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1. Proofs of Theorems 1-6
1.1. Appendix A: Proof of Theorem 1

Statement of Theorem 1:- Assume that the matrix X sat-
isfies the RIC constraint δk0+1 <

1√
k0 + 1

and kmax > k0.

Then
a). RR(kmin)

P→ 0 as σ2 → 0.
b). lim

σ2→0
P(kmin = k0) = 1.

Proof. We first prove statement b) of Theorem 1. By
Lemma 1, we have kmin = k0 once ‖w‖2 ≤ εomp. Hence,

P(kmin = k0) ≥ P(‖w‖2 ≤ εomp). Since ‖w‖2
P→ 0 as

σ2 → 0, it follows from the definition of convergence in
probability that lim

σ2→0
P(‖w‖2 ≤ εomp) = 1 which implies

statement b).

Next we prove statement a) of Theorem 1. When ‖w‖2 ≤
εomp, we have kmin = k0 which in turn implies that
Skomp ⊆ S for k ≤ k0. Following the discussions in
the article, we have rk0 = (In − Pk0)w which in turn
imply that ‖rk0‖2 = ‖(In − Pk0)w‖2 ≤ ‖w‖2. For
k < k0, we have rk = (In − Pk)XSβS + (In − Pk)w.
Since, (In − Pk)XSk

omp
βSk

omp
= 0n, it follows that

(In −Pk)XSβS = (In −Pk)XS/Sk
omp

βS/Sk
omp

.

Lemma 1. Let S1 ⊂ {1, . . . , p} and S2 ⊂ {1, . . . , p} be
two disjoint index sets and PS1 be a projection matrix onto
span(XS1). Then for every b ∈ Rcard(S2)

(1− δcard(S1∪S2))‖b‖22 ≤ ‖(In −PS1)XS2b‖22 ≤
(1 + δcard(S1∪S2))‖b‖22

(1)
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It follows from Lemma 1 that

‖(In −Pk)XS/Sk
omp

βS/Sk
omp
‖2 ≥

√
1− δk0‖βS/Sk

omp
‖2

≥
√

1− δk0βmin,
(2)

where βmin = min
j∈S
|βj |. This along with the triangle in-

equality gives

‖rk‖2 ≥
√

1− δk0βmin − ‖w‖2 (3)

for k < k0. Consequently, RR(kmin) when ‖w‖2 ≤ εomp
satisfies the bound

RR(kmin) ≤ ‖w‖2√
1− δk0βmin − ‖w‖2

(4)

When ‖w‖2 > εomp, it is likely that kmin ≥ k0. However,
it is still true that RR(kmin) ≤ 1. Hence,

RR(kmin) ≤ ‖w‖2√
1− δk0βmin − ‖w‖2

I‖w‖2≤εomp
+I‖w‖2>εomp

.

(5)
Here Ix is an indicator function taking value one when x >
0 and zero otherwise. Now ‖w‖2

P→ 0 as σ2 → 0 implies

that
‖w‖2√

1− δk0βmin − ‖w‖2
P→ 0, I‖w‖2≤εomp

P→ 1 and

I‖w‖2>εomp

P→ 0 as σ2 → 0. This along withRR(kmin) ≥
0 implies that RR(kmin)

P→ 0 as σ2 → 0. This proves
statement a) of Theorem 1.

1.2. Appendix B: Projection matrices and distributions
(used in the proof of Theorem 2)

Consider two fixed index set S1 ⊂ S2 of cardinality k1 and
k2. Let PS1 and PS2 be two projection matrices projecting
onto the column spaces span(XS1) and span(XS2). When
w ∼ N (0n, σ

2In), it follows from standard results that
‖PS1w‖2/σ2 ∼ χ2

k1
and ‖(In − PS1)w‖22/σ2 ∼ χ2

n−k1 .
Please note that χ2

k is a central chi squared random vari-
able with k degrees of freedom. Using the properties of
projection matrices, one can show that (In −PS2)(PS2 −
PS1) = On, the n × n all zero matrix. This implies that
‖(In−PS1)w‖22 = ‖(In−PS2)w + (PS2 −PS1)w‖22 =
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‖(In−PS2)w‖22 +‖(PS2 −PS1)w‖22. Further, the orthog-
onality of (In − PS2) and (PS2 − PS1) implies that the
random variables ‖(In −PS2)w‖22 and ‖(PS2 −PS1)w‖22
are uncorrelated and hence independent (w is Gaussian).
Also note that (PS2 −PS1) is a projection matrix project-
ing onto the column space of span(XS2) ∩ span(XS1)⊥

of dimensions k2 − k1. Hence, ‖(PS2 − PS1)w‖22/σ2 ∼
χ2
k2−k1 . It is well known in statistics that X1/(X1 +X2),

where X1 ∼ χ2
n1

and X2 ∼ χ2
n2

are two independent
chi squared random variables have a B(n1

2 ,
n2

2 ) distribu-
tion(Ravishanker & Dey, 2001). Applying these results to
the ratio ‖(In −PS2)w‖22/‖(In −PS1)w‖22 gives

‖(In −PS2)w‖22
‖(In −PS1)w‖22

=
‖(In −PS2)w‖22

‖(In −PS2)w‖22 + ‖(PS2 −PS1)w‖22
=

‖(In −PS2)w‖22/σ2

‖(In −PS2)w‖22/σ2 + ‖(PS2 −PS1)w‖22/σ2

∼
χ2
n−k2

χ2
n−k2 + χ2

k2−k1

∼ B(
n− k2

2
,
k2 − k1

2
)

(6)

1.3. Appendix C: Proof of Theorem 2

Statement of Theorem 2:- Let Fa,b(x) denotes the cumula-
tive distribution function of a B(a, b) random variable. Then

∀σ2 > 0, ΓαRRT (k) =

√
F−1n−k

2 ,0.5

(
α

kmax(p− k + 1)

)
satisfies

P(RR(k) > ΓαRRT (k),∀k > kmin) ≥ 1− α, . (7)

Proof. Reiterating, kmin = min{k : S ⊆ Skomp},
where Skomp is the support estimate returned by OMP at
kth iteration. kmin is a R.V taking values in {k0, k0 +
1, . . . , kmax,∞}. The proof of Theorem 2 proceeds by con-
ditioning on the R.V kmin and by lower bounding RR(k)
for k > kmin using artificially created random variables
with known distribution.

Case 1:- Conditioning on k0 ≤ kmin = j < kmax. Con-
sider the step k−1 of the Alg where k ≥ j. Current support
estimate Sk−1omp is itself a R.V. Let Lk−1 ⊆ {[p]/Sk−1omp} rep-
resents the set of all all possible indices l at stage k − 1
such that XSk−1

omp∪l is full rank. Clearly, card(Lk−1) ≤
p − card(Sk−1omp) = p − k + 1. Likewise, let Kk−1 repre-
sents the set of all possibilities for the set Sk−1omp that would
also satisfy the constraint k ≥ kmin = j. Conditional on
both kmin = j and Sk−1omp = sk−1omp, the R.V ‖rk−1‖22 ∼
σ2χ2

n−k+1 and ‖(In − PSk−1
omp∪l)w‖

2
2 ∼ σ2χ2

n−k. Define

the conditional R.V,

Zlk|{Sk−1omp = sk−1omp, kmin = j} =
‖(In −PSk−1

omp∪l)w‖
2
2

‖rk−1‖22
,

(8)
for l ∈ Lk−1. Following the discussions in Appendix B,
one have

Zlk|{Sk−1omp = sk−1omp, kmin = j} ∼ B
(
n− k

2
,

1

2

)
, ∀l ∈ Lk−1.

(9)
Since the index selected in the k − 1th iteration belongs to
Lk−1, it follows that conditioned on {Sk−1omp, kmin},

min
l∈Lk−1

√
Zlk|{S

k−1
omp = sk−1omp, kmin = j} ≤ RR(k). (10)

Note that ΓαRRT (k) =

√
F−1n−k

2 ,0.5

(
α

kmax(p−k+1)

)
. It fol-

lows that

P(RR(k) < ΓαRRT (k)|{Sk−1omp = sk−1omp, kmin = j})
≤ P( min

l∈Lk−1

√
Zlk| < ΓαRRT (k)|{Sk−1omp = sk−1omp, kmin = j})

(a)

≤
∑

l∈Lk−1

P(Zlk < (ΓαRRT (k))2|{Sk−1omp = sk−1omp, kmin = j})

(b)

≤ α

kmax
(11)

(a) in Eqn.11 follows from the union bound. By
the definition of ΓαRRT (k), P(Zlk < (ΓαRRT (k))

2
) =

α

kmax(p− k + 1)
. (b) follows from this and the fact that

card(Lk−1) ≤ p − k + 1. Next we eliminate the random
set Skomp from (11) using the law of total probability, i.e.,

P(RR(k) < ΓαRRT (k)|kmin=j)
=

∑
sk−1
omp∈Kk−1

P(RR(k) < ΓαRRT (k)|{Sk−1omp = sk−1omp, kmin = j})

×P(Sk−1omp = sk−1omp|kmin = j)

≤
∑

sk−1
omp∈Kk−1

α

kmax
P(Sk−1omp = sk−1omp|kmin = j)

=
α

kmax
,∀k > kmin = j.

(12)
Now applying the union bound and (12) gives

P(RR(k) > ΓαRRT (k),∀k > kmin|kmin = j)

≥ 1−
kmax∑
k=j+1

P(RR(k) < ΓαRRT (k)|kmin = j)

≥ 1− αkmax − j
kmax

≥ 1− α.

(13)

Case 2:- Conditioning on kmin = ∞ and kmin = kmax.
In both these cases, the set {k0 ≤ k ≤ kmax : k > kmin} is
empty. Applying the usual convention of assigning the mini-
mum value of empty sets to∞, one has for j ∈ {kmax,∞}
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P(RR(k) > ΓαRRT (k),∀k > kmin|kmin = j)
≥ P(min

k>j
RR(k) > ΓαRRT (k),∀k > kmin|kmin = j)

= 1 ≥ 1− α.
(14)

Again applying law of total probability to remove the condi-
tioning on kmin and bounds (13) and (14) give

P(RR(k) > ΓαRRT (k),∀k > kmin)
=

∑
j∈{k0,...,kmax,∞}

P(RR(k) > ΓαRRT (k),∀k > kmin|kmin = j)

×P(kmin = j)
≥

∑
j∈{k0,...,kmax,∞}

(1− α)P(kmin = j) = 1− α.

(15)
Hence proved.

Appendix D: Proof of Theorem 3
Statement of Theorem 3:- Let kmax ≥ k0 and matrix X
satisfies δk0+1 <

1√
k0+1

. Then RRT can recover the true
support S with probability greater than 1−1/n−α provided
that εσ < min(εomp, εRRT ), where

εRRT =
ΓαRRT (k0)

√
1− δk0βmin

1 + ΓαRRT (k0)
. (16)

Proof. RRT support estimate SkRRT
omp where kRRT =

max{k : RR(k) ≤ ΓαRRT (k)} will be equal to S if the
following three events occurs simultaneously.
A1). Sk0omp = S, i.e., kmin = k0.
A2). RR(k0) < ΓαRRT (k0).
A3). RR(k) > ΓαRRT (k),∀k ≥ kmin.

By Lemma 1 of the article, A1) is true once ‖w‖2 ≤ εomp.
Next consider RR(k0) assuming that ‖w‖2 ≤ εomp. Fol-
lowing the proof of Theorem 1, one has

RR(k0) ≤ ‖w‖2√
1− δk0βmin − ‖w‖2

(17)

whenever ‖w‖2 ≤ εomp. Consequently, RR(k0) will

be smaller than ΓαRRT (k0) if
‖w‖2√

1− δk0βmin − ‖w‖2
≤

ΓαRRT (k0) which in turn is true once ‖w‖2 ≤ εRRT . Hence,
A2 is true once ‖w‖2 ≤ min(εRRT , εomp). Consequently,
εσ ≤ min(εRRT , εomp) implies that

P(A1 ∩ A2) ≥ 1− 1/n. (18)

By Theorem 2, it is true that P(A3) ≥ 1 − α,∀σ2 > 0.
Together, we have P(A1∩A2∩A3) ≥ 1−α−1/nwhenever
εσ ≤ min(εRRT , εomp).

1.4. Appendix E. Proof of Theorem 4

Statement of Theorem 4:- Let klim = lim
n→∞

k0/n,

plim = lim
n→∞

log(p)/n, αlim = lim
n→∞

log(α)/n and

kmax = min(p, [0.5(n + 1)]). Then ΓαRRT (k0) =√
F−1n−k0

2 ,0.5

(
α

kmax(p− k0 + 1)

)
satisfies the following

asymptotic limits.
Case 1:-). lim

n→∞
ΓαRRT (k0) = 1, whenever klim < 0.5,

plim = 0 and αlim = 0.
Case 2:-). 0 < lim

n→∞
ΓαRRT (k0) < 1, if klim < 0.5,

αlim = 0 and plim > 0. In particular, lim
n→∞

ΓαRRT (k0) =

exp( −plim1−klim ).
Case 3:- lim

n→∞
ΓαRRT (k0) = 0 if klim < 0.5, αlim = 0 and

plim =∞.

Proof. Recall that ΓαRRT (k0) =
√

∆k0(n), where

∆k0(n) = F−1n−k0
2 , 12

(
α

kmax(p−k0+1)

)
and kmax =

min(p, [0.5(n + 1)]). Note that q(x) = F−1a,b (x) is im-

plicitly defined by the integral
∫ q(x)
t=0

ta−1(1 − t)b−1dt =

x
∫ 1

t=0
ta−1(1− t)b−1dt. The R.H.S

∫ 1

t=0
ta−1(1− t)b−1dt

is the famous Beta function B(a, b).

1.4.1. PROOF OF CASE 1):-

We first consider the situation of n → ∞ with
klim < 0.5, plim = 0 and αlim = 0. Define
x(n, p, k0) =

α

min([0.5(n+ 1)], p)(p− k0 + 1)
. De-

pending on whether, x(n, p, k0) converges to zero with
increasing n or not, we consider two special cases.

Special case 1: (fixed p, k0, α and n → ∞):- This
regime has p/n → 0 and k0/[0.5(n + 1)] → 0
(since k0 < p), log(α)/n → 0, however,
x(n, p, k0) =

α

min([0.5(n+ 1)], p)(p− k0 + 1)
is bounded away from zero. For n > 2p,
x(n, p, k0) =

α

min(p, [0.5(n+ 1)])(p− k0 + 1)
re-

duces to x(n, p, k0) =
α

p(p− k0 + 1)
. Using the standard

limit lim
a→∞

F−1a,b (x) = 1 for every fixed b ∈ (0,∞) and

x ∈ (0, 1) (see proposition 1, (Askitis, 2016)), it follows
that lim

n→∞
∆k0(n) = lim

n→∞
F−1n−k0

2 ,0.5
(x(n, p, k0) = 1.

Since ∆k0(n) → 1 as n → ∞, it follows that
lim
n→∞

ΓαRRT (k0) = lim
n→∞

√
∆k0(n) = 1.

Special Case 2: ((n, p, k0)→∞ such that log(p)/n→ 0,
lim
n→∞

k0/n < 1 ) and lim
n→∞

log(α)/n = 0:-
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The sequence x(n, p, k0) converges to zero as n → ∞.
Expanding F−1a,b (z) at z = 0 using the expansion given
in http://functions.wolfram.com/GammaBetaErf /Inverse-
BetaRegularized/06/01/02/ gives

F−1a,b (z) = (azB(a, b))(1/a) +
b− 1

a+ 1
(azB(a, b))(2/a)

+
(b− 1)(a2 + 3ab− a+ 5b− 4)

2(a+ 1)2(a+ 2)
(azB(a, b))(3/a)

+O(z(4/a))
(19)

for all a > 0. Here B(a, b) is the regular Beta function.
For our case, we associate a = n−k0

2 , b = 1/2 and z =
x(n, p, k0).

We first evaluate the limit of the term
ρ(n, p, k0, l) = (azB(a, b))(l/a) =(

n−k0
2 αB(n−k02 , 0.5)

min(p, [0.5(n+ 1)])(p− k0 + 1)

) 2l
n−k0

for l ≥ 1.

Then log(ρ(n, p, k0, l)) gives

log(ρ(n, p, k0, l)) =
2l

n− k0
log

 n− k0
2

min(p, [0.5(n+ 1)])

+

2l

n− k0
log

(
B(
n− k0

2
, 0.5)

)
+

2l

n− k0
log(α)

− 2l

n− k0
log(p− k0 + 1)

(20)
Clearly, the first, third and fourth term in the R.H.S
of (20) converges to zero as (n, p, k0) → ∞ such that
log(p)/n → 0, lim

n→∞
k0/n < 1 and lim

n→∞
log(α)/n = 0.

Using the asymptotic expansion B(a, b) =

G(b)a−b
(

1− b(b−1)
2a (1 +O( 1

a ))
)

as a → ∞ from
[http://functions.wolfram.com/GammaBetaErf/Beta/06/02/ ]
in the second1 term of (20) gives

lim
n→∞

2l

n− k0
log

(
B(
n− k0

2
, 0.5)

)
= 0. (21)

whenever, lim
n→∞

k0/n < 0.5. Hence, when (n, p, k0) →
∞ such that log(p)/n → 0, lim

n→∞
k0/n < 0.5 and

lim
n→∞

log(α)/n = 0, one has lim
n→∞

log(ρ(n, p, k0, l)) = 0

which in turn implies that lim
n→∞

ρ(n, p, k0, l) = 1, ∀`.

Note that the coefficient of ρ(n, p, k0, l) in (19) decays
with 1/a = 2/(n − k0) at large n. This along with
lim
n→∞

ρ(n, p, k0, l) = 1 implies that all terms other than
l = 1 in (19) decays to zero as n → ∞. Consequently,
only the first term in (19), i.e., ρ(n, p, k0, 1) is non zero as
n → ∞ and this term converges to one as n → ∞. This

1G(b) =
∞∫
t=0

e−xxb−1dx is the famous Gamma function.

implies that lim
n→∞

∆k0(n) = 1. Since ∆k0 → 1 as n→∞,

it follows that lim
n→∞

ΓαRRT (k0) = lim
n→∞

√
∆k0(n) = 1.

1.4.2. PROOF OF CASE 2):-

Next consider the situation where n→∞, 0 < plim <∞
and klim < 0.5. Here also the argument inside F−1a,b (.),
i.e., x(n, p, k0) converges to zero and hence the asymptotic
expansion (19) and (20) is valid. Note that the limits 0 <
plim < ∞ and klim < 0.5 implies that k0/p → 0 as
n→∞. Applying these limits and αlim = 0 in (20) gives

−∞ < lim
n→∞

log(ρ(n, p, k0, l)) = − 2lplim
1− klim

< 0 and

(22)

0 < lim
n→∞

ρ(n, p, k0, l) = e
− 2lplim

1−klim < 1. (23)

for every l < ∞. Since the coefficients of ρ(n, p, k0, l)
for l > 1 decays at the rate 1/n, it follows that 0 <

lim
n→∞

∆k0(n) = lim
n→∞

ρ(n, p, k0, 1) = e
− 2plim

1−klim < 1.

This limit in turn implies that 0 < lim
n→∞

ΓαRRT (k0) =

lim
n→∞

√
∆k0(n) = e

− plim
1−klim < 1.

1.4.3. PROOF OF CASE 3):-

Next consider the situation where n → ∞, plim = ∞,
klim < 0.5 and αlim = 0. Here also the argument inside
F−1a,b (.), i.e., x(n, p, k0) converges to zero and hence the
asymptotic expansion (19) and (20) is valid. Applying the
limits plim = 0, klim < 0.5 and αlim = 0 in (20) gives

lim
n→∞

log(ρ(n, p, k0, l)) = −∞ and (24)

lim
n→∞

ρ(n, p, k0, l) = 0. (25)

for every l <∞. Following the steps in previous two cases,
it follows that lim

n→∞
∆k0(n) = 0 and lim

n→∞
ΓαRRT (k0) =

0.

1.5. Appendix F: Proof of Theorem 5

Statement of Theorem 5:- Suppose that the sample size
n → ∞ such that the matrix X satisfies δk0+1 <

1√
k0+1

,
εσ ≤ εomp and plim = 0. Then
a). OMP with a priori knowledge of k0 or σ2 is consistent,
i.e.. lim

n→∞
P(Ŝ = S) = 1.

b). RRT with hyper parameter α satisfying lim
n→∞

α = 0 and
αlim = 0 is consistent.

Proof. Statement a) of Theorem 5 follows directly from
the bound P(Ŝ = S) ≥ 1 − 1/n in Lemma 1 of the
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article for OMP with k0 iterations and SC ‖rk‖2 ≤ εσ

once εσ < εomp. Next we consider statement b) of The-
orem 5. Following Theorem 3, we know that RRT sup-
port estimate satisfies P(Ŝ = S) ≥ 1 − 1/n − α once
εσ < min(εomp, εRRT ). Hyper parameter α satisfying
αlim = 0 implies that as n → ∞, ΓαRRT (k0) → 1 which
in turn imply that min(εRRT , εomp) → εomp. This along
with α→ 0 as n→∞ implies that RRT support estimate
satisfies lim

n→∞
P(Ŝ = S) = 1 once εσ < εomp.

1.6. Appendix G: Proof of Theorem 6

Statement of Theorem 6:- Let kmax > k0 and the matrix

X satisfies δk0+1 <
1√

k0 + 1
. Then,

a). lim
σ2→0

P(M) = 0.

b). lim
σ2→0

P(E) = lim
σ2→0

P(F) ≤ α.

Proof. Note that the RRT support estimate is given by
Ŝ = SkRRT

omp . Consider the three events missed discov-
ery M = card(S/SkRRT

omp ) > 0, false discovery F =

card(SkRRT
omp /S) > 0 and error E = {SkRRT

omp 6= S} sep-
arately.

M = card(S/SkRRT
omp ) > 0 occurs if any of these events

occurs.
a).M1 : kmin = ∞: then any support in the support se-
quence produced by OMP suffers from missed discovery.
b).M2 : kmin ≤ kmax but kRRT < kmin: then the RRT
estimate misses atleast one entry in S.
Since these two events are disjoint, it follows that P(M) =
P(M1) + P(M2). By Lemma 1, it is true that kmin =
k0 ≤ kmax whenever ‖w‖2 ≤ εomp. Note that

P(MC
1 ) ≥ P(kmin = k0) ≥ P(‖w‖2 ≤ εomp). (26)

Since ‖w‖2
P→ 0 as σ2 → 0, it follows that lim

σ2→0
P(‖w‖2 <

εomp) = 1 and lim
σ2→0

P(MC
1 ) = 1. This implies that

lim
σ2→0

P(M1) = 0. Next we consider the event M2, i.e.,

{kmin ≤ kmax&kRRT < kmin}. Using the law of total
probability we have

P({kmin ≤ kmax&kRRT < kmin}) = P(kmin ≤ kmax)
−P({kmin ≤ kmax&kRRT ≥ kmin})

(27)
Following Lemma 1 we have P(kmin ≤ kmax) ≥
P(kmin = k0) ≥ P(‖w‖2 ≤ εomp). This implies that
lim
σ2→0

P(kmin ≤ kmax) = 1. Following the proof of The-

orem 3, we know that both kmin = k0 and RR(k0) <
ΓαRRT (k0) once ‖w‖2 ≤ min(εomp, εRRT ). Hence,

P({kmin ≤ kmax&kRRT ≥ kmin})
≥ P(‖w‖2 ≤ min(εomp, εRRT ))

(28)

which implies that lim
σ2→0

P({kmin ≤ kmax&kRRT ≥
kmin}) = 1. Applying these two limits in (27) give
lim
σ2→0

P(M2) = 1. Since lim
σ2→0

P(M1) = 0 and

lim
σ2→0

P(M2) = 0, it follows that lim
σ2→0

P(M) = 0.

Following the proof of Theorem 3, one can see that the
event EC = {Ŝ = S} occurs once three events A1, A2

and A3 occurs simultaneously, i.e., P(EC) ≥ P(A1 ∩A2 ∩
A3). Of these three events, A1 ∩ A2 occur once ‖w‖2 ≤
min(εomp, εRRT ). This implies that

lim
σ2→0

P(A1∩A2) ≥ lim
σ2→0

P(‖w‖2 ≤ min(εomp, εRRT )) = 1.

(29)
At the same time P(A3) ≥ 1 − α,∀σ2 > 0. Hence, it
follows that

lim
σ2→0

P(EC) = lim
σ2→0

P(A1 ∩ A2 ∩ A3) ≥ 1− α (30)

which in turn implies that lim
σ2→0

P(E) ≤ α. Since P(E) =

P(M) + P(F) and lim
σ2→0

P(M) = 0, it follows that

lim
σ2→0

P(F) ≤ α.

2. Numerical validation of Theorems
2.1. Numerically validating Theorems 1 and 2

In this section, we numerically validate the results in The-
orem 1 and Theorem 2. The experiment setting is as fol-
lows. We consider a design matrix X = [In,Hn], where
Hn is a n × n Hadamard matrix. This matrix is known

to satisfy µX =
1√
n

. Hence, OMP can recover support

exactly (i.e., kmin = k0 and Sk0omp = S) at high SNR once

k0 ≤
1

2
(1 +

1

µX
) =

1

2
(1 +
√
n). In our simulations, we set

n = 32 and k0 = 3 which satisfies k0 ≤
1

2
(1 +

√
n). The

noise w is sampled according to N (0n, σ
2In) with σ2 = 1.

The non zero entries of β are set at ±a, where a is set to

achieve the required value of SNR =
‖Xβ‖22
n

.

In Fig.1, we plot values taken by RR(kmin) in 1000 runs of
OMP. The maximum iterations kmax is set at [0.5(n+ 1)].
Recall that kmin is itself a random variable taking values in
{k0, . . . , kmax,∞}. As one can see from Fig.1, the values
of kmin are spread out in the set {k0, . . . , kmax,∞} when
SNR=1. Further, the values taken by RR(kmin) are close
to one. However, with increasing SNR, the range of values
taken by kmin concentrates around k0 = 3. This validates
the statement b) of Theorem 1, viz. lim

SNR→∞
P(kmin =

k0) = 1. Further, one can also see that the values taken by
RR(kmin) decreases with increasing SNR. This validates
the statement RR(kmin)

P→ 0 as SNR→∞.
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Next we consider the behaviour of RR(k) for k > kmin.
From Fig.2, it is clear that the range of values taken by
RR(k) for k > kmin is invariant w.r.t to the SNR. Indeed,
the density of points near k0 at SNR=1 is lower than that of
SNR=10. This because of the fact that the kmin becomes
more concentrated around k0 with increasing SNR. Further,
one can see that bulk of the values taken by RR(k) for
k > kmin are above the deterministic curves ΓαRRT (k).
This agrees with the P(RR(k) > ΓαRRT (k)) ≥ 1 − α for
all σ2 > 0 bound derived in Theorem 2.

2.2. Numerically validating Theorem 4

We next numerically validate the asymptotic behaviour of
ΓαRRT (k0) predicted by Theorem 4. In Fig.3, we plot the
variations of ΓαRRT (k0) for different choices of α and differ-
ent sampling regimes. The quantities in the boxes inside the
figures represent the values of α. All choices of α satisfy
αlim = 0. Among the four sample regimes considered,
three sampling regimes satisfies plim = 0, whereas, the
fourth sampling regime with n = 2k0 log(p) and k0 = 10
has 0 < plim < ∞. As predicted by Theorem 4, all
the three regimes with plim = 0 have ΓαRRT (k0) converg-
ing to one with increasing n. However, when plim > 0,
one can see from the right-bottom figure in Fig.3 that
ΓαRRT (k0) converges to a value smaller than one. For
this particular sampling regime one has plim = 1/20 and
klim = 0. The convergent value is in agreement with the
value exp(− plim

1−klim ) = 0.9512 predicted by Theorem 4.

3. Numerical simulations
3.1. Details on the real life data sets

In this section, we provide brief descriptions on the four real
life data sets, viz., Brownlee’s Stack loss data set, Star data
set, Brain and body weight data set and the AR2000 dataset
used in the article.

Stack loss data set contains n = 21 observations and three
predictors plus an intercept term. This data set deals with
the operation of a plant that convert ammonia to nitric acid.
Extensive previous studies(Rousseeuw & Leroy, 2005; Jin
& Rao, 2010) reported that observations {1, 3, 4, 21} are
potential outliers.

Star data set explore the relationship between the intensity
of a star (response) and its surface temperature (predictor)
for 47 stars in the star cluster CYG OB1 after taking a
log-log transformation(Rousseeuw & Leroy, 2005). It is
well known that 43 of these 47 stars belong to one group,
whereas, four stars viz. 11, 20, 30 and 34 belong to another
group. Aforementioned observations are outliers can be
easily seen from scatter plot itself. Please see Figure 4.

Brain body weight data set explores the interesting hypothe-

sis that body weight (predictor) is positively correlated with
brain weight (response) using the data available for 27 land
animals(Rousseeuw & Leroy, 2005). Scatter plot after log-
log transformation itself reveals three extreme outliers, viz.
observations 6, 16 and 25 corresponding to three Dinosaurs
(big body and small brains). However, extensive studies
reported in literature also claims the presence of three more
outliers, viz. 1 (Mountain Beaver), 14 (Human) and 17 (Rhe-
sus monkey). These animals have smaller body sizes and
disproportionately large brains. Please see Figure 4.

AR2000 is an artificial data set discussed in TABLE A.2
of (Atkinson & Riani, 2012). It has n = 60 observations
and p = 3 predictors. Using extensive graphical analysis, it
was shown in (Atkinson & Riani, 2012) that observations
{9, 21, 30, 31, 38, 47} are outliers.

3.2. More simulations on synthetic data sets

In this section, we provide some more simulation results
demonstrating the superior performance of the proposed
RRT algorithm. Reiterating,“ OMP1” represents the per-
formance of OMP running exactly k0 iterations, “OMP2”
represents the performance of OMP with stopping rule

‖rk‖2 ≤ σ
√
n+ 2

√
n log(n), “CV” represents the perfor-

mance of OMP with sparsity parameter k0 estimated using
five fold cross validation, “RRT1‘” represents RRT with
α = 1/ log(n), “RRT2” represents RRT with α = 1/

√
n

and “LAT” represents the recently proposed least squares
adaptive thresholding algorithm. The non zero entries in
β are fixed at ±a where a is selected to achieve a spe-
cific SNR. The support S is sampled randomly from the set
{1, 2, . . . , p}. The noise is Gaussian with zero mean and
variance one. We consider three models for the matrix X.

Model 1:- Model 1 has X formed by the concatenation of
n×n identity and n×n Hadamard matrices. This matrix al-
lows exact support recovery at high SNR once k0 ≤ [ 1+

√
n

2 ].
We set n = 32 and k0 = 3.
Model 2:- Model 2 has entries of X sampled independently
from a N (0, 1) distribution. This matrix allows exact sup-
port recovery at high SNR with a reasonably good probabil-
ity once k0 = O(n/ log(p)). We set n = 32, p = 64 and
k0 = 3.
Model 3:- Model 3 has rows of matrix X sampled indepen-
dently from aN (0p,Σ) distribution with Σ = (1− κ)In +
κ1n1Tn . Here 1n is a n × 1 vector of all ones. For κ = 0,
this model is same as model 2. However, larger values of
κ results in X having highly correlated columns. Such a
matrix is not conducive for sparse recovery. We set n = 32,
p = 64, k0 = 3 and κ = 0.7.
Please note that all the matrices are subsequently normalised
to have unit l2 norm. Algorithms are evaluated in terms of
mean squared error MSE = E(‖β − β̂‖22) and support re-
covery error PE = P(Ŝ 6= S). All the results are presented
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Figure 1. Validating Theorem 1: Evolution ofRR(kmin) with increasing SNR. kmin = k0 368/1000 times when SNR=1 and 1000/1000
times for SNR=5, SNR=10 and SNR=50. RR(k) for k 6= kmin are set to zero for clarity.
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Figure 2. Validating Theorem 2: Evolution of RR(k) for k > kmin with increasing SNR. Circles are RR(k) for k > kmin. Diamonds
for ΓαRRT for α = 0.1 and hexagons for α = 0.01. RR(k) for k ≤ kmin are set to zero for clarity.

after 103 iterations.

Figure 5 presents the performance of algorithms in matrix
model 1. The best MSE and PE performance is achieved
by OMP with a priori knowledge of k0, i.e., OMP1. RRT1,
RRT2 and OMP with a priori knowledge of σ2 (i.e., OMP2)
perform very similar to each other at all SNR in terms of
MSE. Further, RRT1, RRT2 and OMP2 closely matches the
MSE performance of OMP1 with increasing SNR. Please
note that PE of RRT1 and RRT2 exhibits flooring at high
SNR. The high SNR PE values of RRT1 and RRT2 are
smaller than α = 1/ log(n) = 0.2885 and α = 1/

√
(n) =

0.1768 as predicted by Theorem 6. Further, RRT1 and
RRT2 significantly outperform both CV and LAT at all SNR
in terms of MSE and PE.

Figure 6 presents the performance of algorithms in matrix
model 2. Here also OMP1 achieves the best performance.
The MSE and PE performances of RRT1 and RRT2 are very
close to that of OMP1. Also note that the performance gap
between RRT1 and RRT2 versus LAT and CV diminishes
in model 2 compared with model 1. Compared to model
1, model 2 is less conducive for sparse recovery and this is
reflected in the relatively poor performance of all algorithms
in model 2 compared with that of model 1.

Figure 7 presents the performance of algorithms in matrix
model 3. As noted earlier, X in model 3 have highly co-
herent columns resulting in a very poor performance by all
algorithms under consideration. Even in this highly non
conducive environment, RRT1 and RRT2 delivered perfor-
mances comparable or better compared to other algorithms
under consideration.

To summarize, like the simulation results presented in the ar-
ticle, RRT1 and RRT2 delivered a performance very similar

to the performance of OMP1 and OMP2. Please note that
OMP1 and OMP2 are not practical in the sense that k0 and
σ2 are rarely available a priori. Hence, RRT can be used as
a signal and noise statistics oblivious substitute for OMP1
and OMP2. In many existing applications, CV is widely
used to set OMP parameters. Note that RRT outperforms
CV while employing only a fraction of computational effort
required by CV.
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Figure 3. Validating Theorem 4. (Reading clockwise) i). plot the variations of ΓαRRT (k0) when n→∞ and (p, k0) are fixed at (100, 10).
ii). plot the variations of ΓαRRT (k0) when (n, p, k0) → (∞,∞,∞) such that p increases polynomially with n, i.e., p = n10 and
k0 = 0.2n→∞ increases linearly in n. iii). plot the variations of ΓαRRT (k0) when n→∞, k0 =

√
n→∞ sub linear in n and p→∞

as p = 2k0 log(p). p is sub exponentially increasing w.r.t n in this case. iv). plot the variations of ΓαRRT (k0) when (n, p)→ (∞,∞)
such that k0 = 10 fixed and p = 2k0 log(p). p is exponentially increasing w.r.t n in this case.
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Figure 4. Scatter plots of Brain and body weight data set (left) and stars data set (right).
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Figure 5. MSE and PE performances in matrix model 1.
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Figure 6. MSE and PE performances in matrix model 2.
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Figure 7. MSE and PE performances in matrix model 3.


