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Abstract

This is the supplementary material of (Jin et al.,
2018). It contains Proposition A.1 and the proofs
of Theorems 3.2-3.3, Corollary 3.1, and sec-
ondary lemmas.

A. An Alternative Expression of the GC Test
Statistics

We rewrite the test statistic X, (as well as Eg, Eg and 64)
explicitly as a function of the adjacency matrix A. The
following proposition is proved in Section D.4.

Proposition A.1 The following are true:

- 1
Ly = ——[1"A%1 — tr(A?)],
*= 5| }
~ 1 .
Ly = ——[1/A%1 — 2(1’A%1) + Al — tr(A%)],
TGl ]
and
Cy = ——[tr(A%) — 2(1'A%1) + 1" A1].
oL ]
Furthermore,
o [tr(A%) —2(17A%1) + 1V Al]
Xoo = - D(n - 2)(n - 3)
1 1431 — 2(1'A21) + 1/ A1 — tr(A3)]*
~ (n—3)* 17421 — tr(A2?)
B. Proof of Theorem 3.2

We prove the case m = 4. The case of m = 3 is similar and
thus omitted. From now on, we omit the superscripts “(4)”
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in all related quantities (e.g., we write 5 C as dg4c). Write
3(1)

~ C
— (ch - ch) = 74 : (I+II) (D
\Ci V Ca

where
3(1) 3() [/ L
1= Co—Cy), II=-— = °) |-
VTl (Ca = Ch) Nier {(LQ) (LQ) }
Using the Slutsky’s theorem, it suffices to show that
Cu/Cy B 1, )
1% N(0,1), 3)
and
171 %0, )

The following lemma is useful, and its proof can be found
in Section D.

Lemma B.1 Under the assumptions of Theorem 3.2,
Cao=xn™|0]%, Lz =<n=3|0)3]0]%,
Ls < n~||0]I3]|0]|*.
Moreover,
Var(Cy) < Cn8|0]1%,  Var(Lz) < Cn”°[0]3]10]3,
Var(Ls) < Cn~%|10]1]|0]l$.

We now show (2)-(4). The proof of (3) is relatively long, so
we prove it in the end.

First, we prove (2). Recall that C, = E[C4]. By

Lemma B.1,
E[(Ca/Cs—1)%] = o(l|e)I=®),

where the right hand side — 0 as ||#|| — oo. The claim
follows by elementary probability theory.

Second, we prove (4). Define Lj = (||6]|2/n)Ly and
= (||0]|?>/n)L2. Using Lemma B.1, it follows from
direct calculations that

Lz/L5 = O(1). (5)

C;2Var(Cy) =
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With these notations, we have

32 e L4
=Y T (E) - ()
4 n 2

(2)
&) &)

where we have used C; =< n~*||0||® in the second equality;
see Lemma B.1. Note that for any (z,y), |v* — y*| =

(@ —y)(@® + 2%y + 2y’ + )] < 3lz —y| - (|2 + [y])*.

It follows that

L 3
i <c ozl (32 +121) |

where for short we write

Ly Ly

Ly Ly

Recall that L3/ L3 is bounded. Therefore, to show (4), it
suffices to show

L L
(22 - Es) 2 ©
2

Below, we show (6). Write the term on the left by

T 4 ES * Tx

(L3 — L3) + 10" = (Ly —L3) =11, + II,.
L3 L3

o1
Ly

To show (6), it suffices to show
11, % o. @)

and
1, % o. (8)

Consider (7). Note that Ly = E[Ls]. It follows from

Lemma B.1 that

16]|* Var(Ls) < O||9||8 8011111613
(L3 = (nol310)*)?

<913,

Var(I1,) = |

where the last term — 0 for ||0]|]3 — 0 as n — oo; this
is due to equation (7) of (Jin et al., 2018). By elementary
probability, (7) follows.
Consider (8). To show the claim, we first show

EQ/LQ ﬂ) 1, Eg/Lg ﬂ) 1, (9)

as the proofs are similar, we only show the first one. By
Lemma B.1, Var(Ly) = O(n~ 963 10]13) and Ly =
n=2||0|3116]%. Using E[Ls] = L, E[(Ls/Ls — 1)) =

Ly*Var(Ls) < C([16]3)/(|0]1116]|*)), which < C/]|6]*
since [|0||3 < ||]1]|6]|?- This shows (9).

Using (9) and recalling L3 /L5 < C (see (5)), to show (8),
it is sufficient to show

1
(L3)

= 22 /Lo, it is equivalent to show

160]* —= (L3 — L3) %0,

: Tx *
and since L3 /L3

o (**1) = 0. (10)

Last, we prove (3). We need some notations. Given 4
distinct nodes, there are 3 different possible cycles, de-
noted as CC(il, 12,13, i4) = {(il, 19,13, ’i4), (il, 19,14, ig),
(i1,43,12,14)}; moreover, for B C {1,2,...,n}%, let
CC(B) = U(il,iz,ig,u)EBCC(ilvi2ai37i4)~ For1 <m <
n, let I,,, be the collection of (i1, 42,3, 44) such that 1 <
i1 < 1y < i3 < 14 = m. Write Q?j = ng(]- — ng) Let
W = A — Q. Define

ECC(I )W1122W1213W1314W1411
\/ZCC(I,L) Q;}Zz Q:zlg 9:3149:411

The following lemma is proved in Section D.

Sn,n =

Lemma B.2 Under the conditions of Theorem 3.2,

3(3) -

NG (Cy — C4) = Spm 2 0.
4

By Lemma B.2, to show (3), it suffices to show that

S -5 N(0,1). (11)

Below, we prove (11). For 1 < m < n, define the o-algebra
Fnm = 0({Aij}1<i<j<m) and

Xn,m = Sn,m - Sn7m—17

where S, o = 0 and
ZCC(I,,L) W1112 lels W13L4 W2421
)
* *
\/ZCC(LL lﬂzglzlanaMQiUl

It is easy to see that E[S,, ,,,|Fpn m—1] = Sn,m—1. Hence,
{ X, m }I—; is a martingale difference sequence relative to
the filtration {F,, ,, }7 1, and Sy = Yo Xnom- To
show (11), we apply the martingale central limit theorem in
(Hall & Heyde, 2014) and check:

1<m<n.

Sn,m -

(@) Zzlzl E(ng,mu:n,mfl) 51
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®) Yo B(X2 1 x, >} [ Fm—1) = 0, for any
e > 0.

Note that once we have checked that both conditions (a)
and (b) are satisfied, then by the martingale central limit
theorem, .S, ,, AN (0,1). Combining it with Lemma B.2,
we have proved (3).

It remains to check (a)-(b). For preparation, we first derive
an alternative expression of E( X, ., |y m—1) as (14) below.
By definition,

1
Xom = Z WitioWisiaWigia Wigiy s
\/m ZCC’(Im/)\C‘C(Im71)

where My, = 3 cor,) Q1i, yia i, (4,5, and the sum-
mation is over all 4-cycles in CC(I,,) \ CC(I,,—1). Note
that a cycle in CC(1,,) \ CC(I,,—1) has to include the node
m. Hence, we can use the following way to get all such
cycles: First, select 2 indices (4, j) from {1,2,...,m — 1}
and use them as the two neighboring nodes of m; second,
selectanindex k € {1,2,...,m—1}\ {¢, j} as the last node
in the cycle. This allows us to write

1
Xn,m = m Z Wmv',ij ’ }/(m—l)ij7 (12)

1<i<j<m-—1

Yim-1)ij = >

1<k<m—1,kg{i,j}

WiiWh;. (13)

Conditioning on Fy, y—1, {WiiWinj b<i<j<m-—1 are mu-
tually uncorrelated and Y(,,,_1);; is a constant. Hence, it
follows from (12)-(13) that

2 * *
Y'(m—l)iijiQmj .

1
E(Xz,mL}—n,m—l) = M. Z

" 1<i<j<m—1

(14)
‘We now check (a). It suffices to show that
E[Z E(Xﬁym\fn,m_l)] =1, (15)
m=1
and
Var(zn: E(X2,|Fam-1)) 2 0. (16)
m=1

Consider (15). In the definition (13), the terms in the sum
are (unconditionally) mutually uncorrelated. As a result,

E[}/(%n—l)ij] = Z Zi Zj'
k<m,k¢{i,j}

It follows that

B[S ECE, Fa)

m=1

n
j— 1 * * * *
=3r ki®“kj " "mi® “mj
M, £
m=11<i<j<m—11<k<m-—1,k¢{i,j}

1
- > Q5 Q= 1. a7

mi kj"®jim
" (i, k)€CC(In)

This proves (17).
Consider (16). We first decompose the random variable

o1 E(X2 | Fnm—1) into the sum of two parts, and

m=1
then calculate its variance. By (13),

Y(Qm—l)ij = Z WEWE; + Z WiiWi;WeiWe;,
3 [y

where k and ¢ range in {1,2,...,m — 1} \ {4, j}. Plugging
it into (14), we have a decomposition

> E(X? | Fam-1) =Io+ I, (18)

m=1

2 2 O)* *
E WkiijQmiQmj7
" m=1i<j<m—1k<m—1

k¢{i.g}

mi°“mg-

> WaiWi W W5,

Then,
Var(z 1E(X3L7m|fn,m_1))
m=1
=Var(I,) + Var(I) + 2Cov(I,, Iy)

§(\/Var(la) + \/Var(Ib)>2 (19)

It suffices to show that both Var(I,) — 0 and Var(I;) — 0.

Consider the variance of I,,. In the sum of I,, all 4-cycles
(k,i,m, j) involved are selected in this way: We first se-
lect m, then select a pair (i, ) from {1,2,...,m — 1} and
connect both 7 and j to m, and finally select k to close the
cycle. In fact, these 4-cycles can be selected in an alterna-
tive way: First, select a V-shape (i, k, ) with k being the
middle point. Second, select m > max{i, k, j} to make the
V-shape a cycle. Hence, we can rewrite

n

L= Y wmg Y

" k=11<i<j<n m>max{i,j,k}
i#k,j#k

Qr

mi°“mg

=brij
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The terms W, W}, corresponding to different  are inde-
pendent of each other. We now fix k and calculate the covari-
ance between W2, W7, and W2, W2, for (i,5) # (7', ).
There are three cases. Case (i): (4,7) = (¢’,j). In this case,
Var(Winwlgj) < E[Wl?in;lj} < E[ngzwl?j] < Q0%
Case (ii): ¢ = 4 but j # j'. In this case, we have
COV(Wlfiwlfjv sziwlgj’) = Var(Win)‘E[ngj}E[ngj’} <
Q4% Case (iii): (4,7) N (¢, j') = 0. The two terms
are independent, and their covariance is zero. Combining
the above gives

Var(I,) < Z( > b,

™ k=1 1<i<j<n
i#k,j#k

bkz’jbmj’QZiQZjQZj/> :

+ >
i,5,5"€{1,....n}\{k}

i,7,5 are distinct

We now bound the right hand side By condition (9), €27, <
C,;0;. Hence, by;; < C> 20,0, < C|0)%6,0,. As
a result

1)< S ezt + Y ol otetee? ]

" kg k,i.5,3"

01116115 + 1101*]19115)-

m>k m

Var(

| /\

el

By (7), ||0]] — oo, so the second term dominates. More-
over, since Q;‘j = Q;;(1 — Q;;) > cf2;; (in our setting,
all §2;;’s are bounded away from 1). As a result, we have
M, > CZCC(I,I) Qi12292223ﬂl314914i1 > C(_177/40’4- By
Lemma B.1, n*Cy < ||§]|®. Combining the above gives
Var = O([|0]13/110]%), i.e

th?? COmax _
&6 =y - G0

Var(I,) <

Consider the variance of I,. Rewrite

Ib:ML >

n k,£,1,j are distinct

creijGreij,

where

Greiy = WiiWiiWeiWe;, ey = Z Qi
m>
max{k,l,i,j}
Since I, has a mean zero, Var([,) = E(I?). Additionally,
for 2 cycles (k, ¢, 4, 5) and (K, ¢', ', j"), only when they are
exactly equal, we have E[G i Grreirjr] # 0. As aresult,

Z CiéijE[GiZij]

k,4,i,j are distinct

2 *
E Cloij Qi

ke ,2,J are distinct

Var(l) =

i\H E\H

* * *
kaEiQZj'

Similarly to how we get the bound for by;;, we can de-
rive that cie;; < C/||0]|%0;6;. Moreover, Q0,980 <
C676360767. Hence,

Clols
T

Var(I,) < ||0H16 > lloltezezele;) <

k.£i,5
As a result,

CY.0f CH?
11 S H]dX =0 1 . (21)

o = v0r — W

Plugging (20)-(21) into (19) gives (16). Combining (15)

and (16), we have proved (a).

Var(]b) S

We now check (b). By the Cauchy-Schwarz inequality and
the Chebyshev’s inequality,

Z E(Xi,ml{an.mbe} |-7:n,m—1)

m=1
<3 VEXE ol Frm )V B Xnim] > €l Fan 1)
m=1
<e? zn: E(Xﬁ,m‘}—n,mfl)‘
m=1

Therefore, it suffices to show that the right hand side con-
verges to zero in probability. Then, it suffices to show that
its L'-norm converges to zero. Since the right hand is a
nonnegative random variable, we only need to prove that its
expectation converges to zero, i.e.,

{ Z X, ] =o(1). (22)

We now prove (22). We use the expression of X, ,,, in (12).
Conditioning on F;, 1, the Y(,,,_1);;’s are non-random.
It follows that

]E[ nm‘fnm 1 M4 ZY'(m 1)i W4 W4 }
,Jj=1
ki

,_.

m—1 m—

4>74 Z Y'(’m 1)1]}/("1 1)1]/E[W ngjWTzn]]

m—1
Y Yo 1Yo vy EWRWo, Wi Wi,

i, g =1
distinct

Wz

First, we shall use the independence across entries of W
and the fact that E[IW}}] < E[W?] < Q;; < C6;6;. Sec-

ond, in proving (17), we have seen that IE[Y(m 1)11] =

Zk<m,k¢{i,j}QZiQZj < CZk9i9i9j < C||9H29 9j'
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Third, from (13), it is easy to see that when (i, 7,4, j') are
distinct, E[Y(,,—1)i; Y(sm—1)i;/] = 0; moreover, for j # j',
EYim-1)ijYim-1)i57] = 2 EWZIE[Wy,; W] = 0.
Last, in proving (20), we have seen that M,, > ¢||0||®. Com-
bining the above, we find that

E[Xﬁ m] = Z }/(m l)z] [W4 W’IZ)%LJ]
C m—1 )
< g7 Z (1161176:6,) (6:m6:) (05
ij=1
< Co,/10]"°
As a result,
S EIXG,) < ClOIE = o(1).
n=1
This gives (22) and (b) follows. ([l

C. Proof of Theorem 3.3 and Corollary 3.1
Consider Theorem 3.3 first. For short, let

m B’n,m ~N— ~(m
Zm) — [ Brm G-1250m)

n 2 gc Ty = P(Zfzm) > Za)-
m ¢

It suffices to show that under the null and alternative,
|25 — D5 — 24)] < o(1). (23)
Denote a,, = (Cy,/ ém)l/ 2 for short. It is seen that

an 1, (24)

1 Bnm — -~
—zZ{™ = | == e AR (25)
ay 2m

Combining Theorem 3.1 and the proof of Theorem 3.2, we
have shown that
Bn,m
2m

and

O [REm — ] B N(0, 1), (26)

where by definitions,

Bn'm
SOy X = B4, 27)
m
Combining (25)-(27) gives
a—Z() 50 4 N(0,1). (28)

Denote the CDF of L Z{™ — 6{7") by F,. Recall that &
denotes the CDF of N (O 1). It follows from (28) that

sup |F,(x) — ®(z)| — 0. (29)

We now rewrite

1 ..
T = IP’(QZ,({”) o

1
_ s5m)
o).

zp = P(a Z{m — 6 > 20 — agcn)).

and introduce a proxy by

By triangle inequality,

|z — @S5 — za)| < |25 — o] + |0 — DT — za)]-
(30)
where by (29),

|mo — ®(652) — 2a)| — 0. (31)
Moreover, for any fixed € > 0, it is seen that

|xg — x| < T+ 11,

where
=P(|la, — 1] > €),

and

11 = IP’(Q%ZT(LM) - 552”) falls between (1 & €)z, — 5§ZL)),

which by (29) does not exceed

P(N(0, 1) falls between (1 % €)zq — 652) + o(1);

note the first term does not exceed (2/+/27)z,€. Combining
these gives that for any € > 0,

25— ® (850" —za)| < (2/V2m)zae+P(Jan—1] = €)+o(1).

Recall that a,, LN 1, the claim follows.

Next, consider Corollary 3.1. It is seen that 5!52”) = 0 under

the null and that under the alternative,
K K
0ge = Y N/ M.
k=2 k=1

When m = 4, by Lemma 6.1, 65;? > ¢4]|0)|* for some
constant ¢4 > 0. When m = 3 and P is positive definite, Ag
are the eigenvalues of OTIPII'O, so for 1 < k < K, A\ >

0. Using Lemma 6.1, (5!(;%) > c3/|0||? for some constant c3.
Combining these with Theorem 3.3 gives the claim.

D. Proof of Secondary Lemmas

D.1. Proof of Lemma 6.1

We first consider the claim about A;’s. Recall that \;’s
are the eigenvalues of the matrix G'/2PG'/2. First, we
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have ||G|| < 32, ,G(k,€) = 32 > 07mi(k)mi(0) =
3007 3 mi(k)mi(€) = [10]*. Second, let g, =
Yien, 0? for 1 < k < K, and write © = ©; + O, where
©1(i,i) = 0;-1{i € UK_ N} and ©3 = © — O;. It yields
that G = H’92H+H’62H diag(gy, - -
Hence, Amin(G) > minj<k<r gr > c2/|0]|%, where the last
inequality is from condition (8). Combining the above gives

c2|011% < Amin (G) < 1161 (32)
Using condition (9), we find that |A\| < ||PG]| < C||G|| =

O(||0]|?). Additionally, since |\;|? is an eigenvalue of
(GY?2PGY/?)? = GY/2PGPGY/?, we then have |\;|? >
Main(G)  Amin(PGP) > N2, (G) - 52, (P) > 0]
It gives

CTHIOI* <Ml <Cllof?,  1<k<K.

We then consider the claim about 7. Since maxy, |1'&x|?
is upper bounded by >, |n’&x|? and lower bounded by
K15 In'& /. it suffices to show that

doomar<clol. 63

1<k<K

6|} <

Since &1, ..., £k form an orthonormal basis,

S W&l = Inl? = 1,enctret,.
1<k<K

It follows from (32) that the right hand side has the same
order as ||0]| ~2||I'O1,,||. Write v = II'O1,,. For 1 < k <
K,v(k) =", mi(k)8;. It follows that v(k) < ||0||1. At the

2(k) > (Zi‘:;(“w)f _ 1o

. K
same time, > ;| v , where
we’ve used Cauchy-Schwarz inequality.
It follows that

CTHOII} < ['OL.[* < C0]3
Hence, (33) follows. O

D.2. Proof of Lemma B.1
Consider the first item. By (16) of (Jin et al., 2018),

[ZA oo,

where we note B,, 4 ~ n~*. First, by Lemma 6.1 of (Jin

etal., 2018),
K
> X = 1101,
k=1

Second, by (7) of (Jin et al., 2018), 0,4, < ||0]]3 — 0, so

itis seem ]2 < Oy 0] < o(1), and so [|0]14]6]4 <
0(6]|*). Combining these give the claim.

,gK)—i-H’@%H.

Consider the second item. By (17) of (Jin et al., 2018),

[ZA (1,60) + OBl 1012,
where by Lemma 6.1 of (Jin et al., 2018),

K

> Xk &) = 1611710115

k=1

ilol=2 < o([101(101]2). so
the claim follows by noting B,, 5 ~ n~

Consider the third item. By similar argument, it is seen that

- [ZA (1,6 + O(I0IEI01)
Con ot

For the lower bound, we use a different proof as A\, may be
negative. By Ly = E[L3] and E[A;;] = Q;; when i # j,

1
Ly = 5 E Qi1io Qigin Qigiy -
™A 1<y i, ia,ia<n

are distinct

As before, let /7 denote the set of pure nodes in community
1. It is not hard to see that

K
L3 2 Z Z QiliQQiQiSQi3i4'

k=1141,i2,i3,i4 €N
are distinct

In our model, all diagonal entries of P are 1, so for any
i,j € N1, Q;; = 6,0;. Therefore,

LeY Y

k=111 ,i2,i3,i4EN}
are distinct

0;,0;,07 07 . (34)

14719713 "

Now, we can lower bound the right hand side of (34) by
I—-IT-1II—-1V,
where

0;,0;,63.63.,

I:i >

=111,i2,i3,i4 €N

K
2 92
=> > 6,0,0067,
k=1141,ia,i3,i4 EN}
11=14
2 92
II= Y 6,6,67,067,

il,igzig,i_4€./\/'1
12=13
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and

K
V=4 > 0;,0,00,0.

k=111,i2,i3,ia ENy
i1=ig

First, by (8) of (Jin et al., 2018),

K
2 2

D (D6 ( >0
k=1 ieN} €N

K 2
>Cllof*y_ (> 6:)

k=1 ieN}
> Cllo[zlIe]*,

1

where the last inequality is Cauchy-Schwarz inequality.

Second, by (7) of (Jin et al., 2018) that 6,,,.x < ||0]|3 = o(1),
we obtain [|0]|? < o(1) - ||f]|1 (note |0 — oo), and

K
II<cy. Y 60,6007

k=111,i2,i3ENE
<clef.le)*
=o(llolFle11*).

Similarly, we have ||0]|3 < o(1) - ||#]|3 and ||0]|7 < o(1) -
10113, which implies

11T =o(||0)|7110]|*), and IV =o(|0[7]|6]*).

Combining these gives Lz > c||0||?0||*, and the claim
follows.

We now prove the next three items (on the variances).
In the Proof of Lemma B.2, we’ve already shown that

1 . . .
B Zlélsllng;l Giyigigi, (W) is the dominating term of
(C4 — 04), and that

1
Var(B Z Gi1i2i3i4(W))
oy i
distinct
—4
<Cn Z Gi1i2i3i4(Q)
71 14
distinct

<Cn™* > 6076767607 =Cn~Y0]°.
i1, e

Combining it with C; = n=4||0||8, we get Var(Cy) =
O(n*4C4).

Consider Var(zg). By definitions and that B,, ,,, < n™, we
bound

]E(EQ—LQ)2 S Cn_G]E[ Z (Ai1i2A’i2’i3_Qi1i2Qi2i3)}2‘

11 <i2<13

(35)

Recall that when ¢ # j, A;; = §;; + W;;. Since for any
numbers z,y,a,b, (a + z)(b+ y) — ab = zy + ay + bz,
we can write

> (AiisAigiy — iy Qiniy) = T+ 11+ 111,

11 <i2<1i3

where
1= E Wi isWisigs
i1 <i2<i3
11 = g Qi1 ioWigis,
i1 <12<1i3
and

HI= > Qi Wi,

11 <i2<i3
Inserting this into (35) and using Cauchy-Schwarz inequal-
ity,

E(Ls — Lo)* < On~®(E[(1)?] + E[(I1)?) + E[(IT1)%).

It then suffices to show

E[(1)*] S 116117116113, (36)
E[(11)*] S (1913116113, (37)

and
E[(L11)?] < [I9[13]16113. (38)

We now show (36)-(38) separately.

Consider (36). Note that for two sets of indices (i1, i2, i3)
and (j1,J2,Js3) such that iy < iy < i3, j1 < j2 < J3, by
basic statistics, we have that when (i1, i2,43) # (j1, j2, j3),

E[Wi1i2 Wi2i3Wj1j2Wj2j3] =0.
and when (ila i?) 23) = (j17j25j3)5

E[WiliQWiQiswjljzwhh] - E[Wi2 W ]

192 "7 i243

= QiliQ(l - Qiliz)Qiﬂs(l - QiQis)'
Therefore,
E[(I)]2 = Z Z E[Wi1i2 Wizis Wj1j2 szjs]

11 <t2<i3 j1<j2<j3

< Z EWZ,Wii,]
11 <i2<ig

< Z Qiliz(l - Qiliz)ﬂizis(l - Qi2i3)'
i1 <i2<i3

Recall that for any i < 7,

Qij(l — Qij) < Qi]‘ < 019
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it follows that
E[(I)]2 < Z 0;,0i,05,0:, < HGH%HQH;
i1 <i2<1i3

and the claim follows by Cauchy Schwarz inequality that
I91z1013 < el (iellieNs) = lel3Nels.

Consider (37)-(38). Since the proofs are similar, we only
show (37).

Note that for two sets of indices (i1, i2,43) and (j1, J2, j3)
such that iy < iy < i3, j1 < j2 < j3, by basic statistics, we
have that when (i2,3) # (j2, j3),

E[WiQis Wj2j3} =0.

and when (i2,i3) = (j2,73),

E[Wi2i3Wj2j3] = E[Wizg] = Qi2i3(1 - Qizis)'
Therefore,
E[(II)Q} = Z Z ]E[Qilizgjljzwiziswjzh]

11 <i2<13 J1<J2<J3
E E[QiliQWizi?, 5: (lejQWj2j3)]
11 <ip<i3 71<j2<J3
2
E E[Qi1i2Wi2i3( E : leiz)]
i1 <iz<i3 J1<iz

Z E[thzgizis(l - Qizi?,)( Z Qjﬂé)]

i1 <iz<i3 J1<iz

Again by Q;;(1—Q;;) < Q;; < 0,0; forany ¢ < j, we find

E[(Il)z] < Z E[QZNQQQU( Z leiz)]

i1 <i2<i3 J1<i2

< Z 0119122913( Z Hjl 912)
i1 <i2<i3 Jj1<iz

< [l015[1013-

Last, we prove the claim on Var(Ls). It suffices to
control the covariance between (A; ;,AiyizAigi,) and
(Aj,j2A),55sAjs5. ). To be more specific, define the set

J = {(ilaiQ)’ (i27i3)’ (i37i4)’ (jl,j2)7 (.j?a.j3)7 (j37j4)}’

whose elements are pairs of unordered integers, i.e. we treat
(i1,42) and (42, 41) as the same element.
Let | 7| be the number of distinct elements of 7, where
3 < |J| < 6 under the condition that i; < iy < i3 < iy
and j; < j2 < j3 < j4. To control the variance of Zg, it
suffices to bound the following quantity

6

Z Z COV(AilizAizi?,AisizuAjljzAjzjsAj3j4)'
=8|71=s

Furthermore, it suffices to show for 3 < s < 6,

Z COV(A’iliz Aiz’is Ai3i4 ) Aj1j2 Aj2j3 Ajsj4) S ”0”11L ”0”§
|T|=s
(39)
When | 7| = 6, it’s not hard to see (A, i, Aiyis Aigi, ) and
(Aj,j, 4,4, A,,,,) are independent because the six elements
in J are all distinct, which indicates

Z COV(AhizAiziaAisiw Ajljz AjzjsAj3j4) =0.
|T|=6

The following basic property is frequently used in the discus-
sion of remaining cases. For non-negative random variables
X and Y, we have

Cov(X,Y) < E[XY]. (40)

Consider the case where |J| = 5. By symmetry, it’s
enough to consider three situations where (i1, i2) = (j1, j2),

(i1,42) = (j2,J3) and (i2,43) = (j2, j3), separately.
If (i1,i2) = (j1,j2), we have

Z COV(Ai1i2Ai2i3Ai3i4’ Ajljz Aj2j3Aj3j4)
(i1,42)=(j1,j2)
< X
(i1,42)=(j1,72)
(41,i2)=(41,52)

gcz 0:,03 62 0;,0% 6,

12713 J3

=ClllIle1*le]l5 < Clolilolls,

E[Aiy iy Aiyis Agis Ajsjs Ajaja]

where the last inequality is due to ||0]|* < ||6]]1|€]]3 by
Cauchy-Schwarz inequality.

If (i1,i2) = (jo2,j3), we have

Z COV(Ai1i2Ai2i3Ai3i4’ Ajljz Aj2j3Aj3j4)
(i1,72)=(j2,Js)

< X
(i1,72)=(j2,Js)

<C Z oil 07 62 91’493'1 9j2 9j39j4

12713

E[Ai iy Aiyis Aigis Ajy i Ajaja]

(41,32)=(42,J3)
— 2 n3 p2 . . .
=C § : 01'1 aiz 01'3 014 0]1 0]4
11,0 ,04,J1,J4

=Clol51o1*el5 < Cliolilies.

where the last inequality is due to [|0]|* < [|6]1]/0]13.
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If (ig,i3) = (jo2,j3), we have
Z COV(Ai1i2 Aigig Aigia Ajljz Aj2j3 Aj3j4)

(i2,i3)=(j2,j3)

< Z E [Ai1i2 AiQisAi3i4 Aj1j2 Aj3j4]
(i2,43)=(j2.J3)

<C Y 0,07,07,00,0;,05,0,,0;,

(42,43)=(42,J3)
SO 0.0202.0,0,0,, = ClOIOIE.

11, ,04,J1,]4

Combining above three inequalities, we derive

Z COV(*AilizAizisAisiuAj1j2Aj2j3Aj3j4) < CHQ”‘“W”%

|T|=5

Consider the case where | 7| = 4. By symmetry, J either
equals to jl - {(i17i2)7 (i23i3)7 (i3ai4)7 (j17j2)} or \72 -
{(i1,i2), (i, i3), (i3, %4), (j2, J3) }-

Therefore, we decompose and bound

Z COV(A’h iz Aiz i3 Ai3i4 ) Aj1j2 Aj2j3 Aj3j4 )
|T|=4

S Z COV(Ail i2 Ai2i3 Ai3i4 ’ Ajljz Aj2j3 Aj3j4 )

J1
+ 3 Cov(Aii Aigis Aigins Ajujo Ajajs Ajasi)
T

p)
< Z E[Ailiz Aizig Ai3i4Aj1j2} + Z E[Ailiz Ai2i3Ai3i4A j
J1 T2

It then suffices to show

Z E[Ai1i2Ai2i3Ai3i4Aj1j2] < CHQHAIIHHHQ (41)
J1

and

Z E[Ai1i2Ai2i3Ai3i4Aj2j3] < CHG‘H%”H”?, (42)
T2

For (41), jo must equal to one of iy, - - ,i4 since (j2, j3)
equals to some (is, is+1) by definition of 7;. By symmetry,
we only need to consider jo, = ¢; and jo = i2. Again by
Qij < 91'9]', we obtain

Z E I:A’il’ig Ai2i3Ai3i4Aj1j2:|
J

<Y 0,07,676,0,,0,, + Y 0:,6767 6,050,
J2=i1 J2=1i2

S Z 0121 0222 0123 9i40j1 + Z 01'19?2 0123 9i49j1

=lelzIe1° + ClelsleN* o113

<[10113116115-

Here we explain the last inequality. By Cauchy-Schwartz
inequality, [|0]|* < [|0||1]|0]|3. Combining with (7) that
6] = oo, 12161 < 8191 < [6]{]6]5. Moreover,
6116176115 < 1011116115 (Ho1*) < 1011110115

For (42), we similarly found js, j3 must equal to some
i1, ,44. By (7), 8;, < C. Thus we only need to discuss
the cases where jo = 71 or jy = io.

Z E [Ailiz Ai2i3 Ai3i4 Ajzjs]
J-

2

< Z 01'192'2201'2392'40]'2 + Z 9i1012201'239i49j2
J2=11 J2=t2

<N 0767,67.0,,6,, + > 0,,65,02,60,0,

=ColF101° + CllolF el 1el* < Cliofiliels,

where the last inequality has been explained in the proof of
(41).

Combining (41) and (42), we bound
Z COV(AilizAiQisAisiwAjljzAjzjsAj3j4) < CHQ”‘%”Q”E
|T|=4

Finally, consider the case where | 7| = 3. In this case, the
covariance is in fact variance. Therefore,

Z COV(Ail iz Ai2i3 Ai3i4 ) Ajljz Aj2j3 Aj3j4 )
|T|=3

Z Va‘r(Aiﬂz Aiﬂa Ai3i4)
Q1,04

IN

2j3] Z ]E[AiliQAigigAia’M]

IN

> 6:,67,67 6,
Cllolzien* < clelzien® < clellels,

where the second last inequality is by (7) that ||| — oo
and last inequality is Cauchy-Schwarz inequality.

This proves (39). O

D.3. Proof of Lemma B.2

. /Bna A .
Write for short 7}, = \/@A (Cy — C4). We introduce some
useful notations. For any n X n matrix M and distinct

indices (71,2, 43,14), define
Gi1i2i3i4 (M) = Mi1i2Mi My, M;
G(M) = Z Giyigigia(M).
(41,i2,i3,i4)ECC (1)
Additionally, let W = A —Q and let Q* be the matrix where
Qs = Qi (1 = Qy5) forall 1 < i, < n. We now rewrite
G(A4) -G G(W)

Th = —F=—>, Spon = —m==.  (43)
G(Q) ’

213 384 491>
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Therefore,
’ G(Q) )
=Ji+Spn-J

In the proof of Theorem 3.2, we have shown S, , i)

N(0,1). Hence, to show (T,, — Sp.n) 20, it suffices
to show that

J1 50 (44)
and

Jo — 0. (45)

First, we prove (44). We can decompose G, ;yisi, (A) —

Giyinigis () — Giigigi, (W) as the sum of three terms
Az(‘llz?Qigi‘L th 91213 Q1314 Ql4i1 + Qillz lelS 91324 QMil
+ Qillz lels WI3Z4QZ4i1 + Qilzz szzg 91314 Wz411;
Agzﬂsu W1112 W2213 913149141'1 + anz Ql213 W13z4Qz4i1
Wzlzz Qi2i39i324 qul + Qilzg szzg Wz3z4Qz4i1
+ Qi Wigis Qigia Wigin + Qo Qigis Wigia Wigin
A§?22i3i4 91112 1213 Wl314 Wlul Wlllz lels W2324 W'L4'Ll

+ Wil’ig Wi2i39i3i4Wi4i1 + WiliQWi2i3Wi3i4Qi4i1~

It is easy to see that

=0.

(1)
E Z Ailigi3i4

CC(In)

(40)

We then study the variance of this term. Note that the

four terms in Aggmm are independent of each other. Let
(4, s,m,¢) be any cycle on the four nodes {i1,2,i3,%4}.
Then, the variance of W, Q082 is bounded by
Q502,02 92 = 0(63036?,0}). Hence,

sm*“me j’s’m

(1)
> Var(Aj)
C(I,) j,s,m, L

< Clol310113 = o(I01151011%),

)< C > 0303056

75m

where the last inequality is from the condition (7) and the

fact that |03 = (35, 07) < 07,..(35;67) = (II9H ) =

o(|6]* ) We then look at the covariance between A“ inini
34

and A, . Let (4, s, m, £) be any cycle on the four nodes

Z Z Z Z
{11,22,23,14} and let (j',s',m’,¢") be any cycle on the
four nodes {i},1i5,1%, 44} As long as {j,s} # {j',¢},
the two terms stﬁstmgng and Wj/sl Qs/m/Qm/g/Qg/j/
are independent, hence, their covariance is zero. If
{j,s} = {j’,s'}, their covariance is bounded by ;s -

Qsm,QmEQZst’m’Qm/@’Q[/j = 0(939362 6292 92)

j7/s’m
a result,

CC(I,)xCC(I,)
<C > 036362,60767%,07 < Cll6]5]0]°.

iVsYm
3ss,mm’ L’

A(/1)/ ! /)

(2 121314

Cov(Al)

11121314

Note that G(Q2) =< n*Cy = ||0||® by Lemma B.1. Addition-
ally, from the condition (7), ||f]|3 = o(1). Hence, the above
imply

var [ ST Al | < G@. (47)
ccI,)
Combining (46)-(47) gives
1 (1) P
Ayl 0. 48
G(Q) Z 112213%4 ( )

CC(In)

We can consider other terms similarly. By direct calcula-
tions,

A2 2 2
Var Z z122%3l4 Z QJSQSWQméQZj
CC(I,) 7,8,m,L
) Qe Qi Qe Q0
Jrs,m
0,0

<C Y 0302035,00 +C Y 0302050707,

7j7s”m
7,8,m,L J,s,m
0,0
< Clloglel*nels + cllelsien® = o(ol®),
and
(3)
Var [ >0 AP > 02 Qe
CC(Iy) 7,8,m L
<C Y 636360707
7,8,m,b
< Cllofigfen* = o(/16]1%).
Hence, for the terms related to AEI 1)21314 and A§f22i3i4, we

also have a similar convergence as that of (48). These to-
gether imply J; % 0. Hence, (44) is true.

Next, we prove (45). It is seen that

0<G(Q) — )< C > D Qi Qe
Jys,m L
<C Y 030202,07 < Clo)5NI01* = o(|0]%).
Jys,m L

As aresult, |G(Q*)/G(2) — 1] = o(1). This proves (45).
(|
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D.4. Proof of Proposition A.1

The last item follows once the first three items are proved,
so we only consider the first three items.

Consider the first item. Write
VAPL= > A A,
1<i1,i2,i3<n

Recall that all diagonal entries of A are 0, we can exclude
the case 71 = 75 or io = 73 from the summation. Therefore,
we only need to sum over either the cases where i1, i2, i3
are distinct and the cases i; = i3 but iy # is. It follows

D U IR DR VIR o 2
11,12,13 11,12,13
are distinct 41 =13,i1 Aiz
Now, first, by definition,
I =B,3Ls,  where B, 3=6(1),

and second (recall all diagonal entries of A are 0),

IT=Y" A7, =tr(A?).

1112
11,12

Combining these gives
1
6(3)

and the claim follows.

Lo = —(1'A%1 — tx(A2)),

Consider the second item. Using similar arguments, we
decompose

14%1 = > A Aii Ay, = T+ITHITIIV,

1<41,i2,13,i14<n

where

I= E Ajiy Aigiz Aigiy, = Bnoals,
1,12,13,14
are distinct

with B, 4 = 24(7),

Il = ( Z + Z )AilizAiQisAi3i4 — 2,(1/‘/421)7
i1,92,03,04  91,02,13,14
i1=13 io=i4
HI= Y AyiAii,Aiy, =1'4%1,

11,92,13,%4
11=14

and
vV =- Z AiliZAizig, i3iy — —1’Al.

11,02,13,14
i1=i3,i3=14

Combining these gives

o~

Ls =

1
24(3)

[1'A%1 — 2 1"A%1 + 1" A1 — tr(A3)],

and the claim follows.

Consider the third item. Note first

tr(A?) =

Similarly,

E AiligAigisAi3i4Ai4il'

1<i1,i2,i3,i4<n

we have

tI‘(A4) = Z AilizAi2i3Ai3i4Ai4i1 =1 + II+ [II,

where

11,12,13,14

I= Z Ai1i2Ai2i3A’i3i4Ai4i1 =24 (Z) 647

11,12,13,14
are distinct
2 : } : 1 A2
II == + AilizAigigAi3i4Ai4i1 = 2'(1 A 1)
01,%2,93,54  91,82,83,%4
and
/
117 = — E AiligAigigAi3i4 igi1 — —1"Al.

11,12,13,14
i1=13,i2=14

Combining these gives

~

Cy

1
:m

(tr(A4) -2 1A%+ 1’A1),

and the claim follows. O
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