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Abstract
Many structured prediction problems (particularly
in vision and language domains) are ambiguous,
with multiple outputs being ‘correct’ for an in-
put – e.g. there are many ways of describing an
image, multiple ways of translating a sentence;
however, exhaustively annotating the applicabil-
ity of all possible outputs is intractable due to
exponentially large output spaces (e.g. all English
sentences). In practice, these problems are cast
as multi-class prediction, with the likelihood of
only a sparse set of annotations being maximized
– unfortunately penalizing for placing beliefs on
plausible but unannotated outputs. We make and
test the following hypothesis – for a given input,
the annotations of its neighbors may serve as an
additional supervisory signal. Specifically, we
propose an objective that transfers supervision
from neighboring examples. We first study the
properties of our developed method in a controlled
toy setup before reporting results on multi-label
classification and two image-grounded sequence
modeling tasks – captioning and question gener-
ation. We evaluate using standard task-specific
metrics and measures of output diversity, finding
consistent improvements over standard maximum
likelihood training and other baselines.

1. Introduction
In many real-world tasks, a single input is associated with
multiple correct outputs. For instance, as shown in Fig. 1,
multiple captions can accurately describe an image. For
tasks with small output spaces, it may be practical to treat
the problem under a multi-label formulation – learning to
predict the correctness of each possible output based on
exhaustive human annotations. However, for structured
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Figure 1. Many tasks exhibit many-to-many relationships between
inputs and outputs. Taking image captioning as an example, a
single image can be described with multiple captions (top) and
likewise a single caption can accurately describe multiple images
(bottom). In this work, we leverage these relationships in the data
to learn multi-modal output mappings from sparse annotations.

prediction tasks, the output space is exponentially large
(e.g. the space of all English sentences) such that collecting
exhuastive annotations is intractable even for a single input.
Instead, sparse annotations are obtained by collecting
human responses – leaving the correctness of a vast majority
of possible outputs uncertain.

This problem of multi-label classification with miss-
ing labels has been addressed in prior work by either
imposing structure on the label space such as known
label taxonomies (Verma & Jawahar, 2013; Deng et al.,
2014), or by imposing constraints on the model parameters
(Yu et al., 2014) or the posterior distributions (Lin et al.,
2014b) to effectively compress the label space. However,
these approaches do not scale to the exponentially large
label spaces often seen in structured prediction tasks like
sequence-modeling (e.g. |V|T length–T sentences in cap-
tioning where V is the vocabulary). As a consequence, such
tasks are often cast as multi-class problems with parameters
learned to maximize the likelihood of a sparse set of human
annotations (i.e. Maximum Likelihood training) – implicitly
enforcing the unreasonable assumption that all outputs that
are not annotated must be incorrect.

Much contemporary research has been invested in the more
expensive yet viable option of curating massive datasets that
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leads to better estimation of the true multi-modal mapping
with increasing dataset size. For instance, progress in cap-
tioning has been largely propelled by the massive COCO
(Lin et al., 2014a) dataset containing ∼330K images with 5
human-provided captions per image. However, as evidenced
by the impoverished, generic captions generated by models
trained on this dataset (Vijayakumar et al., 2018; Dai et al.,
2017), even such large-scale efforts fall short – capturing
only a small fraction of all possible outputs.

Overview and Contributions. In this work, we propose
a simple approach that enables models to place beliefs on
multiple plausible outputs while training only on sparse
set of annotations, or in the extreme case only a single
annotation per input on tasks where there are many many
possible correct outputs. Essentially, our goal is to learn to
produce multi-modal outputs from ‘uni-modal’ annotations.
The key inductive bias in our approach is the following
– for a given input, the annotations of its neighbors may
serve as an additional supervisory signal. Fig. 1 (bottom)
demonstrates this intuition for captioning with the caption
accurately describing all four depicted scenes. Based on this
insight, we propose a novel objective that treats outputs of
neighboring inputs to be applicable to the given input to an
extent determined by the similarity in the input space. This
objective allows us to transfer annotations from neighboring
examples to provide additional supervision and so contribute
towards recovering the underlying multi-modal mapping.

In order to analyze our approach in a tractable domain, we
perform a number of multi-label classification experiments
with missing labels. First, we evaluate in a toy setting where
the data generating distribution is known and find that our
method is able to better estimate the true distribution as
compared to standard cross-entropy training. We also study
multi-label prediction on two real-world datasets – CUB-
200 (Wah et al., 2011) and Animals with Attributes (AWA)
(Xian et al., 2017) – by sub-sampling attribute annotations.
As in the toy setting, we see improvements over baseline
methods. Finally, we apply our method to two established
image-grounded language generation tasks – image caption-
ing and question generation – which are both sequential
prediction tasks with exponentially large label spaces. We
evaluate using both standard task-specific metrics for the
generated language and criteria that assess the multi-modal
nature of the produced outputs. We find consistent improve-
ments over baseline methods on these challenging tasks.

2. Approach
We first establish the notation and succinctly summarize the
learning problem before explaining the proposed approach.

Consider a multi-label prediction setting where the goal is
to learn a one-to-many relationship f :X → 2Y/∅ that maps

a given input x∈X to a set of valid outputs, a subset of all
possible outputs Y . In our setting, obtaining annotations for
each element in Y is intractable even for a single instance
and instead only a sparse set of positive annotations are avail-
able. Specifically, we assume access only to a dataset of the
form D = {(xm, {ym,1, . . . , ym,k})}Mm=1 where xm is the
input and {ym,1, . . . , ym,k} is a sparse set of labellings with
k << |f(xm)|. In practice, k may vary for each example
and often, k = 1 i.e. only one annotation is available.

The observed datasetD can be thought of as being produced
by a stochastic function g that selects k labels from f(x),
the set of all applicable labels for x. In practice, a collection
of human annotators often play the role of g, generating a
small set of possible outputs for each x (e.g. each providing
a single image description in captioning). We therefore
summarize the overall learning problem as – how can we
estimate the true multi-modal input-output relationship f
while only observing sparse samples from g?

2.1. Enforcing Adaptive Neighborhood Structures

At a high-level, our approach has two key components –
1) a mechanism that allows us to use outputs of neighboring
inputs to provide additional supervision and 2) an appropri-
ate measure of semantic relatedness to define the neighbor-
hood. We now explain both these aspects in detail.

Learning from Neighbors. The predictions ỹm outputted
by the model for each input xm are evaluated using a loss
function ` : Y × Y → R and the standard objective is to
reduce the empirical risk on the training set:

1

Mk

M∑
m=1

∑
k

` (ỹm, ym,k) (1)

Due to the presence of multiple annotations, the summations
cover both examples (m) and their annotations (k).

Let us begin by assuming access to a function r : X → Rd,

Figure 2. Given a dataset of sparse annotations sampled from a true
multi-modal input-output mapping (left), our approach leverages a
learned similarity space to perform a soft-transfer of annotations
between semantically related inputs (right) – effectively recovering
the underlying multi-modal mapping from few samples.
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a potentially non-linear transformation that maps inputs
to a space where distances correspond to semantic relat-
edness. Let Kij be the similarity between xi and xj in
this semantic space. Note that all distances and similarities
are computed in this semantic space unless otherwise men-
tioned. Equipped with this semantic space, we now define
the neighborhood N (x) of a data point x – specifically, let
N (x) to be the set of indices of the N -nearest neighbors
of x. Recall that we wish to incorporate the key inductive
bias that outputs of semantically similar inputs can be po-
tentially ‘correct’ for a given input. Thus, we can now write
a regularized objective that encourages the model to place
beliefs on multiple outputs as:

`(ỹi, yi,k)︸ ︷︷ ︸
loss w.r.t. own label

+
λ

|N (xi)|︸ ︷︷ ︸
normalization

∑
j∈N (xi)

similarity to neighbor︷︸︸︷
Kij `(ỹi, yj)︸ ︷︷ ︸

loss w.r.t. neighbor’s label

(2)

where λ is a hyper-parameter that controls the importance
of additional supervision. The weighting of the additional
supervision using the similarity Kij can be thought of as ac-
counting for the uncertainty in the applicability of neighbor-
ing output yj to the input xi, due to the lack of its annotation.

In this work, we set Kij = max
{

0, cos
(
r(xi), r(xj)

)}
where cos is the cosine similarity.

Connections to label smoothing. Unlike maximum likeli-
hood training that penalizes unannotated predictions, our
objective encourages the model to place beliefs on outputs
of neighboring inputs apart from its own annotatation. In
a simple C-way classification setting, it is easy to see that
this corresponds to label smoothing with class c ∈ C as-
signed a mass proportional to

∑
j∈N (x),g(xj)=cKij . Thus,

our loss redistributes mass in a systematic, input-aware fash-
ion unlike Szegedy et al. (2015) or Pereyra et al. (2017) that
uniformly increase the uncertainty in the predictions.

Learning the semantic space. As mentioned before, com-
putation of the neighborhood N (x) and the similarities Kij

assumes access to a projection r(·) that maps inputs to a
semantic space. Unless strong priors exist like known tax-
onomies exist in the input space, there is no obvious choice
for this projection. As such, we propose learning it along-
side the task – specifically, we initialize r(·) with some
domain specific neural network (e.g. pre-final layer of a
CNN on ImageNet (Deng et al., 2009) for natural images)
and then finetune it jointly with the model.

In practice, if the network for learning r(·) has sufficient
capacity, it can project all points in the dataset to a unique
dimension of its own s.t. Kij = 0 ∀i,∀j, i 6= j, reducing
our objective to MLE, (1). Further, looking at the derivative
of the objective w.r.t. Kij

∂Li

∂Kij
=
λ`(ỹi, yj)

|N (x)|

we can see that the objective constantly works towards re-
ducing the similarity Kij as `(·, ·) is always non-negative.
To constrain the network from pushing similar data points
apart, we regularize by penalizing the model for deviating
too much from the initial structure as –

µ

|N (xi)|
∑

j∈N (xi)

(Kij − 1)2 (3)

where µ is a hyper-parameter that controls the strength of
this penalty. Note that this penalty implies that our initial
choice for r(·) is already reasonable and only requires minor
adjustments for it to be task-specific.

2.2. Generalization to Sequence Prediction

Consider sequential output tasks where an input x is
mapped to a sequence y = {y1, . . . , yT }. The standard
objective for seqeunce modeling is to maximize log-
likelihood of the output token at time t given previous
tokens and the input as

∑
t log Pr(yt|yt−1, . . . y1,x). We

can trivially extend our objective in Eq. (2) by weighing
each term inside the summation with Kij . However, for
grounded sequence generation tasks like captioning, it is
often the case that only a portion of the neighbor’s output is
applicable to a given input; for instance, a pair of images
may both contain a dog, but only one also has a cat. In such
cases, only specific phrases or words may be reasonably
borrowed between images (i.e. “big dog”). To incorporate
this notion of ‘partial’ supervision, we extend our objective
to leverage attentional models like that of Lu et al. (2017).

We now briefly explain this attentional model and
refer the reader to Lu et al. (2017) for a more detailed dis-
cussion. Consider a set of visual features V = {v1, . . . , vk}
that each encode different regions of the image and a
global feature vg given by their average. As shown in
Fig. 3, the model takes in this global image feature, wt

an embedding of the previous word yt and the spatial
features V to compute the attention vector, αt ∈ Rk+1

that weighs the importance of each of the spatial regions
and the history encoding ht to compute the posterior
log Pr(yt|yt−1, . . . ,x). Unlike standard attention-based
architectures (Xu et al., 2015) that only attend to image
regions, Lu et al. (2017) extend it to incorporate both image
and language components. Interpreting the sum of visual
attention weights, denoted by αt ∈ [0, 1] as the importance
of the image for the generation of the next word allows us
to incorporate the notion of only copying partial sequences
by weighing each term in the factored log-likelihood by this
visual importance weight. Specifically, let αj,t be the visual
importance of the neighbor xj for predicting the word yj,t
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Figure 3. An diagram of our approach for sequential prediction
task. Only the relevant segments (via a soft attention mechanism)
from the neighbors output are used. See Sec. 2.2 for details.

given xi. Then, the second term in (2) can be modified as:

− λ

N (x)

∑
j∈N (x)

Ki,j

∑
t∈[T ]

αj,t log Pr(yj,t|yj,t−1, . . . , y1,xi)

(4)
Likewise, the regularization constraint from (3) is updated
to ensure that α’s do not go to zero:

µ

TN (x)

∑
j∈N (x)

Kij

∑
t∈[T ]

αj,t − 1

2

. (5)

2.3. Implementation Details.

We now discuss some subtle but important implementation
details training models using our objective.

Each mini-batch consists of B examples and their
corresponding N neighbors (including itself) – resulting
in a total of B ×N samples that need to be processed for
an effective batch-size of B. The procedure for sampling
neighbors has to be “aware” of the constantly changing
representation space r(·) and so, is also updated in tandem.
We call this adaptive updation of the neighborhood of
each image. As it is expensive to compute similarities and
sample these mini-batches, we make the following practical
choices – First, the parameters of r(·) are updated using a
much smaller learning rate (10×) compared to the model
itself. Second, the similarities between data points and thus
the neighborhood is only updated every few iterations.

Finally, our method is fairly robust to the setting of
λ and µ, the repulsive and attractive terms in our objective.
In general, as the number of neighbors participating in the
objective increases smaller values of λ suffice. Further,
large values of µ enforce the neighborhood to strongly
respect the initial structure and so, depending on the
quality of the initialization of this representation space,

µ can be varied. A more detailed analysis of the these
hyper-parameters is provided in the supplement.

3. Related Work
Multi-label Classification with missing labels. (Verma &
Jawahar, 2013) extend the work of Bucak et al. (2011) by
incorporating taxonomy of the label space into their cost-
senstive ranking formulation. Extending these methods to
sequential outputs is challenging as there is no documented
or natural way of constructing such a taxonomy for say,
English sentences. Instead, our approach jointly learns
dependencies between data points and does not require
similarity or taxonomy information as input. Further, Yu
et al. (2014) propose imposing a low-rank constraint on the
weights to be able to capture correlation between labels.
However, such norm-based regularization schemes have
been showed to be ineffective for deep networks (Zhang
et al., 2017). In a similar vein, Lin et al. (2014b) constrain
the posterior to be of low rank. However, such an approach
is not feasible when the output is a sequence.

Semi-supervised learning. The use of homophily
for semi-supervised learning has been well-studied (c.f.
Zhu (2005); Zhu et al. (2003) for a survey). A dominant
approach is the use of relationship graphs as regularization –
these methods assume access to a relationship graph (that
is not available in our setting) as part of the input, or that
it can be easily gleaned through measuring similarity in
the input space; the underlying assumption being that the
network structure is independent of the labels given the
input. Weston et al. (2012) extends this line of work by
embedding inputs using a deep neural network. Perozzi
et al. (2014) and Yang et al. (2016) extends this to infer
graph context to aid in classification. In general, the
goal of this line of work is to enable a consensus in the
label assignment of unlabeled examples, by leveraging
the neighborhood structure. However, in our setting all
examples are labeled, albeit incompletely (missing labels).
The central hypothesis of our work is that there exists
an embedding space in which neighborhood structure
is evident where neighboring data points can be used
to supervise the learning of a multi-modal output space.
Thus, the model jointly optimizes for both – uncovering
this underlying semantic structure in the data while also,
learning a multi-modal input-output mapping.

Entropy Regularization and Label smoothing Pereyra
et al. (2017) propose regularizing the model with a negative
entropy term and in a similar vein, Szegedy et al. (2015)
propose a simple label smoothing strategy where an
arbitrarily small probability mass is re-distributed to classes
other than the observed ground-truth uniformly. Further,
Chorowski & Jaitly (2017) draw from Szegedy et al.
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(2015) and propose a neighborhood smoothing scheme
for a n-gram language model where probability mass
is distributed based on observed n-grams in the dataset
and not uniformly like the previous work. In contrast,
the goal of our formulation is to not just increase or
decrease the prediction entropy but to shape the conditional
Pr(y|x) to reflect multi-modal input-output mappings by
placing meaningful beliefs on the output space. In that
spirit, our work shares motivation with the line of work
on producing diverse structured outputs – (Batra et al.,
2012; Guzman-Rivera et al., 2012; Prasad et al., 2014;
Guzman-Rivera et al., 2014; Lee et al., 2016).

Non-MLE based Image-captioning. Interestingly, Dai
et al. (2017); Shetty et al. (2017) obtain diverse outputs
(relative to MLE) using adversarial training without making
any explicit assumptions about the multi-modal nature of the
task. As Shetty et al. (2017) requires a multi-modal dataset,
we instead compare to Dai et al. (2017) and show that we out-
perform when only having access to limited uni-modal data.
Similarly, Jain et al. (2017) use variational auto-encoders
for the task of producing visually grounded questions and
report diverse outputs. However, as observed with adversar-
ial training, without multiple output annotations the latent
variable does not contribute in capturing the multi-modal
output space. Finally, we also compare to Rennie et al.
(2017) that directly optimizes for the task-specific metric
(like CIDEr (Vedantam et al., 2015) or SPICE (Anderson
et al., 2016) for image-captioning) using policy gradients
and show that we outperform their approach in our setting.

Nearest-neighbor based captioning. While Devlin et al.
(2015) explore a nearest-neighbor based approach to cap-
tioning, Chen et al. (2017) build on it to propose a modified
objective that weighs each word based on its occurrence
in nearest neighbor images. Similarly, Mun et al. (2017)
propose an attention scheme that factors in the consensus
caption. Unlike our approach, both these methods push the
model towards producing more generic descriptions that are
applicable to multiple similar images.

Similarity based on outputs. Inan et al. (2017) propose a
re-use of the word-embeddings by augmenting the cross-
entropy loss with a KL divergence term between the predic-
tions and the normalized vector of the dot-products between
the target-word embedding and the entire vocabulary. This
term encourages the model to place belief on completions
that are not necessarily observed in the dataset. While the
high-level goals of both our objective and this work are
similar, this approach relies only on distances in the output
space and does not factor that the language generated can
be conditioned on inputs in a different perceptual modality.

4. Experiments
We first explore the properties of our objective in a con-
trolled toy setting and evaluate the performance w.r.t. the
true data distribution. For completeness, we then show re-
sults on the multi-label with missing labels task on standard
multi-label attribute datasets and finally, discuss the perfor-
mance of our method on two visually-grounded language
generation tasks – captioning and question generation.

4.1. Synthetic Experiments

We consider a 4-label classification problem, where the
datasetD = {(x, y)} is generated according to the graphical
model shown below.

z

y

x

z ∼ Bern(pc)

Pr(x|z) =

{
N (µ1,Σ1), if z=0

N (µ2,Σ2), if z=1

Pr(y|z) =

{
[1−p1, p1, 0, 0], if z=0

[0, 0, 1−p2, p2], if z=1

Specifically, each data point x is sampled from one
of two Gaussians – N (µ1,Σ1) or N (µ1,Σ2) depend-
ing on the state of the latent variable z. Each
Gaussian is associated with two of the four labels
(z0 → {y1, y2} and z1 → {y3, y4}). However, for each
data point x we observe only one of the two possible labels.
Using terminology from Section 2, the true multi-modal
mapping f maps the input in each cluster to two labels;
however, we only observe one due to a stochastic label
sampling function g. Fig. 4(a) shows a plot of a dataset gen-
erated through this process (means of (−1,−1) and (1, 1)
with a diagonal variance of 0.2). To simulate the data-sparse
regimes typical of real-world tasks, we transform the data
to a much higher dimensional space (e.g. 213 in our experi-
ments) through a randomly initialized deep neural network
with ReLU activations that doubles the input dimensionality.
For a trained classifier to perform well, it needs to discover
the 2D data manifold that reveals the underlying neighbor-
hood structure on which labels are based; and not simply
overfit to local statistics in the high dimensional space. Since
the underlying data generation process is known, we can ex-
amine the hypothesis using KL divergence between the true
posterior and the predicted distribution of trained models.

Implementation Details. In our experiments, we use a
dataset of size 2048; 512 for training and the rest to for
evaluation. We use a two-layered neural network with 32
neurons in each layer and train it via SGD with a learning
rate of 4e−5 and a momentum of 0.9. Further, we also com-
pare with training using cross-entropy (CE) in conjunction
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(a) Synthetic Dataset (b) P (y=1|x): CE+L2 (c) P (y=1|x): Ours (d) Sample Efficiency

Figure 4. (a) Our toy experiment uses synthetic data with uniform label mixing within each cluster. (b) We find that cross-entropy (CE)
training (even with L2 regularization) results in overfitting – for instance, some regions of the rightmost cluster are very confidently
predicted as class 1 despite the true distribution being unbiased. (c) In contrast, our approach accurately predicts equal likelihood within
clusters. (d) Compared to training with CE loss, our approach accurately matches the true distribution as seen by the significantly lower
KL-divergence values w.r.t. the true-distribution while utilizing an order of magnitude fewer samples.

with simple L2 regularization to show that our objective
goes beyond such simple regularization schemes.

In these experiments, we find evidence that our method

1. Induces smoothness in the conditional distributions.
Fig. 4 shows a setting where both CE and its L2 regular-
ized version obtain similar test losses but differ drasti-
cally in the label assignments compared to our objective.
Specifically, Fig. 4(b) shows the conditional probabil-
ity P (y = 1|x) for test points from a CE+L2 trained
model. Even for the L2 regularized model, there is sig-
nificant overfitting with some regions of the rightmost
Gaussian confidently predicted as class 1. In contrast,
our approach shown in Fig. 4(c) results in near uniform
probability between classes 1 and 2 within the cluster.

2. Acts as a regularizer. Since our objective enforces that
neighboring data points have similar output distributions,
over-fitting by making overly confident predictions is
strongly penalized. This is evidenced by the low KL-
divergence w.r.t. to underlying data distribution that our
objective achieves (see Fig. 4(d)).

3. Improves sample efficiency. As shown in Fig. 4(d),
even with fewer samples as compared to Maximum
Likelihood training (with and without L2 regularization),
our model is able to more accurately model the true data-
distribution as evidenced by the significantly lower KL
divergence w.r.t. to the data-generating model.

Further details are provided in the supplement.

4.2. Attribute Prediction.

Datasets and Models. We now replicate the synthetic setup
in a multi-label image attribute prediction setting on two real
world datasets – Animals with Attributes (AWA; Xian et al.
(2017)) and Caltech UCSD Birds 200-2011 (CUB; Wah
et al. (2011)). Specifically, we randomly sub-sample from

Method # observed Average Precision@k

labels @1 @5 @10

A
W

A

CE+L2 1 46.82 51.03 54.18
Ours 49.23 53.46 57.12

CE+L2 20% 52.74 57.48 63.71
Ours 56.79 61.54 66.28

C
U

B

CE+L2 1 27.10 31.40 35.62
Ours 29.32 33.19 38.83

CE+L2 20% 32.42 35.94 39.21
Ours 35.64 38.20 43.01

Table 1. In the multi-label classification with missing labels setting,
we observe that our proposed method outperforms standard cross-
entropy training with ∼ 3% improvements when k=10 on both
AWA and CUB datasets with both just one randomly sampled label
and observing 20% of the annotations

the set of all positive attributes for an image and evaluate
the performance of models based on their ability to recover
all annotated attributes for each image.

While AWA contains ∼30K images across 50 categories
and 85 attributes, CUB is much sparser with ∼11K images
across 200 categories and 312 attributes. We report results
under two aggressive missing-label settings; sampling either
only a single attribute or 20% of the annotated attributes for
each image. For both L2 regularized cross-entropy (CE+L2)
and our loss, we use the pre-final layer activations of Resnet-
152 (He et al., 2016) as the image-representation and train a
two-layered MLP, optimized using Adam (Kingma & Ba,
2015) with a learning rate of 1e−5 and a batch size of 64.
Early-stopping was used to pick the best set of parameters.

Results. Unlike the toy setting in Section 4.1, the data
generating distribution is unknown and so, we cannot eval-
uate using KL-divergence w.r.t. it. As is common to the
multi-class with missing labels setting, we use Average
Precision@k – that measures the number of correct an-
notations present in the top-k ranked predictions. From
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Table 1 it can be gleaned that our approach outperforms
standard cross-entropy training in both settings (just one
randomly sampled label and 20% of the annotated labels)
and on both AWA and the much harder, CUB datasets. For
instance, our method achieves an improvement of ∼ 3%
when evaluated on the top-10 retrieved predictions.

4.3. Visually Grounded Language Generation

Datasets. We report results on standard image-captioning
datasets – Flickr-8k (Hodosh et al., 2013), Flickr-30k
(Young et al., 2014) and COCO (Lin et al., 2014a). We use
standard splits (Karpathy & Fei-Fei, 2015) of size 1000 to
report results on the first two and a test split of size 5000 for
the COCO dataset. Futher, to mimic the problem of missing
labels we train only on a single (arbitrarily chosen) caption
while evaluating on all 5 captions. This approach helps us to
evaluate if our model learns to place beliefs on other unseen
but ‘correct’ outputs while seeing only uni-modal training
data. Owing to the small size of the PASCAL-50S dataset
(Jas & Parikh, 2015), we only evaluate on it while using a
model trained on COCO.

For VQG, We use three datasets built on a small sub-
set of COCO, Flickr and Bing images (Mostafazadeh
et al., 2016). We train on ∼2.5K images and report
results on a test of size ∼1.5K for each dataset. To
stay consistent with the captioning experients, we report
retrieval numbers on a randomly chosen subset of 1000
images and their 5 corresponding questions from the test set.

Models. For both tasks, we train a model similar to
Lu et al. (2017) that uses activations from an ImageNet
pre-trained Resnet-152 (He et al., 2016) architecture as
image-representations. For both captioning and VQG,
the learnt LSTM model has one layer, 1024-dimensional
hidden states and is optimized using Adam (Kingma &
Ba, 2015) with a learning rate of 1e−4. The similarities
Kij used to weigh the supervision from neighboring
data-points are computed in a learnt space got by projecting
the image-representations through a 2-layered MLP with
512 hidden units in each layer. As discussed in sec. 2.3,
the learning rate for this transformation is is 10× smaller
compared to the LSTM parameters.

Ablations Recall that in Section 2.2 we described two
variants of our approach for sequence prediction:
1. Caption-Transfer-without-Attention: where we

transfer entire captions from neighboring images, and
2. Caption-Transfer-with-Attention: where we use at-

tention models to selectively weigh relevant portions of
the neighbor’s caption.

Baselines. In addition to standard maximum likelihood
training we also compare to two ablations of our method:

Method Oracle Metrics @20 distinct
4-grams

Recall5
@100CIDEr SPICE METEOR

Fl
ic

kr
-8

k

MLE 0.5072 0.1564 0.1553 2205 0.71
(Rennie et al., 2017) 0.5272 0.1509 0.1498 1834 0.74

(Dai et al., 2017) 0.4982 0.1598 0.1420 1730 0.72
Caption-Transfer-Without-Attention 0.5181 0.1561 0.1565 2503 0.89

Caption-Transfer-With-Attention 0.5240 0.1620 0.1614 2498 0.95

Fl
ic

kr
-3

0k

MLE 0.6729 0.1642 0.1723 1920 1.30
(Rennie et al., 2017) 0.6832 0.1520 0.1689 1824 1.36

(Dai et al., 2017) 0.7120 0.1692 0.1752 1730 1.34
Caption-Transfer-Without-Attention 0.7180 0.1721 0.1794 1822 1.52

Caption-Transfer-With-Attention 0.7246 0.1802 0.1843 2101 1.63

C
O

C
O

MLE 0.8014 0.2132 0.2245 4218 1.45

augment 0.8294 0.2147 0.2331 3766 1.49
no-refine 0.8316 0.2182 0.2304 4117 1.63

(Rennie et al., 2017) 0.8410 0.2013 0.2272 3988 1.53
(Dai et al., 2017) 0.8120 0.2117 0.2340 4011 1.49

Caption-Transfer-Without-Attention 0.8398 0.2165 0.2378 4128 1.78
Caption-Transfer-With-Attention 0.8422 0.2210 0.2405 4270 1.84

Table 2. While reporting standard task-specific and diversity met-
rics, we observe that our methods outperform standard MLE and
the baselines on all three datasets Flickr-8k, Flickr-30k and COCO
on the retrieval task that measures multi-modal output mappings.
Further, note that the task-specific metrics like CIDEr and SPICE
are generally lower since we train using only one caption.

1. augment – captions of neighboring images are directly
appended as ground truth to create a larger training
set (corresponds to setting Kij = 1). Improvements
on this setting indicate the advantage of both softly-
enforcing the neighborhood as well as learning the
representation space for computing similarities.

2. no-refine – Unlike the full setting, the representation is
held fixed and is not refined from the generic represen-
tations to specialize for the task at hand. Improvements
over this baseline denotes the advantages of jointly
learning the representation space (and adapting the
neighborhood) apart from transfering supervision.

Further, we compare to two other strong methods that do
not employ MLE — (Dai et al., 2017) use adversarial
training to distinguish between human and generated
captions and (Rennie et al., 2017) directly optimize for a
task-specific metric using policy gradients with a novel
variance reduction baseline.

Evaluation Metrics. We evaluate the sequence gen-
eration models using the following metrics that each
evaluate for certain desirable properties of the model –

1. Oracle Metrics. Each output is evaluated against the ref-
erence sequences using standard captioning metrics like
CIDER or SPICE. Following previous works (Guzman-
Rivera et al., 2014; Lee et al., 2016; Snell & Zemel,
2017) that consider ambiguous tasks, we evaluate the
decoded lists using oracle metrics that report the best
output in the list – mimicking an ‘oracle’ user that se-
lects the most suitable option for a downstream task.

2. Diversity Metrics. Apart from producing high-quality
captions, linguistic diversity in the decoded lists pro-
vides a good signal for the multi-modal nature of the
learnt model. Similar to (Li et al., 2015), we measure di-
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Method Oracle Metrics @20 distinct
4-grams

Recall5
@100CIDEr SPICE METEOR

Fl
ic

kr

MLE 0.3510 0.1201 0.1273 1294 0.35
(Rennie et al., 2017) 0.3822 0.1240 0.1298 1350 0.38

(Dai et al., 2017) 0.3572 0.1286 0.1287 1258 0.34
Caption-Transfer-Without-Attention 0.3720 0.1292 0.1392 1388 0.46

Caption-Transfer-With-Attention 0.3827 0.1445 0.1462 1395 0.51

C
O

C
O

MLE 0.3233 0.1182 0.1245 967 0.33
(Rennie et al., 2017) 0.3485 0.1224 0.1209 1104 0.35

(Dai et al., 2017) 0.3296 0.1215 0.1241 1270 0.38
Caption-Transfer-Without-Attention 0.3471 0.1262 0.1276 1192 0.43

Caption-Transfer-With-Attention 0.3506 0.1282 0.1304 1220 0.49

B
in

g

MLE 0.2890 0.1202 0.1309 755 0.37
(Rennie et al., 2017) 0.3681 0.1225 0.1287 910 0.38

(Dai et al., 2017) 0.3224 0.1199 0.1256 937 0.42
Caption-Transfer-Without-Attention 0.3355 0.1289 0.1296 984 0.49

Caption-Transfer-With-Attention 0.3410 0.1314 0.1336 1021 0.55

Table 3. We find that our methods outperform the baselines on all
three datasets Flickr, COCO and Bing datasets on the retrieval task
that evaluates ability of the model to make multi-modal output
maps. Similar to image-captioning, note that the task-specific
metrics are generally lower as we train using only one question.

versity in the decoded lists by reporting the number
of distinct n-grams (normalized by sentence length)
present in the decoded lists.

3. Retrieval Metrics. A drawback of the first two metrics
is that they also depend on the inference procedure used
to decode the output lists (e.g. beam search). Therefore,
we directly evaluate the beliefs placed by the model
on different outputs in a retrieval setting where a pool
of human-annotations are ranked based on their log-
probability under the model for a given image. Then, we
compute Recallm@k that evaluates for – the average
number of them ground truth captions that were present
in the top-k retrieved sequences.

Results. For both captioning and VQG, we decode out-
put lists for all methods using beam search with a beam
size of 20. As can be seen from Table 2 and Table 3, both
variants of our approach outperform cross-entropy training
on all three standard image-captioning metrics. Excluding
Flickr-30K for captioning and Bing for VQG, our approach
performs the best in terms of output quality (as evidenced
by higher oracle numbers). Further, our approach achives
the best performance on both diversity and retrieval metrics
indicative of the multi-modal mapping learnt by the model
on both tasks of interest. Additionally, our methods outper-
form both hard and no-refine ablations of our method – we
only show the performance for captioning on COCO owing
to space constraints and provide the rest in the supplement.

5. Discussion
Sample Efficiency on Captioning. We perform sample-
efficiency experiments similar to those in the toy-setting
for captioning on the Flickr-8k dataset in two ways – 1)
by gradually increasing the number of unique images
used from 1000 to 8000 while still using only one caption
annotation. 2) by gradually increasing the number of
additional ground truth captions used from 1 to 5. As seen

Figure 5. Our method is sample efficient compared to standard
cross-entropy training. On the Flickr8k image-captioning task, our
method performs comparably to CE with the full dataset while
only using ∼3K images (left). Similar trends exist as the number
of annotations per image is increased (right).

in Fig. 5 (left), our approach obtains a Recall5@100 score
of 1.58 using only 5K images which is very close to what is
obtained using all 8k images (=1.60) in the first case. In the
second case, we observe in Fig. 5 (right) that using only 3
captions per image (1.65) nearly obtains the same retrieval
score as using all the 5 captions (=1.66). This demonstrates
that our approach can lead to efficient learning of the true
distribution even in data-sparse regimes.

While the primary focus of our work is to learn multi-modal
mappings even with access to uni-modal datasets, we
observe that our proposed method performs competitively
when trained and evaluated under standard captioning
settings i.e. all 5 captions are used during training and one
best output is evaluated (as against using oracle metrics).
For instance, our method achieves a METEOR and CIDEr
score of 0.28 and 1.14 respectively, slightly outperforming
Lu et al. (2017) (0.27 and 1.09) on the COCO-captioning
task. We observe similar trends on question-generation and
include detailed results in the supplement.

6. Conclusion
In this work, we propose a novel objective that incorpo-
rates the inductive bias that the outputs of neighboring data
points can be used to provide additional supervision espe-
cially when obtaining exhaustive annotations is expensive
or worse, intractable. The proposed objective allows the
model to place beliefs on multiple plausible outputs while
still observing only one annotation per input. We first study
the properties of our method on a synthetic dataset where the
underlying data-distribution is known allowing us to control
the difficulty of the experiments and directly evaluate the
learnt posteriors. Further, we replicate this toy setting on
a real-world multi-label prediction problem using standard
attribute datasets. Finally, we show that our approach leads
to better quality outputs with higher diversity on two well-
established visually grounded language-generation tasks –
captioning and question generation. We observe that our
approach outperforms various ablations and baselines on
both tasks on the various evaluation metrics used.
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