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Proof of Prop. 2. Let Ŷ = I[R̂ > ✓
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Proof of Prop. 3. Let Ŷ = I[R̂ > ✓
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Proof of Prop. 4. Self-evident from Prop. 1.
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Proof of Prop. 6. We have that

P(Ŷ = ŷ, Y = y,A = a | T = 1) = E[P(Ŷ = ŷ, Y = y, T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ, Y = y | X,A, T = 1)P(T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ | X,A, T = 1)P(Y = y | X,A, T = 1)P(T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ | X,A)P(Y = y | X,A)P(T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ | X,A,Z = 1)P(Y = y | X,A,Z = 1)P(T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ, Y = y | X,A,Z = 1)P(T = 1 | X,A)I[A = a]]/P(T = 1)

= E[P(Ŷ = ŷ, Y = y, Z = 1 | X,A)P(T=1|X,A)
P(Z=1|X,A) I[A = a]]/P(T = 1)

= E[I[Ŷ = ŷ, Y = y, Z = 1, A = a]p(X,A)]/P(T = 1).

The rest follows by Bayes law.

B. Weak Disparate Benefit of the Doubt in Credit Card Data
We consider the data from Greene (1992), which contains individual-level data on credit card acceptance, default on
payments or not (if accepted), information about individual income, derogatory reports on accounts, and other features of
creditworthiness such as self-employment indicators. The dataset also includes age, which has been a concern regarding
the fairness of credit scoring models (Board of Governors of the Federal Reserve System, 1997). We construct a protected
class by defining A = I[X

age

< F

�1
Xage

(0.5)] as the indicator for being below the median age (31.67). To illustrate how
the direction of disparities can change depending on the Z = 1 policy we consider two scenarios. In both, we consider
the target population T = 1 to actually consist of all accepted applicants (rather than all applicants). First, we consider
Z = I[T = 1, X

i

> F

�1
Xinc

(.1)] where X

inc

is income so that we further censor the lowest-income individuals from the
available data. Second, we also consider Z = I[T = 1, X

i

> F

�1
Xinc per

(.1)] where X
inc per

is the income per dependent. In
T = 1, income is somewhat correlated with membership in the protected class (being young), with a correlation coefficient
⇢ = �0.32. However, income per dependent is very weakly correlated with being young, with a correlation coefficient
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Figure 6: Illustration of score disparities between censored and full training data. The dataset is from credit card applications,
where we additionally censor the population of accepted cardholders by income or income per dependent.

⇢ = 0.03. This is intuitive as the correlation of greater income by age is canceled out by the correlation of greater household
size with age.

In Fig. 6, we plot the FNRs FT=1
A

, F

Z=1
A

in training and in target and the discrepancies �
A

between them for both censoring
cases. First we study the case of censoring on Xinc. By inspecting the FNRs in Fig. 6b, we see that FZ=1

0 ⌫ F

Z=1
1 .

Therefore, we can apply Prop. 5. In Fig. 6a we shade a region of thresholds that satisfies eq. (4). In particular, because of the
relaxation for disparately endowed groups, we can extend the region farther right than would be possible under eq. (3). In
Fig. 6b we shade the corresponding ranges of FNRs that, per Prop. 5, would lead to spuriously-fairness-adjusted classifiers
that actually induce an inequity of opportunity disadvantages the younger group A = 1.

Next we study the case of censoring on Xinc per. We first note that the disparate benefit of the doubt induced is now going in
the opposite direction (Fig. 6c) – so the spuriously-fairness-adjusted classifiers will disadvantage the older group rather
than the younger group. Although we have the same ordering of FNRs as before, FZ=1

0 ⌫ F

Z=1
1 (Fig. 6d), the ordering

of �
A

’s is opposite and therefore eq. (4) does not offer a relaxation over eq. (3). We therefore apply the standard weak
disparate benefit of the doubt. In Fig. 6c we shade a region of thresholds that satisfies eq. (3). In Fig. 6b we shade the
corresponding ranges of FNRs, per Prop. 4, would lead to spuriously-fairness-adjusted classifiers that actually induce an
inequity of opportunity disadvantages the older group A = 0.

C. Residual Unfairness Under MAR
In this section we study several implications for residual unfairness under the MAR assumption. First we show that in rare
cases prejudice, if applied purely and directly on protected attribute alone, can actually be perfectly corrected for based on
training-data-based fairness adjustment. Second we study how disparities in importance weights can be used to characterize
the presence residual unfairness.

C.1. No Residual Unfairness if Inclusion Depends Only on Protected Attributes

We next show that if the censoring mechanism depends only on the protected attribute A that is to be adjusted for fairness,
then in fact there will be no residual unfairness and the true positive rates remain the same in the target population as in the
training population.

Proposition 7. Suppose P (Z = 1 | X,A) = P (Z = 1 | A) and P (T = 1 | X,A) = P (T = 1 | A). Then, under Assump-
tion 1, inequity of opportunity on training is the same as inequity of opportunity on target, i.e., ✏Z=1

a,b

= ✏

T=1
a,b

.

Thus, residual unfairness occurs only when biased inclusion is heterogeneous based on covariates X , e.g., as in the case of
SQF where the application of stops differs based on both precinct and race. This is typical of the application areas where
fairness is of concern: censoring is usually disparate in large part via proxies for protected attributes.

C.2. Characterizing Residual Unfairness in Terms of Propensity Ratios Disparities

Under Assumption 1, we can characterize residual unfairness in terms of the reweighting estimates.
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Proposition 8. Pr[Ŷ = 1 | Y=1
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This says that the TPR will be in actuality higher in the target population if the average ratio weights in the group of true
positives included in the dataset is greater than in the group of false negatives included. Intuitively, the predictor will be
more accurate in the target population if, due to censoring, positive examples that the predictor will be correct on were less
likely to appear in the training data.

We can use to characterize exactly when a classifier that satisfies equal opportunity on training will have residual unfairness
on target.
Corollary 9. Suppose Ŷ satisfies equal opportunity wrt Z = 1. Then ✏
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This characterization follows from Prop. 8 and the fact that the true positive rates in training are the same under equality of
opportunity.

C.3. Proofs

Proof of Prop. 7. The result follows from applying Prop. 6 with Pr(Z = 1 | X,A) = Pr(Z = 1 | A) and iterating the
expectation over X:
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ŷ2{0,1} E[E[E[I{Ŷ = ŷ, Y = 1, Z = 1} | X]]I{A = a}]
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Proof of Prop. 8.
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D. Information on Stop, Question and Frisk
Stop, Question, and Frisk is a program which allows police officers to stop citizens in public, question, and possibly search
them, under reasonable suspicion of a crime but not enough probable cause for an arrest (Goel et al., 2017). Around 600,000
people were stopped in 2011, and around 90% of stops led to no evidence of a crime (Keefe, 2011). Each officer is required
to file an individual report after a stop detailing individual characteristics (including physical attributes of the suspect and
location) and reasons for the stop, leading to relatively rich context about each individual decision (NYCLU, 2017).

SQF was studied by statistical researchers and adjudicated in the court case Floyd v. City of New York for discrimination on
the basis of race and national origin. The program has been controversial since the demographic makeup of stops in the
data systematically misrepresents the population of NYC at large due to disparate patrol levels and implementation of SQF
by NYPD precinct, which correlates with demographics, as well as the potential for racial biases at the individual level.
These demographic imbalances have been studied and analyzed judicially, discussed alongside evidence of administrative
and structural deviation in application of SQF practices (Goel et al., 2017; Gelman et al., 2007). Some of the covariates
themselves may reflect proxy indicators for discrimination. In the SQF data, for example, recorded reasons for stop include
whether the suspect was actually engaging in a crime, was a known criminal, or exhibited “furtive movement”. The potential
for some of these reasons to be proxies for discrimination was noted by Judge Scheindlin in the court case of Floyd, et al. v.
City of New York.


