A^2) \right],$$
$$\widehat{L}_3 = \frac{1}{24\binom{n}{4}} \left[1'A^3 1 - 2(1'A^2 1) + 1'A 1 - \operatorname{tr}(A^3) \right].$$

and

$$\widehat{C}_4 = \frac{1}{24\binom{n}{4}} \left[\operatorname{tr}(A^4) - 2(1'A^21) + 1'A1 \right].$$

Furthermore,

$$\widehat{\chi}_{gc} = \frac{\left[\operatorname{tr}(A^4) - 2(1'A^21) + 1'A1\right]}{n(n-1)(n-2)(n-3)} \\ - \frac{1}{(n-3)^4} \left[\frac{1'A^31 - 2(1'A^21) + 1'A1 - \operatorname{tr}(A^3)}{1'A^21 - \operatorname{tr}(A^2)}\right]^4.$$

B. Proof of Theorem 3.2

We prove the case m = 4. The case of m = 3 is similar and thus omitted. From now on, we omit the superscripts "(4)"

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

in all related quantities (e.g., we write $\delta_{gc}^{(4)}$ as δ_{gc}). Write

$$\frac{\sqrt{3\binom{n}{4}}}{\sqrt{\widehat{C}_4}}(\widehat{\chi}_{gc} - \chi_{gc}) = \sqrt{\frac{C_4}{\widehat{C}_4}} \cdot (I + II)$$
(1)

where

$$I = \frac{\sqrt{3\binom{n}{4}}}{\sqrt{C_4}} (\widehat{C}_4 - C_4), \quad II = -\frac{\sqrt{3\binom{n}{4}}}{\sqrt{C_4}} \left[\left(\frac{\widehat{L}_3}{\widehat{L}_2}\right)^4 - \left(\frac{L_3}{L_2}\right)^4 \right]$$

Using the Slutsky's theorem, it suffices to show that

$$\widehat{C}_4/C_4 \xrightarrow{p} 1, \tag{2}$$

$$I \stackrel{d}{\to} N(0,1),\tag{3}$$

and

$$II \xrightarrow{p} 0,$$
 (4)

The following lemma is useful, and its proof can be found in Section D.

Lemma B.1 Under the assumptions of Theorem 3.2,

$$C_4 \asymp n^{-4} \|\theta\|^8, \quad L_2 \asymp n^{-3} \|\theta\|_1^2 \|\theta\|^2,$$

$$L_3 \asymp n^{-4} \|\theta\|_1^2 \|\theta\|^4.$$

Moreover,

$$Var(\widehat{C}_{4}) \le Cn^{-8} \|\theta\|^{8}, \quad Var(\widehat{L}_{2}) \le Cn^{-6} \|\theta\|_{1}^{3} \|\theta\|_{3}^{3},$$
$$Var(\widehat{L}_{3}) \le Cn^{-8} \|\theta\|_{1}^{4} \|\theta\|_{3}^{6}.$$

We now show (2)-(4). The proof of (3) is relatively long, so we prove it in the end.

First, we prove (2). Recall that $C_4 = E[\widehat{C}_4]$. By Lemma B.1,

$$\mathbb{E}[(\widehat{C}_4/C_4-1)^2] = C_4^{-2} \operatorname{Var}(\widehat{C}_4) = O(\|\theta\|^{-8}),$$

where the right hand side $\rightarrow 0$ as $\|\theta\| \rightarrow \infty$. The claim follows by elementary probability theory.

Second, we prove (4). Define $\widehat{L}_2^* = (\|\theta\|^2/n)\widehat{L}_2$ and $L_2^* = (\|\theta\|^2/n)L_2$. Using Lemma B.1, it follows from direct calculations that

$$L_3/L_2^* = O(1). (5)$$

^{*}Equal contribution ¹Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, USA ²Department of Statistics, University of Chicago, Chicago, USA. Correspondence to: Jiashun Jin <jiashun@stat.cmu.edu>.

With these notations, we have

$$|II| = \frac{\sqrt{3\binom{n}{4}}}{\sqrt{C_4}} \cdot \frac{\|\theta\|^8}{n^4} \left| \left(\frac{\widehat{L}_3}{\widehat{L}_2^*}\right)^4 - \left(\frac{L_3}{L_2^*}\right)^4 \right| \le C \|\theta\|^4 \left| \left(\frac{\widehat{L}_3}{\widehat{L}_2^*}\right)^4 - \left(\frac{L_3}{L_2^*}\right)^4 \right|,$$

where we have used $C_4 \simeq n^{-4} ||\theta||^8$ in the second equality; see Lemma B.1. Note that for any (x, y), $|x^4 - y^4| = |(x - y)(x^3 + x^2y + xy^3 + y^3)| \le 3|x - y| \cdot (|x| + |y|)^3$. It follows that

$$|II| \le C \cdot ||\theta||^4 |Z| \cdot \left(\frac{L_3}{L_2^*} + |Z|\right)^3,$$

where for short we write

$$Z = \frac{\widehat{L}_3}{\widehat{L}_2^*} - \frac{L_3}{L_2^*}.$$

Recall that L_3/L_2^* is bounded. Therefore, to show (4), it suffices to show

$$\|\theta\|^4 \left(\frac{\widehat{L}_3}{\widehat{L}_2^*} - \frac{L_3}{L_2^*}\right) \xrightarrow{p} 0.$$
 (6)

Below, we show (6). Write the term on the left by

$$\frac{\|\theta\|^4}{L_2^*}(\widehat{L}_3 - L_3) + \|\theta\|^4 \frac{\widehat{L}_3}{\widehat{L}_2^* L_2^*} (L_2^* - \widehat{L}_2^*) \equiv II_a + II_b.$$

To show (6), it suffices to show

$$II_a \xrightarrow{p} 0. \tag{7}$$

and

$$II_b \xrightarrow{p} 0.$$
 (8)

Consider (7). Note that $L_3 = E[\hat{L}_3]$. It follows from Lemma B.1 that

$$\operatorname{Var}(II_{a}) = \frac{\|\theta\|^{8} \operatorname{Var}(L_{3})}{(L_{2}^{*})^{2}} \leq C \frac{\|\theta\|^{8} \cdot n^{-8} \|\theta\|_{1}^{4} \|\theta\|_{3}^{6}}{(n^{-4} \|\theta\|_{1}^{2} \|\theta\|^{4})^{2}} \leq C \|\theta\|_{3}^{6},$$

where the last term $\rightarrow 0$ for $\|\theta\|_3 \rightarrow 0$ as $n \rightarrow \infty$; this is due to equation (7) of (Jin et al., 2018). By elementary probability, (7) follows.

Consider (8). To show the claim, we first show

$$\widehat{L}_2/L_2 \xrightarrow{p} 1, \qquad \widehat{L}_3/L_3 \xrightarrow{p} 1;$$
 (9)

as the proofs are similar, we only show the first one. By Lemma B.1, $\operatorname{Var}(\widehat{L}_2) = O(n^{-6} \|\theta\|_1^3 \|\theta\|_3^3)$ and $L_2 \approx n^{-3} \|\theta\|_1^2 \|\theta\|^2$. Using $E[\widehat{L}_2] = L_2$, $\mathbb{E}[(\widehat{L}_2/L_2 - 1)^2] =$
$$\begin{split} L_2^{-2} \mathrm{Var}(\widehat{L}_2) &\leq C(\|\theta\|_3^3) / (\|\theta\|_1 \|\theta\|^4)), \, \text{which} \leq C / \|\theta\|^2 \\ \text{since } \|\theta\|_3^3 &\leq \|\theta\|_1 \|\theta\|^2. \, \text{This shows (9).} \end{split}$$

Using (9) and recalling $L_3/L_2^* \leq C$ (see (5)), to show (8), it is sufficient to show

$$\|\theta\|^4 \frac{1}{(L_2^*)} (\widehat{L}_2^* - L_2^*) \xrightarrow{p} 0,$$

and since $\widehat{L}_2^*/L_2^* = \widehat{L}_2/L_2$, it is equivalent to show

$$\|\theta\|^4 (\frac{\widehat{L}_2}{L_2} - 1) \xrightarrow{p} 0.$$
 (10)

Last, we prove (3). We need some notations. Given 4 distinct nodes, there are 3 different possible cycles, denoted as $CC(i_1, i_2, i_3, i_4) = \{(i_1, i_2, i_3, i_4), (i_1, i_2, i_4, i_3), (i_1, i_3, i_2, i_4)\}$; moreover, for $B \subset \{1, 2, ..., n\}^4$, let $CC(B) = \bigcup_{(i_1, i_2, i_3, i_4) \in B} CC(i_1, i_2, i_3, i_4)$. For $1 \le m \le n$, let I_m be the collection of (i_1, i_2, i_3, i_4) such that $1 \le i_1 < i_2 < i_3 < i_4 = m$. Write $\Omega_{ij}^* = \Omega_{ij}(1 - \Omega_{ij})$. Let $W = A - \Omega$. Define

$$S_{n,n} \equiv \frac{\sum_{CC(I_n)} W_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} W_{i_4 i_1}}{\sqrt{\sum_{CC(I_n)} \Omega^*_{i_1 i_2} \Omega^*_{i_2 i_3} \Omega^*_{i_3 i_4} \Omega^*_{i_4 i_1}}}$$

The following lemma is proved in Section D.

Lemma B.2 Under the conditions of Theorem 3.2,

$$\frac{\sqrt{3\binom{n}{4}}}{\sqrt{C_4}}(\widehat{C}_4 - C_4) - S_{n,n} \xrightarrow{p} 0.$$

By Lemma B.2, to show (3), it suffices to show that

$$S_{n,n} \stackrel{a}{\to} N(0,1). \tag{11}$$

Below, we prove (11). For $1 \le m \le n$, define the σ -algebra $\mathcal{F}_{n,m} = \sigma(\{A_{ij}\}_{1 \le i < j \le m})$ and

$$X_{n,m} = S_{n,m} - S_{n,m-1},$$

where $S_{n,0} = 0$ and

$$S_{n,m} = \frac{\sum_{CC(I_m)} W_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} W_{i_4 i_1}}{\sqrt{\sum_{CC(I_n)} \Omega^*_{i_1 i_2} \Omega^*_{i_2 i_3} \Omega^*_{i_3 i_4} \Omega^*_{i_4 i_1}}}, \quad 1 \le m \le n.$$

It is easy to see that $\mathbb{E}[S_{n,m}|\mathcal{F}_{n,m-1}] = S_{n,m-1}$. Hence, $\{X_{n,m}\}_{m=1}^{n}$ is a martingale difference sequence relative to the filtration $\{\mathcal{F}_{n,m}\}_{m=1}^{n}$, and $S_{n,n} = \sum_{m=1}^{n} X_{n,m}$. To show (11), we apply the martingale central limit theorem in (Hall & Heyde, 2014) and check:

(a)
$$\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 | \mathcal{F}_{n,m-1}) \xrightarrow{p} 1.$$

(b)
$$\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 \mathbb{1}_{\{|X_{n,m}| > \epsilon\}} | \mathcal{F}_{n,m-1}) \xrightarrow{p} 0$$
, for any $\epsilon > 0$.

Note that once we have checked that both conditions (a) and (b) are satisfied, then by the martingale central limit theorem, $S_{n,n} \stackrel{d}{\rightarrow} N(0,1)$. Combining it with Lemma B.2, we have proved (3).

It remains to check (a)-(b). For preparation, we first derive an alternative expression of $\mathbb{E}(X_{n,m}|\mathcal{F}_{n,m-1})$ as (14) below. By definition,

$$X_{n,m} = \frac{1}{\sqrt{M_n}} \sum_{\sum_{CC(I_m) \setminus CC(I_{m-1})}} W_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} W_{i_4 i_1},$$

where $M_n \equiv \sum_{CC(I_n)} \Omega_{i_1i_2}^* \Omega_{i_2i_3}^* \Omega_{i_3i_4}^* \Omega_{i_4i_1}^*$ and the summation is over all 4-cycles in $CC(I_m) \setminus CC(I_{m-1})$. Note that a cycle in $CC(I_m) \setminus CC(I_{m-1})$ has to include the node m. Hence, we can use the following way to get all such cycles: First, select 2 indices (i, j) from $\{1, 2, ..., m - 1\}$ and use them as the two neighboring nodes of m; second, select an index $k \in \{1, 2, ..., m - 1\} \setminus \{i, j\}$ as the last node in the cycle. This allows us to write

$$X_{n,m} = \frac{1}{\sqrt{M_n}} \sum_{1 \le i < j \le m-1} W_{mi} W_{mj} \cdot Y_{(m-1)ij}, \quad (12)$$

where

$$Y_{(m-1)ij} = \sum_{1 \le k \le m-1, k \notin \{i,j\}} W_{ki} W_{kj}.$$
 (13)

Conditioning on $\mathcal{F}_{n,m-1}$, $\{W_{mi}W_{mj}\}_{1 \le i < j \le m-1}$ are mutually uncorrelated and $Y_{(m-1)ij}$ is a constant. Hence, it follows from (12)-(13) that

$$\mathbb{E}(X_{n,m}^2 | \mathcal{F}_{n,m-1}) = \frac{1}{M_n} \sum_{1 \le i < j \le m-1} Y_{(m-1)ij}^2 \Omega_{mi}^* \Omega_{mj}^*.$$
(14)

We now check (a). It suffices to show that

$$\mathbb{E}\left[\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 | \mathcal{F}_{n,m-1})\right] = 1,$$
(15)

and

$$\operatorname{Var}\left(\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^{2} | \mathcal{F}_{n,m-1})\right) \to 0.$$
 (16)

Consider (15). In the definition (13), the terms in the sum are (unconditionally) mutually uncorrelated. As a result,

$$\mathbb{E}[Y_{(m-1)ij}^2] = \sum_{k < m, k \notin \{i,j\}} \Omega_{ki}^* \Omega_{kj}^*.$$

It follows that

$$\mathbb{E}\left[\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^{2}|\mathcal{F}_{n,m-1})\right]$$

$$= \frac{1}{M_{n}} \sum_{m=1}^{n} \sum_{1 \le i < j \le m-1} \sum_{1 \le k \le m-1, k \notin \{i,j\}} \Omega_{ki}^{*} \Omega_{kj}^{*} \Omega_{mi}^{*} \Omega_{mj}^{*}$$

$$= \frac{1}{M_{n}} \sum_{(m,i,j,k) \in CC(I_{n})} \Omega_{mi}^{*} \Omega_{ik}^{*} \Omega_{kj}^{*} \Omega_{jm}^{*} = 1. \quad (17)$$

This proves (17).

Consider (16). We first decompose the random variable $\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 | \mathcal{F}_{n,m-1})$ into the sum of two parts, and then calculate its variance. By (13),

$$Y_{(m-1)ij}^{2} = \sum_{k} W_{ki}^{2} W_{kj}^{2} + \sum_{k \neq \ell} W_{ki} W_{kj} W_{\ell i} W_{\ell j}$$

where k and ℓ range in $\{1, 2, ..., m - 1\} \setminus \{i, j\}$. Plugging it into (14), we have a decomposition

$$\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 | \mathcal{F}_{n,m-1}) = I_a + I_b,$$
(18)

where

$$I_{a} = \frac{1}{M_{n}} \sum_{m=1}^{n} \sum_{i < j \le m-1} \sum_{\substack{k \le m-1 \\ k \notin \{i,j\}}} W_{ki}^{2} W_{kj}^{2} \Omega_{mi}^{*} \Omega_{mj}^{*},$$
$$I_{b} = \frac{1}{M_{n}} \sum_{m=1}^{n} \sum_{i < j \le m-1} \sum_{\substack{k,\ell \le m-1 \\ k,\ell \notin \{i,j\}}} W_{ki} W_{kj} W_{\ell i} W_{\ell j} \Omega_{mi}^{*} \Omega_{mj}^{*}$$

Then,

$$\operatorname{Var}\left(\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^{2} | \mathcal{F}_{n,m-1})\right)$$
$$=\operatorname{Var}(I_{a}) + \operatorname{Var}(I_{b}) + 2\operatorname{Cov}(I_{a}, I_{b})$$
$$\leq \left(\sqrt{\operatorname{Var}(I_{a})} + \sqrt{\operatorname{Var}(I_{b})}\right)^{2}$$
(19)

It suffices to show that both $Var(I_a) \to 0$ and $Var(I_b) \to 0$.

Consider the variance of I_a . In the sum of I_a , all 4-cycles (k, i, m, j) involved are selected in this way: We first select m, then select a pair (i, j) from $\{1, 2, \ldots, m-1\}$ and connect both i and j to m, and finally select k to close the cycle. In fact, these 4-cycles can be selected in an alternative way: First, select a V-shape (i, k, j) with k being the middle point. Second, select $m > \max\{i, k, j\}$ to make the V-shape a cycle. Hence, we can rewrite

$$I_a = \frac{1}{M_n} \sum_{k=1}^n \sum_{\substack{1 \le i < j \le n \\ i \ne k, j \ne k}} W_{ki}^2 W_{kj}^2 \underbrace{\sum_{\substack{m > \max\{i, j, k\} \\ \equiv b_{kij}}} \Omega_{mi}^* \Omega_{mj}^*}_{\equiv b_{kij}}$$

The terms $W_{ki}^2 W_{kj}^2$ corresponding to different k are independent of each other. We now fix k and calculate the covariance between $W_{ki}^2 W_{kj}^2$ and $W_{ki'}^2 W_{kj'}^2$ for $(i, j) \neq (i', j')$. There are three cases. Case (i): (i, j) = (i', j'). In this case, $\operatorname{Var}(W_{ki}^2 W_{kj}^2) \leq \mathbb{E}[W_{ki}^4 W_{kj}^4] \leq \mathbb{E}[W_{ki}^2 W_{kj}^2] \leq \Omega_{ki}^* \Omega_{kj}^*$. Case (ii): i = i' but $j \neq j'$. In this case, we have $\operatorname{Cov}(W_{ki}^2 W_{kj}^2, W_{ki}^2 W_{kj'}^2) = \operatorname{Var}(W_{ki}^2) \cdot \mathbb{E}[W_{kj}^2] \mathbb{E}[W_{kj'}^2] \leq \Omega_{ki}^* \Omega_{kj'}^*$. Case (iii): $(i, j) \cap (i', j') = \emptyset$. The two terms are independent, and their covariance is zero. Combining the above gives

$$\operatorname{Var}(I_a) \leq \frac{1}{M_n} \sum_{k=1}^n \left(\sum_{\substack{1 \leq i < j \leq n \\ i \neq k, j \neq k}} b_{kij}^2 \Omega_{ki}^* \Omega_{kj}^* \right)$$
$$+ \sum_{\substack{i,j,j' \in \{1,\dots,n\} \setminus \{k\} \\ i,j,j' \text{ are distinct}}} b_{kij} b_{kij'} \Omega_{ki}^* \Omega_{kj}^* \Omega_{kj'}^* \right).$$

We now bound the right hand side. By condition (9), $\Omega_{ij}^* \leq C\theta_i\theta_j$. Hence, $b_{kij} \leq C\sum_{m>k} \theta_m^2 \theta_i \theta_j \leq C ||\theta||^2 \theta_i \theta_j$. As a result,

$$\begin{aligned} \operatorname{Var}(I_{a}) &\leq \frac{C}{M_{n}^{2}} \Big[\sum_{k,i,j} \|\theta\|^{4} \theta_{k}^{2} \theta_{i}^{3} \theta_{j}^{3} + \sum_{k,i,j,j'} \|\theta\|^{4} \theta_{k}^{3} \theta_{i}^{3} \theta_{j}^{2} \theta_{j'}^{2} \Big] \\ &\leq \frac{C}{M_{n}^{2}} (\|\theta\|^{6} \|\theta\|_{3}^{6} + \|\theta\|^{8} \|\theta\|_{3}^{6}). \end{aligned}$$

By (7), $\|\theta\| \to \infty$, so the second term dominates. Moreover, since $\Omega_{ij}^* = \Omega_{ij}(1 - \Omega_{ij}) \ge c\Omega_{ij}$ (in our setting, all Ω_{ij} 's are bounded away from 1). As a result, we have $M_n \ge c \sum_{CC(I_n)} \Omega_{i_1 i_2} \Omega_{i_2 i_3} \Omega_{i_3 i_4} \Omega_{i_4 i_1} \ge C^{-1} n^4 C_4$. By Lemma B.1, $n^4 C_4 \asymp \|\theta\|^8$. Combining the above gives $\operatorname{Var} = O(\|\theta\|_3^6/\|\theta\|^8)$, i.e.,

$$\sqrt{\operatorname{Var}(I_a)} \le \frac{C\sum_i \theta_i^3}{(\sum_i \theta_i^2)^2} \le \frac{C\theta_{\max}}{\sum_i \theta_i^2} = o(1).$$
(20)

Consider the variance of I_b . Rewrite

$$I_b = \frac{1}{M_n} \sum_{k,\ell,i,j \text{ are distinct}} c_{k\ell i j} G_{k\ell i j},$$

where

$$G_{k\ell ij} \equiv W_{ki} W_{kj} W_{\ell i} W_{\ell j}, \quad c_{k\ell ij} = \sum_{\substack{m > \\ \max\{k,\ell,i,j\}}} \Omega_{mi}^* \Omega_{mj}^*.$$

Since I_b has a mean zero, $Var(I_b) = \mathbb{E}(I_b^2)$. Additionally, for 2 cycles (k, ℓ, i, j) and (k', ℓ', i', j') , only when they are exactly equal, we have $\mathbb{E}[G_{k\ell i j}G_{k'\ell' i' j'}] \neq 0$. As a result,

$$\begin{aligned} \operatorname{Var}(I_b) &= \frac{1}{M_n} \sum_{k,\ell,i,j \text{ are distinct}} c_{k\ell i j}^2 \mathbb{E}[G_{k\ell i j}^2] \\ &= \frac{1}{M_n} \sum_{k,\ell,i,j \text{ are distinct}} c_{k\ell i j}^2 \Omega_{ki}^* \Omega_{kj}^* \Omega_{\ell i}^* \Omega_{\ell j}^*. \end{aligned}$$

Similarly to how we get the bound for b_{kij} , we can derive that $c_{k\ell ij} \leq C \|\theta\|^2 \theta_i \theta_j$. Moreover, $\Omega_{ki}^* \Omega_{kj}^* \Omega_{\ell i}^* \Omega_{\ell j}^* \leq C \theta_i^2 \theta_i^2 \theta_k^2 \theta_\ell^2$. Hence,

$$\operatorname{Var}(I_{b}) \leq \frac{C}{\|\theta\|^{16}} \sum_{k,\ell,i,j} \|\theta\|^{4} \theta_{k}^{2} \theta_{\ell}^{2} \theta_{i}^{4} \theta_{j}^{4} \leq \frac{C \|\theta\|_{k}^{4}}{\|\theta\|^{8}}$$

As a result,

$$\sqrt{\operatorname{Var}(I_b)} \le \frac{C\sum_i \theta_i^4}{(\sum_i \theta_i^2)^2} \le \frac{C\theta_{\max}^2}{\sum_i \theta_i^2} = o(1).$$
(21)

Plugging (20)-(21) into (19) gives (16). Combining (15) and (16), we have proved (a).

We now check (b). By the Cauchy-Schwarz inequality and the Chebyshev's inequality,

$$\sum_{m=1}^{n} \mathbb{E}(X_{n,m}^2 \mathbb{1}_{\{|X_{n,m}| > \epsilon\}} | \mathcal{F}_{n,m-1})$$

$$\leq \sum_{m=1}^{n} \sqrt{\mathbb{E}(X_{n,m}^4 | \mathcal{F}_{n,m-1})} \sqrt{\mathbb{P}(|X_{n,m}| \ge \epsilon | \mathcal{F}_{n,m-1})}$$

$$\leq \epsilon^{-2} \sum_{m=1}^{n} \mathbb{E}(X_{n,m}^4 | \mathcal{F}_{n,m-1}).$$

Therefore, it suffices to show that the right hand side converges to zero in probability. Then, it suffices to show that its L^1 -norm converges to zero. Since the right hand is a nonnegative random variable, we only need to prove that its expectation converges to zero, i.e.,

$$\mathbb{E}\bigg[\sum_{m=1}^{n} X_{n,m}^{4}\bigg] = o(1).$$
(22)

We now prove (22). We use the expression of $X_{n,m}$ in (12). Conditioning on $\mathcal{F}_{n,m-1}$, the $Y_{(m-1)ij}$'s are non-random. It follows that

$$\mathbb{E}[X_{n,m}^{4}|\mathcal{F}_{n,m-1}] = \frac{1}{M_{n}^{4}} \sum_{\substack{i,j=1\\i\neq j}}^{m-1} Y_{(m-1)ij}^{2} \mathbb{E}[W_{mi}^{4}W_{mj}^{4}]$$

+ $\frac{1}{M_{n}^{4}} \sum_{i=1}^{m-1} \sum_{\substack{j,j'=1\\j,j'\notin\{i\}}}^{m-1} Y_{(m-1)ij}Y_{(m-1)ij'}\mathbb{E}[W_{mi}^{4}W_{mj}^{2}W_{mj'}^{2}]$
+ $\frac{1}{M_{n}^{4}} \sum_{\substack{i,j,i',j'=1\\\text{distinct}}}^{m-1} Y_{(m-1)ij}Y_{(m-1)i'j'}\mathbb{E}[W_{mi}^{2}W_{mj}^{2}W_{mi'}^{2}W_{mj'}^{2}].$

First, we shall use the independence across entries of Wand the fact that $\mathbb{E}[W_{ij}^4] \leq \mathbb{E}[W_{ij}^2] \leq \Omega_{ij} \leq C\theta_i\theta_j$. Second, in proving (17), we have seen that $\mathbb{E}[Y_{(m-1)ij}^2] =$ $\sum_{k < m, k \notin \{i,j\}} \Omega_{ki}^* \Omega_{kj}^* \leq C \sum_k \theta_k^2 \theta_i \theta_j \leq C \|\theta\|^2 \theta_i \theta_j$. Third, from (13), it is easy to see that when (i, j, i', j') are distinct, $\mathbb{E}[Y_{(m-1)ij}Y_{(m-1)i'j'}] = 0$; moreover, for $j \neq j'$, $\mathbb{E}[Y_{(m-1)ij}Y_{(m-1)ij'}] = \sum_k \mathbb{E}[W_{ki}^2]\mathbb{E}[W_{kj}W_{kj'}] = 0$. Last, in proving (20), we have seen that $M_n \geq c \|\theta\|^8$. Combining the above, we find that

$$\mathbb{E}[X_{n,m}^{4}] = \frac{1}{M_{n}^{2}} \sum_{\substack{i,j=1\\i\neq j}}^{m-1} \mathbb{E}[Y_{(m-1)ij}^{2}] \mathbb{E}[W_{mi}^{4}W_{mj}^{4}]$$

$$\leq \frac{C}{\|\theta\|^{16}} \sum_{i,j=1}^{m-1} (\|\theta\|^{2}\theta_{i}\theta_{j})(\theta_{m}\theta_{i})(\theta_{m}\theta_{j})$$

$$\leq C\theta_{m}^{2}/\|\theta\|^{10}.$$

As a result,

$$\sum_{n=1}^{n} \mathbb{E}[X_{n,m}^4] \le C \|\theta\|^{-8} = o(1).$$

This gives (22) and (b) follows.

C. Proof of Theorem 3.3 and Corollary 3.1

Consider Theorem 3.3 first. For short, let

$$Z_n^{(m)} = \sqrt{\frac{B_{n,m}}{2m}} \widehat{C}_m^{-1/2} \widehat{\chi}_{gc}^{(m)}, \ x_0^* = \mathbb{P}(Z_n^{(m)} \ge z_\alpha).$$

It suffices to show that under the null and alternative,

$$|x_0^* - \Phi(\delta_{gc}^{(m)} - z_\alpha)| \le o(1).$$
(23)

Denote $a_n = (C_m/\widehat{C}_m)^{1/2}$ for short. It is seen that

$$a_n \xrightarrow{p} 1,$$
 (24)

and

$$\frac{1}{a_n} Z_n^{(m)} = \sqrt{\frac{B_{n,m}}{2m}} C_m^{-1/2} \widehat{\chi}_{gc}^{(m)}.$$
 (25)

Combining Theorem 3.1 and the proof of Theorem 3.2, we have shown that

$$\sqrt{\frac{B_{n,m}}{2m}} C_m^{-1/2} \left[\hat{\chi}_{gc}^{(m)} - \chi_{gc,0}^{(m)} \right] \xrightarrow{p} N(0,1), \qquad (26)$$

where by definitions,

$$\sqrt{\frac{B_{n,m}}{2m}}C_m^{-1/2}\chi_{gc,0}^{(m)} = \delta_{gc}^{(m)}.$$
(27)

Combining (25)-(27) gives

$$\frac{1}{a_n} Z_n^{(m)} - \delta_{gc}^{(m)} \xrightarrow{d} N(0, 1).$$
(28)

Denote the CDF of $\frac{1}{a_n}Z_n^{(m)} - \delta_{gc}^{(m)}$ by F_n . Recall that Φ denotes the CDF of N(0, 1). It follows from (28) that

$$\sup_{x} |F_n(x) - \Phi(x)| \to 0.$$
(29)

We now rewrite

$$x_{0}^{*} = \mathbb{P}\left(\frac{1}{a_{n}}Z_{n}^{(m)} - \delta_{gc}^{(m)} \ge \frac{1}{a_{n}}z_{\alpha} - \delta_{gc}^{(m)}\right),\$$

and introduce a proxy by

$$x_0 = \mathbb{P}\left(\frac{1}{a_n}Z_n^{(m)} - \delta_{gc}^{(m)} \ge z_\alpha - \delta_{gc}^{(m)}\right).$$

By triangle inequality,

$$\begin{aligned} x_0^* - \Phi(\delta_{g_c}^{(m)} - z_\alpha)| &\le |x_0^* - x_0| + |x_0 - \Phi(\delta_{g_c}^{(m)} - z_\alpha)|. \end{aligned}$$
(30)

where by (29),

$$|x_0 - \Phi(\delta_{gc}^{(m)} - z_\alpha)| \to 0.$$
 (31)

Moreover, for any fixed $\epsilon > 0$, it is seen that

$$|x_0^* - x_0| \le I + II,$$

 $I = \mathbb{P}(|a_n - 1| \ge \epsilon),$

where

 $II = \mathbb{P}(\frac{1}{a}Z_n^{(m)} - \delta_{gc}^{(m)} \text{ falls between } (1 \pm \epsilon)z_\alpha - \delta_{gc}^{(m)}),$

which by (29) does not exceed

$$\mathbb{P}(N(0,1) \text{ falls between } (1 \pm \epsilon)z_{\alpha} - \delta_{gc}^{(m)}) + o(1);$$

note the first term does not exceed $(2/\sqrt{2\pi})z_{\alpha}\epsilon$. Combining these gives that for any $\epsilon > 0$,

$$|x_0^* - \Phi(\delta_{g_c}^{(m)} - z_\alpha)| \le (2/\sqrt{2\pi})z_\alpha \epsilon + \mathbb{P}(|a_n - 1| \ge \epsilon) + o(1).$$

Recall that $a_n \xrightarrow{p} 1$, the claim follows.

Next, consider Corollary 3.1. It is seen that $\delta_{gc}^{(m)} = 0$ under the null and that under the alternative,

$$\delta_{gc}^{(m)} \ge \sum_{k=2}^{K} \lambda_k^m / [\sum_{k=1}^{K} \lambda_k^m]^{1/2}.$$

When m = 4, by Lemma 6.1, $\delta_{gc}^{(4)} \ge c_4 \|\theta\|^4$ for some constant $c_4 > 0$. When m = 3 and P is positive definite, λ_k are the eigenvalues of $\Theta \Pi P \Pi' \Theta$, so for $1 \le k \le K$, $\lambda_k \ge 0$. Using Lemma 6.1, $\delta_{gc}^{(3)} \ge c_3 \|\theta\|^3$ for some constant c_3 . Combining these with Theorem 3.3 gives the claim.

D. Proof of Secondary Lemmas

D.1. Proof of Lemma 6.1

We first consider the claim about λ_k 's. Recall that λ_k 's are the eigenvalues of the matrix $G^{1/2}PG^{1/2}$. First, we

have $||G|| \leq \sum_{k,\ell} G(k,\ell) = \sum_{k,\ell} \sum_i \theta_i^2 \pi_i(k)\pi_i(\ell) = \sum_i \theta_i^2 \sum_{k,\ell} \pi_i(k)\pi_i(\ell) = ||\theta||^2$. Second, let $g_k = \sum_{i\in\mathcal{N}_k} \theta_i^2$ for $1 \leq k \leq K$, and write $\Theta = \Theta_1 + \Theta_2$, where $\Theta_1(i,i) = \theta_i \cdot 1\{i \in \bigcup_{k=1}^K \mathcal{N}_k\}$ and $\Theta_2 \equiv \Theta - \Theta_1$. It yields that $G = \Pi'\Theta_1^2\Pi + \Pi'\Theta_2^2\Pi = \operatorname{diag}(g_1, \cdots, g_K) + \Pi'\Theta_2^2\Pi$. Hence, $\lambda_{\min}(G) \geq \min_{1 \leq k \leq K} g_k \geq c_2 ||\theta||^2$, where the last inequality is from condition (8). Combining the above gives

$$c_2 \|\theta\|^2 \le \lambda_{\min}(G) \le \|\theta\|^2.$$
(32)

Using condition (9), we find that $|\lambda_k| \leq ||PG|| \leq C||G|| = O(||\theta||^2)$. Additionally, since $|\lambda_k|^2$ is an eigenvalue of $(G^{1/2}PG^{1/2})^2 = G^{1/2}PGPG^{1/2}$, we then have $|\lambda_k|^2 \geq \lambda_{\min}(G) \cdot \lambda_{\min}(PGP) \geq \lambda_{\min}^2(G) \cdot s_{\min}^2(P) \geq c_1^2 c_2^2 ||\theta||^4$. It gives

$$C^{-1} \|\theta\|^2 \le |\lambda_k| \le C \|\theta\|^2, \qquad 1 \le k \le K.$$

We then consider the claim about η . Since $\max_k |\eta' \xi_k|^2$ is upper bounded by $\sum_k |\eta' \xi_k|^2$ and lower bounded by $K^{-1} \sum_k |\eta' \xi_k|^2$, it suffices to show that

$$C^{-1} \|\theta\|_1^2 \le \sum_{1 \le k \le K} |\eta' \xi_k|^2 \le C \|\theta\|_1^2.$$
(33)

Since ξ_1, \ldots, ξ_K form an orthonormal basis,

$$\sum_{1 \le k \le K} |\eta' \xi_k|^2 = \|\eta\|^2 = \mathbf{1}_n' \Theta \Pi G^{-1} \Pi' \Theta \mathbf{1}_n.$$

It follows from (32) that the right hand side has the same order as $\|\theta\|^{-2} \|\Pi' \Theta \mathbf{1}_n\|^2$. Write $v = \Pi' \Theta \mathbf{1}_n$. For $1 \le k \le K$, $v(k) = \sum_i \pi_i(k)\theta_i$. It follows that $v(k) \le \|\theta\|_1$. At the same time, $\sum_{k=1}^K v^2(k) \ge \frac{\left(\sum_{k=1}^K v(k)\right)^2}{K} = \frac{\|\theta\|_1^2}{K}$, where we've used Cauchy-Schwarz inequality.

It follows that

$$C^{-1} \|\theta\|_1^2 \le \|\Pi' \Theta \mathbf{1}_n\|^2 \le C \|\theta\|_1^2.$$

Hence, (33) follows.

D.2. Proof of Lemma B.1

Consider the first item. By (16) of (Jin et al., 2018),

$$C_4 = \frac{1}{B_{n,4}} \left[\sum_{k=1}^{K} \lambda_k^4 + O(\|\theta\|_4^4 \|\theta\|^4) \right],$$

where we note $B_{n,4} \sim n^{-4}$. First, by Lemma 6.1 of (Jin et al., 2018),

$$\sum_{k=1}^{K} \lambda_k^4 \asymp \|\theta\|^8,$$

Second, by (7) of (Jin et al., 2018), $\theta_{max} \leq \|\theta\|_3 \to 0$, so it is seem $\|\theta\|_4^4 \leq \theta_{max} \|\theta\|_3^3 \leq o(1)$, and so $\|\theta\|_4^4 \|\theta\|^4 \leq o(\theta\|^4)$. Combining these give the claim.

Consider the second item. By (17) of (Jin et al., 2018),

$$L_{2} = \frac{1}{B_{n,3}} \left[\sum_{k=1}^{K} \lambda_{k}^{2} (\eta, \xi_{k})^{2} + O(\|\theta\|_{1}^{2} \|\theta\|_{4}^{4} \|\theta\|^{-2}) \right],$$

where by Lemma 6.1 of (Jin et al., 2018),

$$\sum_{k=1}^{K} \lambda_k^2(\eta, \xi_k)^2 \asymp \|\theta\|^2 \|\theta\|_1^2$$

By similar argument, $\|\theta\|_1^2 \|\theta\|_4^4 \|\theta\|^{-2} \le o(\|\theta\|^2 \|\theta\|_1^2)$, so the claim follows by noting $B_{n,3} \sim n^{-3}$.

Consider the third item. By similar argument, it is seen that

$$L_{3} = \frac{1}{B_{n,4}} \left[\sum_{k=1}^{K} \lambda_{k}^{3}(\eta, \xi_{k})^{2} + O(\|\theta\|_{1}^{2} \|\theta\|_{4}^{4}) \right]$$

$$\leq Cn^{-4} \|\theta\|_{1}^{2} \|\theta\|^{4}.$$

For the lower bound, we use a different proof as λ_k may be negative. By $L_3 = E[\hat{L}_3]$ and $E[A_{ij}] = \Omega_{ij}$ when $i \neq j$,

$$L_{3} = \frac{1}{B_{n,4}} \sum_{\substack{1 \le i_{1}, i_{2}, i_{3}, i_{4} \le n \\ \text{are distinct}}} \Omega_{i_{1}i_{2}} \Omega_{i_{2}i_{3}} \Omega_{i_{3}i_{4}}.$$

As before, let N_1 denote the set of pure nodes in community 1. It is not hard to see that

$$L_3 \ge \sum_{k=1}^K \sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_k \\ \text{are distinct}}} \Omega_{i_1 i_2} \Omega_{i_2 i_3} \Omega_{i_3 i_4}.$$

In our model, all diagonal entries of P are 1, so for any $i, j \in \mathcal{N}_1, \Omega_{ij} = \theta_i \theta_j$. Therefore,

$$L_3 \ge \sum_{k=1}^{K} \sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_k \\ \text{are distinct}}} \theta_{i_1} \theta_{i_4} \theta_{i_2}^2 \theta_{i_3}^2.$$
(34)

Now, we can lower bound the right hand side of (34) by

$$I - II - III - IV$$
,

where

$$\begin{split} I &= \sum_{k=1}^{K} \sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_k}} \theta_{i_1} \theta_{i_4} \theta_{i_2}^2 \theta_{i_3}^2, \\ II &= \sum_{k=1}^{K} \sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_k \\ i_1 = i_4}} \theta_{i_1} \theta_{i_4} \theta_{i_2}^2 \theta_{i_3}^2, \\ III &= \sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_1 \\ i_2 = i_3}} \theta_{i_1} \theta_{i_4} \theta_{i_2}^2 \theta_{i_3}^2, \end{split}$$

and

$$IV = 4\sum_{k=1}^{K}\sum_{\substack{i_1, i_2, i_3, i_4 \in \mathcal{N}_k\\i_1 = i_2}} \theta_{i_1} \theta_{i_4} \theta_{i_2}^2 \theta_{i_3}^2.$$

First, by (8) of (Jin et al., 2018),

$$I = \sum_{k=1}^{K} \left(\sum_{i \in \mathcal{N}_{k}} \theta_{i} \right)^{2} \left(\sum_{i \in \mathcal{N}_{k}} \theta_{i}^{2} \right)^{2}$$
$$\geq C \|\theta\|^{4} \sum_{k=1}^{K} \left(\sum_{i \in \mathcal{N}_{k}} \theta_{i} \right)^{2}$$
$$\geq C \|\theta\|^{2}_{1} \|\theta\|^{4},$$

where the last inequality is Cauchy-Schwarz inequality.

Second, by (7) of (Jin et al., 2018) that $\theta_{\max} \leq \|\theta\|_3 = o(1)$, we obtain $\|\theta\|^2 \leq o(1) \cdot \|\theta\|_1$ (note $\|\theta\| \to \infty$), and

$$II \le C \sum_{k=1}^{K} \sum_{i_1, i_2, i_3 \in \mathcal{N}_k} \theta_{i_1} \theta_{i_2}^2 \theta_{i_3}^2$$

$$\le C \|\theta\|_1 \|\theta\|^4$$

$$= o(\|\theta\|_1^2 \|\theta\|^4).$$

Similarly, we have $\|\theta\|_3^3 \le o(1) \cdot \|\theta\|_2^2$ and $\|\theta\|_4^4 \le o(1) \cdot \|\theta\|_2^2$, which implies

$$III = o(\|\theta\|_1^2 \|\theta\|^4), \text{ and } IV = o(\|\theta\|_1^2 \|\theta\|^4).$$

Combining these gives $L_3 \ge c \|\theta\|_1^2 \|\theta\|^4$, and the claim follows.

We now prove the next three items (on the variances). In the Proof of Lemma B.2, we've already shown that $\frac{1}{B_{n,4}} \sum_{\substack{i_1, \cdots, i_4 \\ \text{distinct}}} G_{i_1 i_2 i_3 i_4}(W)$ is the dominating term of $(\widehat{C}_4 - C_4)$, and that

$$\begin{aligned} &\operatorname{Var}\left(\frac{1}{B_{n,4}}\sum_{\substack{i_{1},\cdots,i_{4}\\\text{distinct}}}G_{i_{1}i_{2}i_{3}i_{4}}(W)\right) \\ \leq & Cn^{-4}\sum_{\substack{i_{1},\cdots,i_{4}\\\text{distinct}}}G_{i_{1}i_{2}i_{3}i_{4}}(\Omega) \\ \leq & Cn^{-4}\sum_{\substack{i_{1},\cdots,i_{4}\\i_{1},\cdots,i_{4}}}\theta_{i_{1}}^{2}\theta_{i_{2}}^{2}\theta_{i_{3}}^{2}\theta_{i_{4}}^{2} = Cn^{-4}\|\theta\|^{8}. \end{aligned}$$

Combining it with $C_4 \asymp n^{-4} ||\theta||^8$, we get $\operatorname{Var}(\widehat{C}_4) = O(n^{-4}C_4)$.

Consider $Var(\hat{L}_2)$. By definitions and that $B_{n,m} \simeq n^m$, we bound

$$\mathbb{E}(\widehat{L}_2 - L_2)^2 \le C n^{-6} \mathbb{E}[\sum_{i_1 < i_2 < i_3} (A_{i_1 i_2} A_{i_2 i_3} - \Omega_{i_1 i_2} \Omega_{i_2 i_3})]^2.$$
(35)

Recall that when $i \neq j$, $A_{ij} = \Omega_{ij} + W_{ij}$. Since for any numbers x, y, a, b, (a + x)(b + y) - ab = xy + ay + bx, we can write

$$\sum_{i_1 < i_2 < i_3} (A_{i_1 i_2} A_{i_2 i_3} - \Omega_{i_1 i_2} \Omega_{i_2 i_3}) = I + II + III,$$

where

$$I = \sum_{i_1 < i_2 < i_3} W_{i_1 i_2} W_{i_2 i_3},$$

$$II = \sum_{i_1 < i_2 < i_3} \Omega_{i_1 i_2} W_{i_2 i_3},$$

and

$$III = \sum_{i_1 < i_2 < i_3} \Omega_{i_2 i_3} W_{i_1 i_2}.$$

Inserting this into (35) and using Cauchy-Schwarz inequality,

$$\mathbb{E}(\widehat{L}_2 - L_2)^2 \le Cn^{-6}(\mathbb{E}[(I)^2] + \mathbb{E}[(II)^2] + \mathbb{E}[(III)^2]).$$

It then suffices to show

$$\mathbb{E}[(I)^2] \lesssim \|\theta\|_1^3 \|\theta\|_3^3, \tag{36}$$

$$\mathbb{E}[(II)^2] \lesssim \|\theta\|_1^3 \|\theta\|_3^3, \tag{37}$$

and

 $\mathbb{E}[(III)^2] \lesssim \|\theta\|_1^3 \|\theta\|_3^3.$ (38)

We now show (36)-(38) separately.

Consider (36). Note that for two sets of indices (i_1, i_2, i_3) and (j_1, j_2, j_3) such that $i_1 < i_2 < i_3, j_1 < j_2 < j_3$, by basic statistics, we have that when $(i_1, i_2, i_3) \neq (j_1, j_2, j_3)$,

$$\mathbb{E}[W_{i_1i_2}W_{i_2i_3}W_{j_1j_2}W_{j_2j_3}] = 0.$$

and when $(i_1, i_2, i_3) = (j_1, j_2, j_3)$,

$$\mathbb{E}[W_{i_1i_2}W_{i_2i_3}W_{j_1j_2}W_{j_2j_3}] = E[W_{i_1i_2}^2W_{i_2i_3}^2]$$

= $\Omega_{i_1i_2}(1 - \Omega_{i_1i_2})\Omega_{i_2i_3}(1 - \Omega_{i_2i_3}).$

Therefore,

$$\mathbb{E}[(I)]^{2} = \sum_{i_{1} < i_{2} < i_{3}} \sum_{j_{1} < j_{2} < j_{3}} E[W_{i_{1}i_{2}}W_{i_{2}i_{3}}W_{j_{1}j_{2}}W_{j_{2}j_{3}}]$$

$$\leq \sum_{i_{1} < i_{2} < i_{3}} \mathbb{E}[W_{i_{1}i_{2}}^{2}W_{i_{2}i_{3}}^{2}]$$

$$\leq \sum_{i_{1} < i_{2} < i_{3}} \Omega_{i_{1}i_{2}}(1 - \Omega_{i_{1}i_{2}})\Omega_{i_{2}i_{3}}(1 - \Omega_{i_{2}i_{3}}).$$

Recall that for any i < j,

$$\Omega_{ij}(1 - \Omega_{ij}) \le \Omega_{ij} \le \theta_i \theta_j,$$

it follows that

$$\mathbb{E}[(I)]^2 \le \sum_{i_1 < i_2 < i_3} \theta_{i_1} \theta_{i_2} \theta_{i_2} \theta_{i_3} \le \|\theta\|_1^2 \|\theta\|_2^2$$

and the claim follows by Cauchy Schwarz inequality that $\|\theta\|_{1}^{2}\|\theta\|_{2}^{2} \leq \|\theta\|_{1}^{2}(\|\theta\|_{1}\|\theta\|_{3}^{3}) = \|\theta\|_{1}^{3}\|\theta\|_{3}^{3}$.

Consider (37)-(38). Since the proofs are similar, we only show (37).

Note that for two sets of indices (i_1, i_2, i_3) and (j_1, j_2, j_3) such that $i_1 < i_2 < i_3$, $j_1 < j_2 < j_3$, by basic statistics, we have that when $(i_2, i_3) \neq (j_2, j_3)$,

$$\mathbb{E}[W_{i_2i_3}W_{j_2j_3}] = 0.$$

and when $(i_2, i_3) = (j_2, j_3)$,

$$\mathbb{E}[W_{i_2i_3}W_{j_2j_3}] = \mathbb{E}[W_{i_2i_3}^2] = \Omega_{i_2i_3}(1 - \Omega_{i_2i_3}).$$

Therefore,

$$\mathbb{E}[(II)^{2}] = \sum_{i_{1} < i_{2} < i_{3}} \sum_{j_{1} < j_{2} < j_{3}} \mathbb{E}[\Omega_{i_{1}i_{2}}\Omega_{j_{1}j_{2}}W_{i_{2}i_{3}}W_{j_{2}j_{3}}]$$

$$= \sum_{i_{1} < i_{2} < i_{3}} \mathbb{E}[\Omega_{i_{1}i_{2}}W_{i_{2}i_{3}}\sum_{j_{1} < j_{2} < j_{3}}(\Omega_{j_{1}j_{2}}W_{j_{2}j_{3}})]$$

$$= \sum_{i_{1} < i_{2} < i_{3}} \mathbb{E}[\Omega_{i_{1}i_{2}}W_{i_{2}i_{3}}^{2}(\sum_{j_{1} < i_{2}}\Omega_{j_{1}i_{2}})]$$

$$= \sum_{i_{1} < i_{2} < i_{3}} \mathbb{E}[\Omega_{i_{1}i_{2}}\Omega_{i_{2}i_{3}}(1 - \Omega_{i_{2}i_{3}})(\sum_{j_{1} < i_{2}}\Omega_{j_{1}i_{2}})]$$

Again by $\Omega_{ij}(1 - \Omega_{ij}) \le \Omega_{ij} \le \theta_i \theta_j$ for any i < j, we find

$$\mathbb{E}[(II)^{2}] \leq \sum_{i_{1} < i_{2} < i_{3}} \mathbb{E}[\Omega_{i_{1}i_{2}}\Omega_{i_{2}i_{3}}(\sum_{j_{1} < i_{2}}\Omega_{j_{1}i_{2}})]$$

$$\leq \sum_{i_{1} < i_{2} < i_{3}} \theta_{i_{1}}\theta_{i_{2}}^{2}\theta_{i_{3}}(\sum_{j_{1} < i_{2}}\theta_{j_{1}}\theta_{i_{2}})$$

$$\leq \|\theta\|_{1}^{3}\|\theta\|_{3}^{3}.$$

Last, we prove the claim on $\operatorname{Var}(\widehat{L}_3)$. It suffices to control the covariance between $(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4})$ and $(A_{j_1j_2}A_{j_2j_3}A_{j_3j_4})$. To be more specific, define the set

$$\mathcal{J} = \{(i_1, i_2), (i_2, i_3), (i_3, i_4), (j_1, j_2), (j_2, j_3), (j_3, j_4)\},\$$

whose elements are pairs of unordered integers, i.e. we treat (i_1, i_2) and (i_2, i_1) as the same element.

Let $|\mathcal{J}|$ be the number of distinct elements of \mathcal{J} , where $3 \leq |\mathcal{J}| \leq 6$ under the condition that $i_1 < i_2 < i_3 < i_4$ and $j_1 < j_2 < j_3 < j_4$. To control the variance of \hat{L}_3 , it suffices to bound the following quantity

$$\sum_{s=3}^{6} \sum_{|\mathcal{J}|=s} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}).$$

Furthermore, it suffices to show for $3 \le s \le 6$,

$$\sum_{|\mathcal{J}|=s} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}) \lesssim \|\theta\|_1^4 \|\theta\|_3^6$$
(39)

When $|\mathcal{J}| = 6$, it's not hard to see $(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4})$ and $(A_{j_1j_2}A_{j_2j_3}A_{j_3j_4})$ are independent because the six elements in \mathcal{J} are all distinct, which indicates

$$\sum_{|\mathcal{J}|=6} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}) = 0.$$

The following basic property is frequently used in the discussion of remaining cases. For non-negative random variables X and Y, we have

$$\operatorname{Cov}(X,Y) \le \mathbb{E}[XY]. \tag{40}$$

Consider the case where $|\mathcal{J}| = 5$. By symmetry, it's enough to consider three situations where $(i_1, i_2) = (j_1, j_2)$, $(i_1, i_2) = (j_2, j_3)$ and $(i_2, i_3) = (j_2, j_3)$, separately.

If
$$(i_1, i_2) = (j_1, j_2)$$
, we have

$$\sum_{\substack{(i_1,i_2)=(j_1,j_2)\\ \leq \sum_{(i_1,i_2)=(j_1,j_2)}} \mathbb{E}\left[A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}\right]$$

$$\leq \sum_{\substack{(i_1,i_2)=(j_1,j_2)\\ \leq C}} \mathbb{E}\left[A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}A_{j_2j_3}A_{j_3j_4}\right]$$

$$\leq C\sum_{\substack{(i_1,i_2)=(j_1,j_2)\\ \in C}} \theta_{i_1}\theta_{i_2}^3\theta_{i_3}^2\theta_{i_3}\theta_{i_4}\theta_{j_2}^2\theta_{j_4}^2\theta_{j_4}$$

$$= C\|\theta\|_1^3\|\theta\|^4\|\theta\|_3^3 \leq C\|\theta\|_1^4\|\theta\|_3^6,$$

where the last inequality is due to $\|\theta\|^4 \le \|\theta\|_1 \|\theta\|_3^3$ by Cauchy-Schwarz inequality.

If $(i_1, i_2) = (j_2, j_3)$, we have $\sum_{\substack{(i_1, i_2) = (j_2, j_3) \\ \leq \sum_{\substack{(i_1, i_2) = (j_2, j_3) \\ (i_1, i_2) = (j_2, j_3)}} \mathbb{E}[A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{j_1 j_2} A_{j_3 j_4}]$

$$\leq C \sum_{(i_1,i_2)=(j_2,j_3)} \theta_{i_1} \theta_{i_2}^2 \theta_{i_3}^2 \theta_{i_4} \theta_{j_1} \theta_{j_2} \theta_{j_3} \theta_{j_4}$$
$$= C \sum_{i_1,\cdots,i_4,j_1,j_4} \theta_{i_1}^2 \theta_{i_2}^3 \theta_{i_3}^2 \theta_{i_4} \theta_{j_1} \theta_{j_4}$$
$$= C \|\theta\|_1^3 \|\theta\|^4 \|\theta\|_3^3 \leq C \|\theta\|_1^4 \|\theta\|_3^6,$$

where the last inequality is due to $\|\theta\|^4 \le \|\theta\|_1 \|\theta\|_3^3$.

If $(i_2, i_3) = (j_2, j_3)$, we have

$$\sum_{(i_2,i_3)=(j_2,j_3)} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4})$$

$$\leq \sum_{(i_2,i_3)=(j_2,j_3)} \mathbb{E}[A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}A_{j_1j_2}A_{j_3j_4}]$$

$$\leq C \sum_{(i_2,i_3)=(j_2,j_3)} \theta_{i_1}\theta_{i_2}^2\theta_{i_3}^2\theta_{i_4}\theta_{j_1}\theta_{j_2}\theta_{j_3}\theta_{j_4}$$

$$= C \sum_{i_1,\cdots,i_4,j_1,j_4} \theta_{i_1}\theta_{i_2}^3\theta_{i_3}^3\theta_{i_4}\theta_{j_1}\theta_{j_4} = C \|\theta\|_1^4 \|\theta\|_3^6.$$

Combining above three inequalities, we derive

$$\sum_{|\mathcal{J}|=5} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}) \le C \|\theta\|_1^4 \|\theta\|_3^6.$$

Consider the case where $|\mathcal{J}| = 4$. By symmetry, \mathcal{J} either equals to $\mathcal{J}_1 = \{(i_1, i_2), (i_2, i_3), (i_3, i_4), (j_1, j_2)\}$ or $\mathcal{J}_2 = \{(i_1, i_2), (i_2, i_3), (i_3, i_4), (j_2, j_3)\}.$

Therefore, we decompose and bound

$$\sum_{|\mathcal{J}|=4}^{\sum} \operatorname{Cov}(A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}}, A_{j_{1}j_{2}}A_{j_{2}j_{3}}A_{j_{3}j_{4}}) \qquad \mathbf{F}_{\mathbf{C}}$$

$$\lesssim \sum_{\mathcal{J}_{1}}^{\sum} \operatorname{Cov}(A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}}, A_{j_{1}j_{2}}A_{j_{2}j_{3}}A_{j_{3}j_{4}}) + \sum_{\mathcal{J}_{2}}^{\sum} \operatorname{Cov}(A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}}, A_{j_{1}j_{2}}A_{j_{2}j_{3}}A_{j_{3}j_{4}})$$

$$\leq \sum_{\mathcal{J}_{1}}^{\sum} \mathbb{E}[A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}}A_{j_{1}j_{2}}] + \sum_{\mathcal{J}_{2}}^{\sum} \mathbb{E}[A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}}A_{j_{2}j_{3}}]$$

It then suffices to show

$$\sum_{\mathcal{J}_1} \mathbb{E} \left[A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{j_1 j_2} \right] \le C \|\theta\|_1^4 \|\theta\|_3^6, \quad (41)$$

and

$$\sum_{\mathcal{J}_2} \mathbb{E} \Big[A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{j_2 j_3} \Big] \le C \|\theta\|_1^4 \|\theta\|_3^6, \qquad (42)$$

For (41), j_2 must equal to one of i_1, \dots, i_4 since (j_2, j_3) equals to some (i_s, i_{s+1}) by definition of \mathcal{J}_1 . By symmetry, we only need to consider $j_2 = i_1$ and $j_2 = i_2$. Again by $\Omega_{ij} \leq \theta_i \theta_j$, we obtain

$$\begin{split} & \sum_{\mathcal{J}_{1}} \mathbb{E} \Big[A_{i_{1}i_{2}} A_{i_{2}i_{3}} A_{i_{3}i_{4}} A_{j_{1}j_{2}} \Big] \\ & \leq \sum_{j_{2}=i_{1}} \theta_{i_{1}} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{1}} \theta_{j_{2}} + \sum_{j_{2}=i_{2}} \theta_{i_{1}} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{1}} \theta_{j_{2}} \\ & \leq \sum_{i_{2}} \theta_{i_{1}}^{2} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{1}} + \sum_{i_{2}} \theta_{i_{1}} \theta_{i_{2}}^{3} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{1}} \\ & = \|\theta\|_{1}^{2} \|\theta\|^{6} + C \|\theta\|_{1}^{3} \|\theta\|^{2} \|\theta\|_{3}^{3} \\ & \leq \|\theta\|_{1}^{4} \|\theta\|_{3}^{6}. \end{split}$$

Here we explain the last inequality. By Cauchy-Schwartz inequality, $\|\theta\|^4 \leq \|\theta\|_1 \|\theta\|_3^3$. Combining with (7) that $\|\theta\| \to \infty$, $\|\theta\|_1^2 \|\theta\|^6 \leq \|\theta\|_1^2 \|\theta\|^8 \leq \|\theta\|_1^4 \|\theta\|_3^6$. Moreover, $\|\theta\|_1^3 \|\theta\|^2 \|\theta\|_3^3 \leq \|\theta\|_1^3 \|\theta\|_3^3 (\|\theta\|^4) \leq \|\theta\|_1^4 \|\theta\|_3^6$.

For (42), we similarly found j_2 , j_3 must equal to some i_1, \dots, i_4 . By (7), $\theta_{j_3} \leq C$. Thus we only need to discuss the cases where $j_2 = i_1$ or $j_2 = i_2$.

$$\sum_{\mathcal{J}_{2}} \mathbb{E} \left[A_{i_{1}i_{2}} A_{i_{2}i_{3}} A_{i_{3}i_{4}} A_{j_{2}j_{3}} \right]$$

$$\leq \sum_{j_{2}=i_{1}} \theta_{i_{1}} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{2}} + \sum_{j_{2}=i_{2}} \theta_{i_{1}} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{2}}$$

$$\leq \sum_{i_{1}} \theta_{i_{1}}^{2} \theta_{i_{2}}^{2} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{2}} + \sum_{i_{2}} \theta_{i_{1}} \theta_{i_{2}}^{3} \theta_{i_{3}}^{2} \theta_{i_{4}} \theta_{j_{2}}$$

$$= C \|\theta\|_{1}^{2} \|\theta\|^{6} + C \|\theta\|_{1}^{3} \|\theta\|^{2} \|\theta\|^{3} \leq C \|\theta\|_{1}^{4} \|\theta\|_{3}^{6};$$

where the last inequality has been explained in the proof of (41).

Combining (41) and (42), we bound

$$\sum_{|\mathcal{J}|=4} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4}) \le C \|\theta\|_1^4 \|\theta\|_3^6$$

Finally, consider the case where $|\mathcal{J}| = 3$. In this case, the covariance is in fact variance. Therefore,

$$\sum_{|\mathcal{J}|=3} \operatorname{Cov}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}, A_{j_1j_2}A_{j_2j_3}A_{j_3j_4})$$

$$= \sum_{i_1, \cdots, i_4} \operatorname{Var}(A_{i_1i_2}A_{i_2i_3}A_{i_3i_4})$$

$$\leq \sum_{i_1, \cdots, i_4} \mathbb{E}[A_{i_1i_2}A_{i_2i_3}A_{i_3i_4}]$$

$$\leq \sum_{i_1, \cdots, i_4} \theta_{i_1}\theta_{i_2}^2\theta_{i_3}^2\theta_{i_4}$$

$$= C\|\theta\|_1^2\|\theta\|^2 \lesssim C\|\theta\|_1^2\|\theta\|^6 \le C\|\theta\|_1^4\|\theta\|_3^6,$$

where the second last inequality is by (7) that $\|\theta\| \to \infty$ and last inequality is Cauchy-Schwarz inequality.

D.3. Proof of Lemma B.2

Write for short $T_n = \frac{\sqrt{B_{n,4}}}{\sqrt{C_4}} (\widehat{C}_4 - C_4)$. We introduce some useful notations. For any $n \times n$ matrix M and distinct indices (i_1, i_2, i_3, i_4) , define

$$G_{i_1i_2i_3i_4}(M) = M_{i_1i_2}M_{i_2i_3}M_{i_3i_4}M_{i_4i_1},$$

$$G(M) = \sum_{(i_1,i_2,i_3,i_4)\in CC(I_n)}G_{i_1i_2i_3i_4}(M).$$

Additionally, let $W = A - \Omega$ and let Ω^* be the matrix where $\Omega_{ij}^* = \Omega_{ij}(1 - \Omega_{ij})$ for all $1 \le i, j \le n$. We now rewrite

$$T_n = \frac{G(A) - G(\Omega)}{\sqrt{G(\Omega)}}, \qquad S_{n,n} = \frac{G(W)}{\sqrt{G(\Omega^*)}}.$$
 (43)

Therefore,

$$T_n - S_{n,n} = \frac{G(A) - G(\Omega) - G(W)}{\sqrt{G(\Omega)}} + S_{n,n} \left[\frac{\sqrt{G(\Omega^*)}}{\sqrt{G(\Omega)}} - 1 \right]$$
$$\equiv J_1 + S_{n,n} \cdot J_2.$$

In the proof of Theorem 3.2, we have shown $S_{n,n} \xrightarrow{d} N(0,1)$. Hence, to show $(T_n - S_{n,n}) \xrightarrow{p} 0$, it suffices to show that

$$J_1 \stackrel{p}{\to} 0 \tag{44}$$

and

$$J_2 \to 0. \tag{45}$$

First, we prove (44). We can decompose $G_{i_1i_2i_3i_4}(A) - G_{i_1i_2i_3i_4}(\Omega) - G_{i_1i_2i_3i_4}(W)$ as the sum of three terms

$$\begin{split} \Delta^{(1)}_{i_1 i_2 i_3 i_4} &= W_{i_1 i_2} \Omega_{i_2 i_3} \Omega_{i_3 i_4} \Omega_{i_4 i_1} + \Omega_{i_1 i_2} W_{i_2 i_3} \Omega_{i_3 i_4} \Omega_{i_4 i_1} \\ &+ \Omega_{i_1 i_2} \Omega_{i_2 i_3} W_{i_3 i_4} \Omega_{i_4 i_1} + \Omega_{i_1 i_2} \Omega_{i_2 i_3} \Omega_{i_3 i_4} W_{i_4 i_1}, \\ \Delta^{(2)}_{i_1 i_2 i_3 i_4} &= W_{i_1 i_2} W_{i_2 i_3} \Omega_{i_3 i_4} \Omega_{i_4 i_1} + W_{i_1 i_2} \Omega_{i_2 i_3} W_{i_3 i_4} \Omega_{i_4 i_1} \\ &+ W_{i_1 i_2} \Omega_{i_2 i_3} \Omega_{i_3 i_4} W_{i_4 i_1} + \Omega_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} \Omega_{i_4 i_1} \\ &+ \Omega_{i_1 i_2} W_{i_2 i_3} \Omega_{i_3 i_4} W_{i_4 i_1} + \Omega_{i_1 i_2} \Omega_{i_2 i_3} W_{i_3 i_4} W_{i_4 i_1}, \\ \Delta^{(3)}_{i_1 i_2 i_3 i_4} &= \Omega_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} W_{i_4 i_1} + W_{i_1 i_2} \Omega_{i_2 i_3} W_{i_3 i_4} \Omega_{i_4 i_1} \\ &+ W_{i_1 i_2} W_{i_2 i_3} \Omega_{i_3 i_4} W_{i_4 i_1} + W_{i_1 i_2} W_{i_2 i_3} W_{i_3 i_4} \Omega_{i_4 i_1}, \end{split}$$

It is easy to see that

$$\mathbb{E}\left[\sum_{CC(I_n)} \Delta^{(1)}_{i_1 i_2 i_3 i_4}\right] = 0.$$
(46)

We then study the variance of this term. Note that the four terms in $\Delta_{i_1i_2i_3i_4}^{(1)}$ are independent of each other. Let (j, s, m, ℓ) be any cycle on the four nodes $\{i_1, i_2, i_3, i_4\}$. Then, the variance of $W_{js}\Omega_{sm}\Omega_{m\ell}\Omega_{\ell j}$ is bounded by $\Omega_{js}\Omega_{sm}^2\Omega_{m\ell}^2\Omega_{\ell j}^2 = O(\theta_j^3\theta_s^3\theta_m^4\theta_\ell^4)$. Hence,

$$\sum_{CC(I_n)} \operatorname{Var}(\Delta_{i_1 i_2 i_3 i_4}^{(1)}) \le C \sum_{j,s,m,\ell} \theta_j^3 \theta_s^3 \theta_m^4 \theta_\ell^4$$
$$\le C \|\theta\|_3^6 \|\theta\|_4^8 = o(\|\theta\|_3^6 \|\theta\|^8),$$

where the last inequality is from the condition (7) and the fact that $\|\theta\|_4^4 = (\sum_i \theta_i^4) \le \theta_{\max}^2(\sum_i \theta_i^2) = O(\|\theta\|^2) = o(\|\theta\|^4)$. We then look at the covariance between $\Delta_{i_1i_2i_3i_4}^{(1)}$ and $\Delta_{i_1i_2i_3i_4}^{(1)}$. Let (j, s, m, ℓ) be any cycle on the four nodes $\{i_1, i_2, i_3, i_4\}$, and let (j', s', m', ℓ') be any cycle on the four nodes $\{i_1', i_2', i_3', i_4'\}$. As long as $\{j, s\} \neq \{j', s'\}$, the two terms $W_{js}\Omega_{sm}\Omega_{m\ell}\Omega_{\ell j}$ and $W_{j's'}\Omega_{s'm'}\Omega_{m'\ell'}\Omega_{\ell' j'}$ are independent, hence, their covariance is zero. If $\{j, s\} = \{j', s'\}$, their covariance is bounded by Ω_{js} .

 $\Omega_{sm}\Omega_{m\ell}\Omega_{\ell j}\Omega_{s'm'}\Omega_{m'\ell'}\Omega_{\ell' j} = O(\theta_j^3\theta_s^3\theta_m^2\theta_\ell^2\theta_{m'}^2\theta_{\ell'}^2).$ As a result,

$$\sum_{CC(I_n)\times CC(I_n)} \operatorname{Cov}(\Delta_{i_1i_2i_3i_4}^{(1)}, \Delta_{i'_1i'_2i'_3i'_4}^{(1)}) \\ \leq C \sum_{j,s,m,\ell,m',\ell'} \theta_j^3 \theta_s^3 \theta_m^2 \theta_\ell^2 \theta_{m'}^2 \theta_{\ell'}^2 \leq C \|\theta\|_3^6 \|\theta\|^8.$$

Note that $G(\Omega) \simeq n^4 C_4 \simeq \|\theta\|^8$ by Lemma B.1. Additionally, from the condition (7), $\|\theta\|_3 = o(1)$. Hence, the above imply

$$\operatorname{Var}\left(\sum_{CC(I_n)} \Delta^{(1)}_{i_1 i_2 i_3 i_4}\right) \ll G(\Omega).$$
(47)

Combining (46)-(47) gives

$$\frac{1}{\sqrt{G(\Omega)}} \sum_{CC(I_n)} \Delta^{(1)}_{i_1 i_2 i_3 i_4} \xrightarrow{p} 0.$$
(48)

We can consider other terms similarly. By direct calculations,

$$\operatorname{Var}\left(\sum_{CC(I_n)} \Delta_{i_1 i_2 i_3 i_4}^{(2)}\right) \leq \sum_{j,s,m,\ell} \Omega_{js} \Omega_{sm} \Omega_{m\ell}^2 \Omega_{\ell j}^2$$
$$+ \sum_{\substack{j,s,m\\\ell,\ell'}} \Omega_{js} \Omega_{sm} \Omega_{m\ell} \Omega_{m,\ell'} \Omega_{\ell j} \Omega_{\ell' j}$$
$$\leq C \sum_{j,s,m,\ell} \theta_j^3 \theta_s^2 \theta_m^3 \theta_\ell^4 + C \sum_{\substack{j,s,m\\\ell,\ell'}} \theta_j^3 \theta_s^2 \theta_m^3 \theta_\ell^4 + C \left[\sum_{\substack{j,s,m\\\ell,\ell'}} \theta_j^3 \theta_s^2 \theta_m^3 \theta_\ell^2 \theta_{\ell'}^2\right]$$
$$\leq C \|\theta\|_3^6 \|\theta\|^2 \|\theta\|_4^4 + C \|\theta\|_3^6 \|\theta\|^6 = o(\|\theta\|^8),$$

and

$$\operatorname{Var}\left(\sum_{CC(I_n)} \Delta_{i_1 i_2 i_3 i_4}^{(3)}\right) \leq \sum_{j,s,m,\ell} \Omega_{js}^2 \Omega_{sm} \Omega_{m\ell} \Omega_{\ell j}$$
$$\leq C \sum_{j,s,m,\ell} \theta_j^3 \theta_s^3 \theta_m^2 \theta_\ell^2$$
$$\leq C \|\theta\|_3^6 \|\theta\|^4 = o(\|\theta\|^8).$$

Hence, for the terms related to $\Delta_{i_1i_2i_3i_4}^{(2)}$ and $\Delta_{i_1i_2i_3i_4}^{(3)}$, we also have a similar convergence as that of (48). These together imply $J_1 \xrightarrow{p} 0$. Hence, (44) is true.

Next, we prove (45). It is seen that

$$0 \leq G(\Omega) - G(\Omega^*) \leq C \sum_{j,s,m,\ell} \Omega_{js}^2 \Omega_{sm} \Omega_{m\ell} \Omega_{mj}$$
$$\leq C \sum_{j,s,m,\ell} \theta_j^3 \theta_s^3 \theta_m^2 \theta_\ell^2 \leq C \|\theta\|_3^6 \|\theta\|^4 = o(\|\theta\|^8).$$

As a result, $|G(\Omega^*)/G(\Omega) - 1| = o(1)$. This proves (45).

D.4. Proof of Proposition A.1

The last item follows once the first three items are proved, so we only consider the first three items.

Consider the first item. Write

$$\mathbf{1}'A^2 \mathbf{1} = \sum_{1 \le i_1, i_2, i_3 \le n} A_{i_1 i_2} A_{i_2 i_3}.$$

Recall that all diagonal entries of A are 0, we can exclude the case $i_1 = i_2$ or $i_2 = i_3$ from the summation. Therefore, we only need to sum over either the cases where i_1, i_2, i_3 are distinct and the cases $i_1 = i_3$ but $i_1 \neq i_2$. It follows

$$1'A^{2}1 = \left(\sum_{\substack{i_{1},i_{2},i_{3}\\\text{are distinct}}} + \sum_{\substack{i_{1},i_{2},i_{3}\\i_{1}=i_{3},i_{1}\neq i_{2}}}\right)A_{i_{1}i_{2}}A_{i_{2}i_{3}} = I + II.$$

Now, first, by definition,

$$I = B_{n,3}\hat{L}_2$$
, where $B_{n,3} = 6\binom{n}{3}$,

and second (recall all diagonal entries of A are 0),

$$II = \sum_{i_1, i_2} A_{i_1 i_2}^2 = \operatorname{tr}(A^2).$$

Combining these gives

$$\widehat{L}_2 = \frac{1}{6\binom{n}{3}} (1'A^2 1 - \operatorname{tr}(A^2))$$

and the claim follows.

Consider the second item. Using similar arguments, we decompose

$$1'A^{3}1 = \sum_{1 \le i_{1}, i_{2}, i_{3}, i_{4} \le n} A_{i_{1}i_{2}}A_{i_{2}i_{3}}A_{i_{3}i_{4}} = I + II + III + IV,$$

where

$$I = \sum_{\substack{i_1, i_2, i_3, i_4 \\ \text{are distinct}}} A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} = B_{n,4} \widehat{L}_3,$$

with $B_{n,4} = 24\binom{n}{4}$,

$$\begin{split} II &= \bigg(\sum_{\substack{i_1,i_2,i_3,i_4\\i_1=i_3}} + \sum_{\substack{i_1,i_2,i_3,i_4\\i_2=i_4}} \bigg) A_{i_1i_2} A_{i_2i_3} A_{i_3i_4} = 2 \cdot (1'A^2 1), \\ III &= \sum_{\substack{i_1,i_2,i_3,i_4\\i_1=i_4}} A_{i_1i_2} A_{i_2i_3} A_{i_3i_4} = 1'A^3 1, \end{split}$$

and

$$IV = -\sum_{\substack{i_1, i_2, i_3, i_4\\i_1 = i_3, i_2 = i_4}} A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} = -1'A1.$$

Combining these gives

$$\widehat{L}_3 = \frac{1}{24\binom{n}{4}} [1'A^3 1 - 2 \cdot 1'A^2 1 + 1'A 1 - \operatorname{tr}(A^3)],$$

and the claim follows.

Consider the third item. Note first

$$\operatorname{tr}(A^4) = \sum_{1 \le i_1, i_2, i_3, i_4 \le n} A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{i_4 i_1}.$$

Similarly, we have

$$\operatorname{tr}(A^4) = \sum_{i_1, i_2, i_3, i_4} A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{i_4 i_1} = I + II + III,$$

where

$$\begin{split} I &= \sum_{\substack{i_1, i_2, i_3, i_4 \\ \text{are distinct}}} A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{i_4 i_1} = 24 \binom{n}{4} \widehat{C}_4, \\ II &= \left(\sum_{\substack{i_1, i_2, i_3, i_4 \\ i_1 = i_3}} + \sum_{\substack{i_1, i_2, i_3, i_4 \\ i_2 = i_4}} \right) A_{i_1 i_2} A_{i_2 i_3} A_{i_3 i_4} A_{i_4 i_1} = 2 \cdot (1' A^2 1) \end{split}$$

and

$$III = -\sum_{\substack{i_1, i_2, i_3, i_4\\i_1=i_3, i_2=i_4}} A_{i_1i_2} A_{i_2i_3} A_{i_3i_4} A_{i_4i_1} = -1'A1$$

Combining these gives

$$\widehat{C}_4 = \frac{1}{24\binom{n}{4}} \bigg(tr(A^4) - 2 \cdot 1'A^2 1 + 1'A1 \bigg),$$

and the claim follows.

References

- Hall, Peter and Heyde, Christopher C. *Martingale limit theory and its application*. Academic press, 2014.
- Jin, Jiashun, Ke, Zheng Tracy, and Luo, Shengming. Network global testing by counting graphlets. *Manuscript*, 2018.